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Introduction

Lattice gauge theory is a non-perturbative formulation of QCD, which allows us to evaluate
the Euclidean path integral by a Monte Carlo “simulation” for a few suitably chosen values of

L/a, T/a, g0, {ami, i = 1 . . .N f } . (1)

Here L/a is the number of points of the world in each space dimension, T (often bigger than L) is
the extent of the time axis, g0 is the bare coupling of the theory, and ami are the bare quark masses.
Once we obtain the relation between the bare parameters and hadronic low-energy quantities, such
as fπ ,mπ ,mK . . ., we can in principle predict all physical quantities in QCD, including αs.

Methods for the strong coupling.

The general method for extracting αMS with lattice QCD is to consider a short-distance, one-
scale, observable with an expansion

O(µ) = c1αMS(µ)+ c2αMS(µ)
2 + · · · , (2)

compute O(µ) by lattice QCD and determine αMS(µ) from Eq. (2). This requires that we are in a
region where perturbation theory is valid, i.e. αMS(µ) is small.

Advantages. An important advantage of taking O from lattice QCD compared to using experi-
mental data is that one is automatically in the Euclidean region where no hadronisation corrections,
duality violations etc. are a concern. Furthermore one has a large freedom to design convenient ob-
servables.

Disadvantages. Determining αs is a two stage process, connecting quantities at two disparate
scales, high momentum and the hadronic scale – the latter is where lattice QCD naturally resides.
Furthermore, lattice QCD simulations are restricted to N f = 3 or N f = 4 quarks at most, because
the b-quark is simply too heavy. One then relies on perturbative matching across the appropriate
quark thresholds to determine αs at the mZ scale where the number of active flavours is N f = 5.
Note that this means that many earlier results for N f = 2 cannot be used, as crossing the strange
quark threshold needs a non-perturbative procedure. (N f = 0 results being computationally cheap
form a useful testbed for checking different methods.)

The 2019 FLAG review.

The Flavour Lattice Averaging Group (FLAG) formed a working group (R. Horsley, T. Onogi,
R.S.) on αs in 2011 and first included determinations of αs(mZ) in its review in 2013 [1]. Updates
appeared in 2016 [2] and 2019 [3].

Here we report on this latter work. We first briefly comment on our procedure for determining
averages. There are similarities and differences to the PDG approach [4]. The main difference is
that FLAG formulates a set of criteria, that computations have to pass in order to enter the average
of a given quantity of phenomenological interest [2]. These are based on whether the simulations
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Figure 1: The plane α
(3)
MS

(µ) for N f = 3 against the scale µ in lattice units, where a is the lattice spacing and
the blue region corresponds to the rough bound a > 0.04fm. Note that the continuum limit is approached by
extrapolations with aµ� 1. The points on the left correspond to actual Monte Carlo simulations in category
(III).

cover a range of parameters that allow to achieve a satisfactory control of systematic uncertainties
(labeled F) a reasonable attempt can be made at estimating systematic uncertainties (◦ ), or it is
unlikely that systematic uncertainties can be brought under control ( � ). The appearance of a �

even in a single source of systematic error of a given lattice result, disqualifies it from inclusion in
the global average.

For the computations of αs, the usual criteria for chiral and infinite volume extrapolations are
somewhat relaxed as they do not play a dominant role. Instead criteria on perturbative behaviour
and renormalization scale try to make sure that the computation is at reasonable high µ , the pertur-
bative knowledge is sufficiently good (i.e. the number of known loops, nl, is sufficiently high) and
µ could be varied over some range in order to confirm the perturbative µ-dependence. The general
idea is that these criteria try to make sure that the available Monte Carlo data have a few points
located sufficiently low in the landscape of Fig. 1, while the continuum limit criterion requires us
to not be too far on the right. The precise criteria are given in FLAG 19 [3].

In order to arrive at a final average, we first form pre-averages of computations using one and
the same method and after combine them to give a final estimate. We now discuss the different
methods, following a certain classification (I-III).

(I) Continuum-limit observables in large volume. Here O is a finite observable depending on
the scale µ . One can then take the continuum limit

O(µ)≡ lim
a→0

Olat(a,µ) with µ fixed . (3)

One wants µ to be high such that the expansion Eq. (2) is precise and aµ small to control the
discretization error. However, recall that one is usually in the blue shaded region of Fig. 1 and it is
difficult to extrapolate when αMS is small, say αMS ≤ 0.3.

There are several different methods. They share the necessity for finding a compromise be-
tween large µ and small aµ . In the cases where computations qualify for taking an average (i.e.,
there is no � ), we perform a weighted average of the different results. According to our judgement
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the uncertainties are dominantly systematic. They are due to the truncation error of perturbation
theory, whether ordinary higher order or non-perturbative effects. We just estimate the perturbative
truncation error and take this as the uncertainty of the pre-range, which is usually somewhat more
conservative than the uncertainty estimate in the contributing papers.

The individual methods are (we partially have to simplify here):

(1) Q-Q potential: O(µ) = r2Fstatic(r), µ = 2/r, where Fstatic(r) is the force between static
quarks defined by the large-t behaviour of Wilson loops W (r, t). Note that nl is 3 but nl > 3
terms proportional to logαs are also known. Indeed, at fixed order perturbation theory, the
basic observable O(µ) is infrared divergent. As discussed by N. Brambilla and H. Takaura
at this workshop, these divergences can be resummed, leaving terms such as α4

s logαs in the
expansion of O(µ).

(2) Vacuum polarization: O(µ) = D(Q2), µ2 = Q2, with D the Adler function derived from the
V+A two-point function at Euclidean q. This method does not yet enter the average.

(3) Two point HH current: moments of heavy-heavy pseudoscalar-current two-point functions.
Heavy quarks of masses around the charm and heavier are used. Different discretizations are
available that allow also to compare the continuum-limit moments before the extraction of
αs. There is quite good agreement.

(4) Gluon-ghost vertex: using gauge fixing, the momentum-space vertex is used. This method
does not yet enter the average as the continuum limit criterion is not passed.

(5) Dirac eigenvalues: O(µ) = ∂λ log(ρ(λ ))/∂ log(λ ), µ = λ with ρ(λ ) the spectral density
of the massless Dirac operator. This recently introduced method [5] does not yet pass the
continuum-limit criterion.

(II) Lattice observables at the cutoff. There is also the possibility to consider lattice observables
involving distances of a few lattice spacings, which are not related to a continuum observable. The
prominent example is rectangular Wilson loops W (r, t) of extent r× t with r = am and t = an,
keeping the integers n,m fixed as one takes the limit a→ 0; the loops shrink to size zero in the
limit. Such observables have an expansion

W (na,ma)
g0→0∼ ∑

k≥0
c(k)m,n g2k

0
g0→0∼ ∑

k≥0
ĉ(k)m,n g2k

MS(1/a) , (4)

where in the second step use is made of the relation between the bare coupling and a renormalized
coupling at the cutoff scale, g2

0 = g2
MS(1/a)+O(g4). The available loop orders are often lower

than for continuum perturbation theory. Lattice artefacts can only be separated from perturbative
corrections in Eq. (4) by assuming some functional form and fitting to it.

In this category small (m,n≤ 3) Wilson loops O(µ) =W (ma,na) , µ = k/a, and functions
thereof (e.g. log(W (a,a)) are often used. The scale factor k is adjusted to have better apparent
convergence of PT. Our estimate of perturbative uncertainties is again somewhat conservative [3].

(III) Continuum-limit observables in small volume and step scaling. For finite volume quan-
tities with volume L4 and some technical requirements, Eq. (2) holds but with

µ = 1/L . (5)
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The advantage is that now µa can easily be taken to a/L = 1/8 . . .1/32 or smaller. However, a
number of steps are needed to connect recursively

µ0→ sµ0→ s2
µ0→ . . .→ sN

µ0 , (6)

and in each step a few different lattice spacings a have to be simulated to take the continuum limit.
After a few steps, µ becomes very large so that perturbation theory can be applied with confidence
and statistical errors dominate the uncertainty. At this workshop, M. Dalla Brida presented a recent
precise three-flavour computation with µ0≈ 200 MeV and sN µ0≈ 100 GeV . We perform a straight
weighted average for mean and error of the two available results for this method.

World average from FLAG. Altogether we have considered 18 computations, of which 9 pass
our criteria. These are shown in Fig. 2 and Table 1. For each method, the grey band shows the pre-
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Figure 2: The MS coupling at the Z mass. The PDG 18 [4] entries give the outcome of their analysis from
various phenomenological categories including their average. The lattice computations with a filled green
box, �, have no red box, �, in the previous ratings and therefore qualify for averaging. A � means the same
but the number does not enter an average because it is superseded by a later more complete computation or it
was not published at the September 2018 deadline. Computations with � do not enter the averages because
they had at least one � before.

average as explained above. We are left with the task to combine those pre-averages. Again we take
the central value from their weighted average. However, since the errors of the pre-averages are
mostly systematic, we feel that the straight error 0.00057 of the weighted average is too optimistic
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αMS(mZ) method nl

ALPHA 17 [6] 2+1 A F F F 0.11852( 84) step scaling 2
PACS-CS 09A [7] 2+1 A F F ◦ 0.11800(300) 2

pre-range (average) 0.11848( 81)

Takaura 18 [8, 9] 2+1 P � ◦ ◦ 0.11790(70)(+130
−120) Q-Q̄ potential 3

Bazavov 14 [10] 2+1 A ◦ F ◦ 0.11660(+120
−80 ) 3

Bazavov 12 [11] 2+1 A ◦ ◦ ◦ 0.11560(+210
−220) 3

pre-range with estimated pert. error 0.11660(160)

Hudspith 18 [12] 2+1 P ◦ ◦ � 0.11810(270)( +80
−220) vacuum polarization 3

JLQCD 10 [13] 2+1 A � ◦ � 0.11180(30)(+160
−170) 2

HPQCD 10 [14] 2+1 A ◦ F F 0.11840( 60) Wilson loops 2
Maltman 08 [15] 2+1 A ◦ ◦ F 0.11920(110) 2

pre-range with estimated pert. error 0.11858(120)

JLQCD 16 [16] 2+1 A ◦ ◦ ◦ 0.11770(260) HH current, two points 2
Maezawa 16 [17] 2+1 A ◦ � ◦ 0.11622( 84) 2
HPQCD 14A [18] 2+1+1 A ◦ F ◦ 0.11822( 74) 2
HPQCD 10 [14] 2+1 A ◦ F ◦ 0.11830( 70) 2
HPQCD 08B [19] 2+1 A � � � 0.11740(120) 2

pre-range with estimated pert. error 0.11824(150)

ETM 13D [20] 2+1+1 A ◦ ◦ � 0.11960(40)(80)(60) gluon-ghost vertex 3
ETM 12C [21] 2+1+1 A ◦ ◦ � 0.12000(140) 3
ETM 11D [22] 2+1+1 A ◦ ◦ � 0.11980(90)(50)( +0

−50) 3

Nakayama 18 [5] 2+1 A F ◦ � 0.12260(360) Dirac eigenvalues 2

Table 1: Results for αMS(mZ) from simulations that use 2+1 or 2+1+1 flavours of quarks. A weighted
average of the pre-ranges gives 0.11823(57), using the smallest pre-range gives 0.11823(81) and the average
size of ranges as an error gives 0.11823(128).

– it would be correct for independent Gaussian distributions. Instead we use the smallest error of
the pre-averages. This yields the result

α
(5)
MS

(mZ) = 0.11823(81) . Refs. [6, 16, 10, 18, 14, 7, 15]. (7)
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Further progress

Finally, we collect some lessons that we have learned in our forming of a lattice world average
of αs. The basic problem is simple and has been spelled out often, phrased in varying words.
In order to have a precise value with an error that can be estimated by perturbation theory itself,
large energy scales µ have to be reached and theory assumptions have to be kept at a minimum.
Further progress will be limited if we include processes where non-perturbative contributions have
to be fitted or removed by complicated analyses in order to make lower energies accessible. Dealing
with non-perturbative physics is always based on assumptions – if only where the expansion in 1/µ

applies and lowest-order terms (1/µ)Nmin dominate. We should therefore separate the determination
of αs at high enough µ , simple theory, from tests of perturbation theory, with resummations, studies
of higher-twist contributions, etc.

The concept of criteria introduced by FLAG is very useful in this respect, and we advocate
to consider such a procedure for phenomenological determinations. One should at least consider a
criterion on minimum values of µ , paired with sufficiently high perturbative order. In FLAG these
are the “renormalization scale” / “perturbative behaviour” criteria. We also think that the criteria
of FLAG should become more strict as time goes on. This is necessary to avoid situations where
complicated procedures, involving e.g. separate estimates of perturbative errors (see above), are
needed to arrive at a safe range. Finally, it seems that the limit of lattice determinations of αs is not
yet reached; we believe a factor of two reduction in the error is possible with some variation of the
developed techniques.

Acknowledgments. We thank our colleagues in FLAG for a fruitful collaboration. RS thanks
the organizers of the workshop for their initiative and for providing a stimulating atmosphere and
the participants of the workshop for interesting discussions.
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