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Digital pulse shape analysis (DPSA) is becoming an essential tool to extract relevant information 
from waveforms arising from different source. For instance, in the nuclear particle detector field, 
digital techniques are competing very favorable against the traditional analog way to extract the 
information contained in the pulses coming from particle detectors. Nevertheless, the extraction 
of the information contained in these digitized pulses requires powerful methods. One can 
visualize this extracting procedure as a pattern recognition problem. To approach this problem one 
can use different alternatives. One very popular alternative is to use an artificial neural network 
(ANN) as a pattern identifier. When using an ANN, it is common to introduce a regularization 
method in order to get rid or at least to reduce the effects of overfitting and overtraining. In 
addition, another option that helps to solve these problems is to use a large training dataset to train 
the ANN. In this paper, we make an intercomparison of the advantage of regularization methods 
vs large training datasets when used as methods to reduce the overtraining and overfitting effects 
when training an ANN. 
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1. Introduction 
Hardware development of data acquisition systems has allowed the development of 

powerful digital pulse shape analysis (DPSA) techniques applied to multiple detection systems, 
see Refs. [1-8]. Additionally, ANNs represent an interesting alternative for the implementation of 
DPSA. ANNs are adaptive systems that exhibit some advantages for this task. One can use several 
ANN models to carry out DPSA, for example, different ANN architectures, as well as, different 

learning laws. On the other hand, two related ever-present problems in the diverse applications of 
ANNs as pattern recognizers (signal pulses) are overfitting and overtraining. Of course, there are 

several ways to deal with these two problems when using an ANN. In this paper, we will focus 
ourselves on the study of three common methods that people use to address the problem of 
overfitting-overtraining. This will be accomplished in relation to the problem of identifying the 
signals (pulses) coming from a Bragg curve spectrometer. 
 

2. Bragg curve spectroscopy 
Bragg curve spectroscopy (BCS) is a nuclear analytical technique that has been used, for 

several decades, to identify the ions coming out from nuclear reactions. In this technique, one 

uses an ionization chamber to measure two parameters: the total energy of the ion ETot, and the 
Bragg peak amplitude BP, which represents the maximum amplitude of the specific stopping 
power curve (S(E) = dE/dx ≡ Bragg curve BC) of an ion, when it traverses the gaseous medium 
within the ionization chamber, losing all its energy. Traditionally, one obtains these two 
parameters by feeding the anode output signal from a BCS to two electronic amplification 
branches, one with a large integration time, providing the ETot signal, and the other with a short 
integration time, providing the BP signal [9-12]. A detailed description of a DPSA alternative 
appears in [8]. 

 
3. Digital pulse shape analysis and Bragg curve spectroscopy 

For the identification of a Bragg curve, we will use the DPSA procedure followed in Ref.  
[8]. For that purpose, we will analyze digital synthetic BCs. These curves consist of 81 values, 
{S(i)}i = 0, 80. In Fig. 1, it is shown an ideal BC (red curve) along with a synthetic BC (dotted black 
curve) which contains a fast-changing component simulating any source of experimental noise. 

In order to appreciate how well an ANN is learning its assigned task, it is convenient to plot 
the evolution of the sum-of-squares error (SSE) functions (over the training and validation 
datasets) vs the number of ANN training epochs. One epoch means presenting once each one of 
the curves in the training dataset during the ANN training. Therefore, accordingly, we define these 
two error curves as: 

 

𝐸்(𝜌) =  ∑ ห𝑦⃑௧ − 𝑓ൣ𝑥⃑௣;  𝜔ሬሬ⃑ (𝜌)൧ห
ଶ

௣∈஽೅     and    𝐸௏(𝜌) =  ∑ ห𝑦⃑௧ − 𝑓ൣ𝑥⃑௣; 𝜔ሬሬ⃑ (𝜌)൧ห
ଶ

௣∈஽ೇ , 

 

where 𝜔ሬሬ⃑ (𝜌) represents the weight array of the ANN after 𝜌 training epochs, 𝑓ൣ𝑥௣;  𝜔ሬሬ⃑ (𝜌)൧ is the 

ANN output for pattern p after 𝜌 training epochs, and the sum is carried over all patterns p in the 
training DT and validation DV datasets respectively. 
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Fig. 1. Plot of an ideal BC (red solid curve) along with a synthetic BC (black dotted curve), which includes 
a zero mean fast component simulating any possible source of experimental noise. The fluctuating 
amplitude of the fast component (standard deviation) is equal to 10% of the corresponding ideal BC 
amplitude at every point; we call this quantity the noise to signal ratio N/S. Using this kind of BCs we 
construct the training dataset DT as well as the validation dataset DV. 
 
4. ANN training 

We used three different options to train the ANNs. In all three cases, we used the back-

propagation training learning law [13]. In the first and the second cases we used a learning rate  

= 0.3, a momentum term  = 0.15, and, as regularization method, we used early stopping. In the 

third case, we used a learning rate  = 0.3, and weight decay as regularization method as in Refs. 

[14, 15]. In the first and third cases, the datasets DT and DV consists of 45,100 BCs. In the second 
case, these two datasets consist of 451,000 BCs. According to this, in all cases we employed the 

stochastic gradient descent algorithm to update the weight array using, in the first and the second 
cases: 

 

Δ𝜔௜௝(𝜌 + 1) = −𝜂
𝜕𝐸்(𝜚)

𝜕𝜔௜௝
+  𝛼𝛥𝜔௜௝(𝜌). 

 

In the third case, the weight array was updated without using a momentum term (α) but, 
instead, including a weight decay term (λ): 

 

𝜔௜௝(𝜌 + 1) = −𝜂
𝜕𝐸்(𝜚)

𝜕𝜔௜௝
− 𝜆𝜔௜௝(𝜌). 

 
5. Results 

In Figs. 2a-c, we show the 𝐸்(𝜌) (red curve) and 𝐸௏(𝜌) (blue curve) error curves for each 

one of the three studied cases. In Figs. 2a and 2b we used a back-propagation learning law with 

 = 0.3 and  = 0.15. In Fig. 2a, the datasets DT and DV consists of 45,100 BCs. In Fig 2b, these 

two datasets consist of 451,000 BCs. In Fig 2c, the learning law was back-propagation with weight 

decay, using a learning rate  = 0.3, an initial weight decay term, λ = 2.5x10-9, and the datasets 

consists of 45,100 BCs. In each one of these three figures, we indicate the values of the training 
and validation error curves evaluated at the epoch number where the validation error curve reaches 
its minimum value. Additionally, on the top of the figures, we also present the corresponding 
average value around the validation minimum alone with its standard deviation. 



P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
2
8

Regularization methods vs large training sets  Jaime Vega 

4 

An important issue when using weight decay as a regularization method has to do with the 
way used to reduce the weight decay term, λ. As the ANN training progresses, it gets more 
complex, that means the absolute value of the weight array will grow, consequently one has to 

diminish the value of λ, allowing an effective control of the growth rate of |Δ𝜔ሬሬ⃑ (𝜌)|. The initial λ 

value is 2.5x10-9. We started checking |Δ𝜔ሬሬ⃑ (𝜌)| every 1,000 epochs, beginning at 2,000 training 

epochs, and comparing its current value with its value 1,000 epochs before. If |Δ𝜔ሬሬ⃑ (𝜌)| changes 
less than 1%, we reduce the size of the weight decay term using a common ratio r = 0.984034. 
This common ratio r would reduce the initial λ value from 2.5X10-9 to 1X10-9 in ~57 steps. In Fig. 
2c, the validation error curve minimum corresponds to λmin = 1.4094X10-9 at 7,831,000 epochs. 

 

 
 

 
 

 
 
 
 
 
 
 

Figs. 2a, 2b and 2c. We show the training 𝐸்(𝜌) (red curve) and the validation 𝐸௏(𝜌) (blue curve) SSE 
funtions for each one of the three studied cases. We indicate the epoch numbers where the minimum of the 
validation error curve lies, and the corresponding values of the training and validation error curves. On the 
top of the figures, we show the average value of the validation error curve around its minimum value 
together with the standard deviation of the 21 values used to obtain the 𝐸௏(𝜌) average value. In Figs. 2a 
and 2b we report the value of the learning rate () and the momentum term (). In Fig. 2c we report the 
value of the learning rate (), the initial weight decay term (initial), and the weight decay term at the 
minimum (min). 

 
In Fig. 2a, we present the values of the error curves at two different epochs. In this figure, 

one can easily see that the minimum lies at 135,800 epochs. The problem is, at that point, the 
quality of the corresponding scatter plot is not yet acceptable, because the ANN has not been able 
already to learn well the 41 classes belonging to the smallest BP value. It happens that, after 
training the ANN some additional epochs, we still get a reasonable small validation error and, 
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now, the quality of the scatter plot is acceptable, see Ref. [8]. From now on, we will use this 
second epoch number, 196,000, as the best option for the first case. 

In Figs. 2a, 2b and 2c one can see that the option that reaches the smallest minimum value 
in its validation curve is Fig. 2b. In order to get to this conclusion, one has to realize that in the 

second case we used 451,000 BCs. That means, 10 time more BCs than in the other two cases 
and, since we are dealing with the total sum-of-squares errors, then we ought to rescale down the 

minimum value of the second case by a factor of 10 before comparing it with the other two 
minimum values. Therefore, when we rescale down the value of the second case, we get an error 
of 0.6254337 ± 0.02702884. 

In order to get rid of local fluctuations present in the EV error curves, we report average 
minimum EV values. We obtained these average values using an averaging window equal to 
20,000 epochs, containing 21 equidistant points 1,000 epochs apart and centered on the minimum 
value. See Table 1. 
 
Table 1 
Average minimum values of the EV error curves for each one of the three studied cases, together with the 
intervals we used to evaluate the three EV average values. 

 
Case    <EV> rescaled minimum value <EV> averaging interval (epochs) % above 2nd case  
First        0.8723767 ± 0.02778259          186,000    -    206,000           39.5  
Second     0.6254337 ± 0.02702884          166,100    -    186,100     
Third        0.8142579 ± 0.03826261       7,831,800    -  7,851,800           30.2  

 

Figs. 3a, 3b, 3c and 3d. In each one of the scatter plots a, b and c, we show all the data points (BP, ETot) 
belonging to the three cases. Figure 3d belongs to the second studied case where the dataset 
contains 451,000 BCs, although, for comparison reasons, we are just plotting one tenth of the total 
number of points, i.e., 45,100. In this way, we can compare this scatter plot with the other two 
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scatter plots exactly on the same footing. Once we take into account this fact, we can clearly see 
that the scatter plot of the second studied case is the one with the best quality, because there is 
less interclass overlapping of the scatter points. 

In Figs. 3a, 3b and 3c, we show the scatter plots, Bragg peak amplitude vs Total energy (BP 

vs ETot), predicted by the trained ANNs for the three studied cases. We obtained these scatter plots 
at the number of epochs where each one of the EV curves reaches its minimum value. Apparently, 

the scatter plot displayed in Fig. 3b, belonging to what we consider the best option, seems to be 
of an inferior quality as compared with Figs. 3a and 3c. However, as before, this first impression 
is due to the fact that scatter plot 3b contains 1,000 patterns per class, i.e., there are 451,000 BCs 
in its validation dataset. The way to get around this situation is to display the same number of 
points in the three scatter plots, i.e., 45,100 points. Therefore, when we do that for our second 
studied case, we obtain the scatter plot displayed in Fig. 3d. Now, one can easily see that indeed 
the second case is our best option. When comparing Fig. 3d with Figs. 3a and 3c, one can see that 
interclass overlapping is reduced in the former case. To make this assertion more obvious, in Figs. 

4a, 4b, 4c, and 4d, we present these same data as in Figs. 3a-d scatter plots, but now by zooming 
in on the scatter plots, and including only four classes. The four classes presented belong to the 

two largest BP values and to the two largest total energy values. One can clearly see that in Fig. 
4d (second studied case) there is less interclass overlapping, what reflects itself in its validation 

error curve 𝐸௏(𝜌) having a smaller minimum value. 
 

Figs. 4a, 4b, 4c and 4d. In each one of the figures a, b and c, we show the scatter plots (BP, ETot) 
including only four classes, corresponding to the two largest BP values and to the two largest total 
energy values ETot. Again, to put the comparison on the same footing, in Fig. 4d, for the second 
studied case, we display the scatter plot belonging to the same four considered classes, although, 
now, including only 100 scatter points per class. One can easily see, in Fig. 4d, that the points in the 
four depicted classes pack themselves more closely together than in Figs. 4a and 4b. 
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Another remarkable aspect that one can see when comparing Fig. 4a with Figs. 4c and 4d, 

is that Fig. 4a presents the largest interclass overlapping. This observation is consistent with the 
fact that Fig. 4a belongs to the validation error curve with largest minimum value; see Table 1. In 
a similar fashion, Fig. 4c, shows and intermediate class overlapping, and possesses an 
intermediate minimum value in its validation error curve, see Table 1. This observation clearly 
exemplifies that the size of the minimum value of the validation error curve correlates to the 
overlapping extent of the different considered pattern classes. In addition, in Fig. 4d, one can see 
the points of the four displayed classes more closely packed as compared with the points in Figs. 
4a and 4b. This packing effect also helps the validation error curve to reach a smaller minimum 
value. 

In reference [16], it was concluded that the concomitant experimental noise that 
accompanies and distorts the BCs, sets limits to the learning capability of the ANN used as a 
pattern identifier. In other words, the minimum value reachable by the validation error curve 
grows with the extent of the noise size coming along with the BCs. It happens that way, because 
once the ANN gets to its minimum validation value, during the learning process, it starts learning 
the noise embodied in training dataset signals rather than the remaining still unlearned small and 
subtle real signal features, overshadowed by a larger noise. Since the noise component present in 
the training dataset is different to the one present in the validation dataset, it normally happens 

that the training error curve ET() keeps on decreasing after the minimum of the validation error 

curve EV() is reached, while this later starts growing larger. This is precisely the onset of 

overtraining. In brief, this is the reason why the size of the noise to signal ratio, N/S, limits the 
amount of feature extraction that the ANN may learn from a training dataset. 

As has been mentioned in Refs. [14, 15 and 17], in order that an ANN can learn more 
thoroughly complex patterns (the subtle features), it requires letting the absolute value of its 
weight array to grow during its learning or adaptation process; allowing the ANN to become a 
more complex model. On the other side, it is also true that the noise learning present in the BCs, 
also requires a more complex model, i.e., an ANN with larger weight values. The question is, will 
the ANN use the additional complexity to learn either subtle real signal features or the signal 

noise? In order to help to better understand the consequences of a more complex system, in Figs. 

5a, 5b, and 5c, we plot the absolute value of the weight array |𝑤ሬሬ⃑ (𝜌)| vs the number of training 

epochs, , for the three studied cases. 

 
Table 2. 

Absolute values of the weight array |𝑤ሬሬ⃑ (𝜌)| at the minimum of the validation error curve EV() for the three 

studied cases. 
Case            |𝜔ሬሬ⃑ (𝜌)|  
1   196,000    93.8343  
2   176,000  398.264  
3 7,842,000 100.088  

 

When, realizing that a large |𝜔ሬሬ⃑ (𝜌)| implies a rather complex system, one is tempted to 

conclude that the large observed |𝜔ሬሬ⃑ (𝜌)| value, in the second case, might spring from the fact that 

the ANN is adapting to the noise present in the BC, rather than to the still unlearned subtle pattern 
features. However, the reason why that does not occur in this case, owes to the fact that the training  
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Figs. 5a, 5b, and 5c. Plots of the absolute value of the weight array |𝑤ሬሬ⃑ (𝜌)| vs number of training epochs, 
, for the three studied cases. We indicate the |𝑤ሬሬ⃑ (𝜌)| values at the corresponding minimum of the 
validation error curve. 
 
dataset is huge (451,000 BCs), thus making quite difficult for the ANN to learn or to adapt its 
weight array value to the noise  present in all  the patterns.  Under these circumstances,  the ANN  

has the chance to grow its 𝜔ሬሬ⃑  array, becoming a more complex model, capable of learning or 
extracting small and subtle real features present in the patterns or BCs, instead of learning or 
adapting to the concomitant noise. Here, it is good to remark that the same small and subtle real 
pattern features are present in all patterns, allowing the ANN to learn them rather than the noise 
with a similar amplitude but changing from pattern to pattern. That explains why, in this case, the 
ANN can reach a smaller minimum value for the validation error curve (after rescaling down the 
value by a factor of 10), allowing it to still learn the subtle features present in the patterns instead 

of leaning the noise present in them. Noise learning for this huge training dataset would require 

an even larger |𝜔ሬሬ⃑ (𝜌)| value, a more complex model. In fact, that does not seem to be happening, 

in the second case, even at 360,000 epochs, see Fig. 2b. One can see that the |𝜔ሬሬ⃑ (𝜌)| value keeps 

on growing after 176,000 epochs, see Fig. 5b, although the training and validation error curves 
remain close together, see Fig. 2b, indicating the absence of data overfitting and overtraining. One 
can explain this observation in terms of the system complexity as follows: when one moves from 

a 45,100 BCs to a 451,000 BCs dataset, we are increasing the system complexity due to the 
concomitant noise that accompanies the BCs, the noise is different in all BCs. Then, when dealing 

with a large dataset, the model complexity of the ANN will be devoted to extract the true features 
present in the BCs, because their complexity is smaller than the complexity associated with the 
noise. In this way overfitting and overtraining will be prevented. 
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When comparing the first and the third cases, we see that the values of |𝜔ሬሬ⃑ (𝜌)|, calculated at 

the minimum of their validation error curves, is larger for the third case. That means that, 

inasmuch as the weight decay term has controlled the growth of |𝜔ሬሬ⃑ (𝜌)| at a very small pace, its 
associated ANN has had the chance to adapt more smoothly to the data, implying a better search 

for the minimum of the 𝐸௏(𝜌) error curve in the third case, i.e., the additional model complexity 

of the third case (larger absolute value of the weight array) allowed it to extract more real signal 
from the dataset when compared to the fisrt case. In other word, the weight decay term helps the 

model complexity of the ANN to adapt itself a little bit better to the small and subtle real features 
rather than to the noise, preventing or at least diminishing the occurrence of overfitting, i.e., 

learning noise. In these two cases, the consequence of preventing or diminishing the occurrence 
of overfitting is clearly observe when comparing Fig. 2a and Fig. 2c. 

If one looks at Fig. 5a (first case), one can see that, around 196,000 epochs, its |𝜔ሬሬ⃑ (𝜌)| value 

presents evidence of a steady and uncontrolled growth. Due to the regularization effect of the 
weight decay term, in the third case, this uncontrolled growth is reduced considerably, see Fig. 
5c, after it reaches its minimum value. That causes the ANN, in the first case, to start extracting 
or learning noise from its dataset, preventing its validation error curve reaching a smaller 
minimum value. One can observe that this uncontrolled growth of the validation error curve is 
also present in some extent in our best option, second case, Fig. 5b, meaning its ANN might 
already be learning noise. In the first place, this observed behavior, see Fig. 5b,  occurs after the 
ANN has had the chance to extract or learn smaller and subtle real signal features from its dataset 

in comparison to Fig. 5a. This allow us to explain the better quality of its scatter plot, Fig. 3d,  

evaluated at its minimum. On the other hand, the corresponding 𝐸்(𝜌) and 𝐸௏(𝜌) error curves 
for case two, Fig. 2b, remain quite close together. That means that the ANN, in the second case, 

is not overtraining after it has reached its minimum value at 176,100 training epochs. Perhaps, 
this is an indication that the ANN complexity is growing but the noise complexity is so big that 

the ANN has not been able at all in learning any noise component present in the training dataset, 
thus explaining why both error curves still remain close together. 
 
6. Discussion 

In order to make a characterization of overfitting and overtraining we define two sources of 
the system complexity or dataset complexity. One source is associated with the intrinsic ideal BC 
shape (intrinsic complexity) and the other is associated with the concomitant noise accompanying 
the BCs signals (noise complexity). If, at some point during the training process, it happens that 
a part of both complexities are comparable, then overfitting will occur eventually. Once the 

minimum of the 𝐸௏(𝜌) curve is reached, overtraining will show up if training continues. Since 

noise complexity grows as the dataset size grows, it happens that when the dataset is quite large 
(451,000 BCs), i.e., noise complexity is larger than the instrinsic complexity of the BCs, then the 
ANN, during a considerable number of training epochs, will be able to learn many of the BC 

features without overfitting the noise component, because the ANN or model complexity is still 
not big enough to start learning the noise, and by the same token overftraining will not show up. 

Once the ANN has learned most of the extractable BCs features, if training continues, the ANN 
or model complexity will increase, growing the absolute value of its weight array, trying to match 
its complexity to the one required to learn the noise present in the BCs of the training dataset. In 

relation to this, in case two, the 𝐸்(𝜌) and 𝐸௏(𝜌) error curve remains close together up to 360,000 
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training epochs, see Fig. 2b, then one concludes that the ANN has not been able to adapt itself in 
any extent to the noise present in the training dataset and, consequently, no overfitting has 
occurred yet. 

In regard to weight decay regularization, we realize that the weight decay term provides us 
the opportunity to search carefully for the validation error curve minimum and, at the same time, 
controlling the increasing ANN or model complexity very effectively. Nevertheless, there is a 

limit to this, it is has to do with the fact that learning smaller subtle real signal features requires 
increasing the model complexity, i.e., the size of the weight array, which is precisely what the 

weight decay term controls, by letting it to increase slowly. In the end, the weight decay 
performance exceeds the simple back-propagation with early stopping regularization, but it is not 
capable of matching the results obtained when using a larger training dataset. 

Summarizing, small subtle real signal features requires two things to be learned: 
a) To increase the system model complexity carefully allowing the ANN to be able to 

learn those small and subtle real signal features. 

b) To provide the ANN the opportunity of using an increasing model complexity to learn 
the small and subtle real features rather than the noise that comes along with the signal. 

To accomplish restraint a) we used a weight decay term to control the weight array size 
growth rate. To implement restraint b), we increased the size of the training dataset by a factor of 
ten making noise learning more difficult. 

When using weight decay as a regularization method, definitively we do minimize or delay 

noise learning. Weight decay effectively controls the growth of the weight array size, allowing 
the ANN a more careful search for the validation error curve minimum. The problem is that to 

learn smaller and subtle real signal features will eventually require a more complex model, i.e., 
one with a larger absolute value of the weight array, and, at that point, noise learning will start 

overshadowing the small and subtle real feature extraction. As a matter of fact, when using weight 
decay as a regularization method, long before the validation error curve minimum is reached, 

overfitting starts. For instance, one can see in Fig. 2c that both error curves, ET() and EV(), 

begin to split apart at ~ 250,000 training epochs, ET() getting smaller than EV() at a faster rate, 

indicating that overfitting is taking place. 
Using a larger training dataset has the advantage of allowing the increment of the ANN or 

model complexity in order to learn the small and subtle real signal features, and, at the same time, 
preventing noise learning while the ANN learns the small and subtle real features. That is why a 

larger training dataset becomes a better regularization method than using weight decay. 
Finally, we would like to comment on two related issues relevant to the present analysis: 

overtraining and overfitting. According to Ref. [18], the overfitting problem refers to exceeding 
some optimal ANN size or model complexity, while overtraining refers to exceeding the number 
of training epochs required to train an ANN and start destroying the predictive ability of the 
network. In this context, overfitting relates to the model complexity used to fit the training dataset. 
In ANN applications, it means using an ANN with more parameters than those justifiable by the 
dataset. In these circumstances, eventually, the additional complexity will start extracting noise 
from the data, rather than any possible signal feature not extracted yet. A regularization method 
like weight decay may help to control the increasing complexity of a large ANN. In such a case, 

the idea is to find out if this ANN complexity control may help to extract the remaining smaller 
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and subtle real signal features rather than noise. When comparing Fig. 2a and Fig. 2c, we see that 
indeed weight decay regularization effectively controls the ANN complexity, performing a better 
signal feature extraction, what reflects itself in a smaller minimum value in its validation error 
curve, Fig. 2c. 

Overtraining does not relate to the ANN or model complexity in relation to the training 
dataset. It relates to the presence of a signal noise that overshadows the smaller and subtle 

unlearned signal features. Increasing the size of the training dataset demands a larger ANN 
complexity to be able to learn the noise. At this point, it is opportune to realize the following: i) 

the signal noise is different for every pattern or BC belonging to the training dataset; ii) the 
underlying or intrinsic ideal BC shape is always the same for all BC belonging to the same class 
in the training dataset. Due to these two remarks, it is easy to see that the required model 
complexity to learn the signal noise increases with the size of the dataset, while the required 
complexity to learn the intrinsic features of the ideal BC remains the same. From this, we conclude 
that increasing the size of the training dataset delays the onset of overtraining, allowing the ANN 
the chance to learn even smaller and subtle real signal features. This is, when using a large training 
dataset, we are using the growing model complexity (due to the increasing effective number of 
parameters with training) to learn the smaller real signal features rather than noise more 
effectively. That is why our best option corresponds to our second studied case, i.e., when the 

dataset increased from 45,000 BCs to 451,000 BCs, compare Fig. 2b with Figs. 2a and 2c. 
 

7. Conclusions and future work 
The results of this study, following Refs. [14, 15 and 17], emphasizes the relevance to 

optimize the model complexity in order to achieve the best generalization. In this sense, one has 
to carefully decide the best option to optimize the ANN complexity used to solve a specific task. 
But the other relevant aspect that one should keep in mind is that another way to warrant a better 
generalization capability of the ANN is to use a large training dataset. In fact, the model 
complexity (ANN size) and the size of the training dataset (system complexity) ought to be 
selected in a mutually constrained way, trying to get a reasonable generalization capability. 

In this study, we used BCs datasets with a noise to signal ratio, N/S, equal to 10%. For a 
future work, it would be interesting to perform new comparative studies, using different values of 

the N/S ratio, to see if the observed noise effect prevails or modifies itself in some extent. Also, 
for a future work, one could increase the ANN complexity by increasing the number of units or 

the number of layers that constitute the ANN (structural stabilization). The question is “will the 
additional gain of ANN complexity be used to learn the smaller and subtle real signal features yet 
unlearned, or it will be used to learn signal noise?” 
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