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QCD coupling: scheme variations and tau decays
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We introduce a QCD coupling redefinition which has a simple scheme transformation. As an ap-
plication, we discuss possible improvements on perturbative predictions of QCD physical quanti-
ties. In particular, we focus our attention to the Adler function, which is relevant for the extraction
of αs from tau decays.
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The C-scheme coupling

We consider the Adler function [1], which governs theoretical predictions of the inclusive
decay rate of tau leptons into hadronic final states [2]. After proper normalisation, a perturbative
expansion for the Adler function is given by D(a) = 1+a+O(a2), where a = αs(Q2)/π and Q is
the momentum transfer of the related physical process.

In the large-β0 approximation (see [3] for a review), this function has the following Borel
integral representation [4, 5]:1

D(a) =
2
β1

∫
∞

0
due−2u/(β1a)B[D](u) , (1)

where

B[D](u) =
32
3

e−Cu

2−u ∑
k≥0

(−1)kk
[k2− (1−u)2]2

. (2)

C parametrises the scheme dependence of a, arising from the renormalisation of the gluon chain
1/(1+Π0). A constant C remains after subtracting the divergence from the fermion loop in dimen-
sional regularisation:

Π0(k2) =−β1αs

[
log
(
− k2

µ2

)
+C
]
. (3)

In the MS scheme, C =−5/3.
Because the Adler function is a physical quantity, it is independent of theoretical conventions.

In particular, the Borel integral in Eq. (1) is independent of C and we conclude that the combination
2/(β1a)+C has to be C invariant. Therefore, the C dependence of the coupling a is given by

1
a(C)

=
1

a(C = 0)
− β1

2
C . (4)

Our goal is to define a new coupling in full QCD with similar scheme properties to those in
Eq. (4). For that, we define the scale invariant ΛQCD parameter

ΛQCD = Qe−1/(β1a)a−β2/β 2
1 exp

(∫ a

0

da
β̃ (a)

)
, (5)

where
1

β̃ (a)
=

1
β (a)

− 1
β1a2 +

β2

β 2
1 a

(6)

is free of singularities at a = 0.
Although ΛQCD by definition is scale independent, it does depend on the scheme. If the cou-

pling is a in one scheme and a′ in another so that both couplings are related by a′ = a+ c1a2 +

O(a3), then the scheme transformation of ΛQCD is given by [6]

Λ
′ = Λec1/β1 , (7)

where Λ (Λ′) is the ΛQCD parameter in the a (a′) coupling. The ΛQCD parameter only depends on c1

and is insensitive to the rest of the expansion coefficients.

1In our notation, the β coefficients are defined through β (a) =−µ da/dµ = β1a2 +β2a3 + . . .
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We fix the coupling a in a specific scheme and define a new coupling â through

f (â) = β1 log
(

Q
ΛQCD

)
+

β1

2
C , (8)

where f is some function to be specified later. The right hand side of the equation has a very simple
scheme transformation originating from Eq. (7), which for convenience we reparametrised in terms
of C instead of c1. Thus, the new coupling â has the same property regardless of the choice of f .

Combining Eq. (5) and Eq. (8), we find

f (â)− β1

2
C = β1 log

(
Q

ΛQCD

)
=

1
a
+

β2

β1
log(a)−β1

∫ a

0

da
β̃ (a)

, (9)

so we choose

f (â) =
1
â
+

β2

β1
log(â) (10)

in order to match both sides of Eq. (9). The coupling â is then implicitly defined through

1
â
+

β2

β1
log(â) = β1 log

(
Q

ΛQCD

)
+

β1

2
C . (11)

The choice of f is not arbitrary, but it is necessary so that the perturbative relation between a and
â remains a simple power expansion â = a+∑n≥1 cnan+1. It is in this sense that â is a legitimate
coupling redefinition. We call â the C-scheme coupling, which was first introduced in [7].

We note that in the large-β0 approximation (where βn = 0 for all n≥ 2), â has the same scheme
dependence as in Eq. (4).

C-scheme coupling evolution

The C-scheme coupling has simple properties regarding scale and C transformations. Differ-
entiating Eq. (11) with respect to either C or Q, we find

−Q
dâ
dQ
≡ β̂ (â) =

β1â2

1− β2
β1

â
=−2

dâ
dC

. (12)

So changes in the scheme C are completely equivalent to changes in the scale Q. A shift in the scale
from Q1 to Q2 can be compensated by a shift in the scheme from C1 to C2 so that Q1/Q2 = eC1−C2 .

In addition, because β1 and β2 are both scheme independent parameters, then the β function
of â is explicitly scheme independent.

Cancellation of even ζ ’s in perturbative expansions

As an example for the discussion of this section, we consider the second derivative of the
scalar correlator

Ψ
′′ (Q2)∼ K

m2

Q2 ∑
n≥0

bnan , (13)
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with the scale choice µ2 = Q2 for both mass and coupling. The perturbative expansion in Eq. (13)
is currently known up to fourth order. The coefficients bn contain different values of the Riemann
ζ function [8, 9, 10]:

b2 =−
35
2

ζ3 + . . . (14)

b3 =
715
12

ζ5−
5
4

ζ4−
65869

216
ζ3 + . . . (15)

b4 =
52255
256

ζ7−
625
48

ζ6 +
59875
108

ζ5−
14575
576

ζ4 + . . . (16)

We will rewrite the perturbative series of Eq. (13) in two steps. In the first step, we replace the
mass m by its scale-invariant version

m̂ = m(πa)−γ1/β1 exp
(∫ a

0
da
[

γ(a)
β (a)

− γ1

β1a

])
(17)

and obtain

Ψ
′′ (Q2)∼ K

m̂2

Q2 (πa)2γ1/β1 ∑
n≥0

b′nan , (18)

where the coefficients b′n are combinations of the initial coefficients bn and contributions coming
from the exponential factor in Eq. (17). The ζ4 present in b3 and the ζ6 present in b4 are cancelled
by these contributions, but the ζ4 in b4 still remains. The respective cancellations have also been
observed in [11] for a related quantity.

In the second step, we replace in Eq. (18) the QCD coupling a by the C-scheme coupling
â. The result is that the remaining ζ4 term in b′4 also cancels against a corresponding ζ4 present
in the β5 coefficient that arises from this replacement. Thus, the coefficients of the perturbative
expansion become free of any even ζ term at least up to order â4 (although we expect this to be
true to all orders in perturbation theory). This result has also been demonstrated for the gluonium
correlator [12] and for several more physical quantities [13, 14].

Borel models

It is well known that perturbative expansions are divergent [15]. Adding more terms to an
expansion would in general give better theoretical predictions, but there is a turning point when the
factorial divergence of the coefficients dominate over the suppression of the coupling. From there,
the precision degrades as more terms are added.

Conventionally, a finite value is assigned to the divergent expansions by considering its Borel
sum:

D(a) =
2
β1

∫
∞

0
due−2u/(β1a)B[D](u)+ . . . (19)

However, the corresponding Borel transform B[D] has singularities on the positive real axis which
interfere with the Borel integral, producing imaginary ambiguities that are exponentially sup-
pressed like e−S/a, where S > 0 is the position of the singularity. These ambiguities indicate the
presence of opposing exponential corrections to the original perturbative expansion. We have

D(a)∼ ∑
n≥0

bnan± ibe−S/aa−λ
∑
n≥0

b′nan + . . . , a→ 0+ , (20)
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which is conventionally written as an operator product expansion (OPE) with the exponential fac-
tors written in terms of Λ2

QCD
/Q2. Each exponential factor corresponds to a different singularity S

in the Borel transform.
Imposing ambiguity cancellation between the two sectors of the expansion yields a relation

between the large n behaviour of the bn and the low n behaviour of the b′n. This connection reads

bn = b
(−1)n+1

π

Γ(n+λ )

(−S)n+λ

[
1+

−Sb′1
n+λ −1

+O

(
1
n2

)]
, (21)

± ibe−S/aa−λ
[
a+b′1a2 +O

(
a3)]. (22)

Even if it is impossible to compute the coefficients bn at large n from Feynman diagrams, we
can still determine its large order behaviour thanks to this connection with the OPE. Namely, from
the known structure of the OPE, we can fix the parameters λ and S, and from the computation of
the Wilson coefficients we can determine the b′n. But the residue b can only be computed from the
condensates and very little is known about them at the present time.

In [16], an ansatz is proposed for the Borel transform of the Adler function in full QCD.
This ansatz incorporates the closest singularities to the origin (u = −1, 2, 3) and their respective
residues b are fit with the first few known coefficients of the Adler function. This strategy already
presumes that the large order behaviour of the bn sets in fast enough, but it is possible that a far-
away singularity has an artificially high residue in such a way that its contribution to low orders is
not negligible.

Using the C-scheme coupling, we want to improve on the above strategy by making sure that
already at low order the large order behaviour is a good approximation to the true result. For that,
we compute the Borel transform of the Adler function with respect to â (instead of a). The residues
of this Borel transform change with the scheme C and it is then possible to choose an optimal
value of C for which the residues of the closest singularities are enhanced with respect to far-away
singularities.

The large-β0 approximation is a good play field to qualitatively investigate how these changes
take place. Going back to Eq. (2), we see that the residue at u = S goes like b ≈ e−CS. Thus,
as a rough approximation, C > 0 enhances negative poles, while C < 0 enhances positive poles.
Lessons learned from this model then can be extrapolated to full QCD.

We hope theoretical uncertainties in αs extractions that arise from the truncation of perturbative
expansions can be reduced by using the procedure described in this section.
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