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Inclusive particle production in forward pA collisions is one of the observables that is used fre-
quently in order to study the high-energy collision data within the Color Glass Condensate (CGC)
framework. Moreover, at certain kinematics (in the so called correlation limit), one gets access to
gluon TMDs from the CGC calculations of these observables. We discuss recent advances on the
equivalence between the TMD and CGC frameworks focusing on multi-jet production.
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1. Introduction to small-x physics and Color Glass Condensate

High energy hadronic collisions, particularly between heavy nuclei, have been one of the most
appealing but also challenging problems in physics for many years. They have been at the focus of
the theoretical effort before the proposal of the Quantum Chromodynamics (QCD) as the quantum
field theory to describe the strong interactions. On the other hand, the experimental studies to
investigate QCD under extreme conditions via heavy ion collisions, have been going on for decades.

The energy (or equivalently rapidity) evolution of a hadronic wavefunction within the QCD
framework has been considered in two different regimes: the Bjorken and the Regge-Gribov limits.
Even though, they both describe scattering at high energy, they probe completely different physics.
In the Bjorken limit, the increase in energy is accompanied with an increase in virtuality and thus
results in a more dilute partonic system. On the other hand, in the Regge-Gribov limit, the increase
in energy is due to the decrease of the longitudinal momentum fraction carried by the interacting
partons. This low-x evolution results in a rapid increase in the number of gluons in the colliding
objects and it is governed by the linear BFKL equation.

The BFKL equation was a milestone in the study of high energy scattering and has given
tremendous insight to both theoretical and experimental works. However, it was realised that
this linear equation does not tame the rapid growth of the gluon densities and is only valid un-
til gluon densities reach sufficiently high values where the nonlinear effects become important.
These nonlinear effects slow down the growth of the gluon density, eventually causing the phe-
nomenon known as gluon saturation. This phenomenon is characterised by a new perturbative
scale Qs, known as the saturation momentum. Nowadays, the weak coupling but nonperturbative
realization of saturation within QCD is called the Color Glass Condensate (CGC).

It was noted by McLerran and Venugopalan that a convenient approach to gluon saturation can
be given by the nonlinearities of the classical Yang-Mills field theory [1, 2]. With this new develop-
ment, the nonlinear generalization of the of the BFKL equation, known as the Balitsky-Kovchegov/
Jalilian-Marian-Iancu-McLerran-Wiegert-Leonidov-Kovner (BK-JIMWLK) functional evolution
equation was derived (for a review see [3] and references in there).

In recent years, these developments have become the basis for phenomenological studies of
saturation physics applied to high-energy colllision data. This approach is valid as long as one
of the colliding objects is dilute. Typical examples for dilute-dense scatterings are Deep Inelastic
Scattering (DIS) on a nuclear target, DIS on a high-energy proton, proton-nucleus (pA) collisions
and forward particle production in proton-proton collisions.

2. Gluon TMDs from forward pA collisions in the CGC

One observable used frequently to test the compatibility of saturation physics with the proton-
nucleus collision data from RHIC and the LHC experiments is particle production at forward ra-
pidities. The state of the art calculation framework for forward production in pA collisions is called
"hybrid formalism" [4]. In this approach, the wave function of the dilute projectile is calculated
perturbatively, without any kinematic approximation, in the spirit of the collinear factorization,
while the scattering of the projectile partons on the target fields is treated in the eikonal approxima-
tion within the CGC framework. Within the hybrid factorization framework, the production cross
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section of a quark with longitudinal momentum k+ and transverse momenta k⊥ is given as a con-
volution of parton distribution function (PDF) of the incoming quark fq(xp,µ

2) and the partonic
cross section which is given in terms of a dipole operator d(x⊥,y⊥):

dσ pA→q+X

dk+d2k⊥
=
∫

dxp fq(xp,µ
2)
∫

d2x⊥d2y⊥eik⊥(x⊥−y⊥)d(x⊥,y⊥) (2.1)

where the dipole operator is defined as

d(x⊥,y⊥) =
1

Nc

〈
tr
[
U(x⊥)U†(y⊥)

]〉
(2.2)

with U(x⊥) being the Wilson line operator which is defined as the path ordered exponential of the
background target field A−(x+,x⊥) as

U(x⊥)≡U(−∞,+∞;x⊥) = Pexp
[
ig
∫ +∞

−∞

dx+A−(x+,x⊥)
]

(2.3)

2.1 From dipole operator to gluon TMDs

It has been shown in [5]-[7], that the operator definition of a transverse momentum dependent
PDF (which is refereed to as TMD) is given by the Fourier transform of forward matrix elements
of bilocal products of gluon field strength tensor:

F(x,k⊥) =
∫

dz+d2z⊥eixp−A z+−ik⊥z⊥〈pA|tr
[
F i−

0 U [C]
(0,z)F

i−
z U [C′]

(z,0)

]
|pA〉 (2.4)

with U [C]
0,z being the gauge staples connecting the points (0+,0⊥) and (z+,z⊥) to ensure the gauge

invariance.
It was realized in [8], that one can get the gauge staple structure together with the field strength

tensor by considering the derivative of the Wilson line operators defined in Eq. (2.3). Therefore,
the small-x limit of different gluon TMDs, can be written in terms of the derivates of the Wilson
line operators. For example, the small-x limit of the dipole TMD reads

F(1)
qg (x,k⊥)

∣∣∣
x→0
→
∫

d2z⊥eik⊥z⊥
〈

tr
{[

∂
iU†( z

2
)][

∂
iU
(
− z

2
)]}〉

x
(2.5)

It has been discussed in [9]-[10], that in a certain kinematic limit (called as the correlation
limit), one can actually probe the small-x limit of the gluon TMDs. Consider the production of two
hard jets with transverse momenta |p1| ∼ |p2| � Qs. In this case, there are two typical transverse
scale: total momentum of the produced jets (kT = p1 + p2) and the momentum imbalance of the
two jets (QT = p1− p2). In the limit where kT � QT , the two jets fly almost back-to-back in
momentum space which is referred to as the correlation limit. This situation corresponds to small
transverse size of the jets in coordinate space which allows us to perform a Taylor expansion of the
Wilson line operators and get access to the gluon TMDs:

Ub+ r
2
Ub− r

2
−1 =

ri

2

[(
∂

iUb
)
Ub−Ub

(
∂

iUb)
]
+O(r2) (2.6)

To sum up, in the small-x limit of the gluon TMDs, the phase drops and the staple gauge links
depends only on longitudinal coordinates. On the other hand, in the correlation limit of the CGC,
one can perform a small dipole size expansion and get access to the derivatives of the Wilson line
operators. Therefore, the small-x limit of the TMD factorization and the correlation limit of the
CGC overlaps.
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2.2 Beyond the correlation limit in the CGC and iTMD framework

In [11]-[12], it has been shown that one can indeed go beyond the correlation limit and prove an
all order equivalence between the small-x limit of the TMD factorization and the CGC framework.

amplitude (see Fig. 1) in this case reads

A0→12 = (2π) δ
(
p+
1 + p+

2 − p+
0

) ∫
d2b d2r e−i(q·r)−i(k·b)

× rµ
⊥

r2

[(
UR1

b+z̄rTR0UR2
b−zr

)
−
(
UR1

b TR0UR2
b

)]
φµ, (3.1)

where φµ is a Dirac structure which does not depend on coordinates, and (R1, R0, R2)

p0, R0

b b + z̄r

b − zr

p1, R1

p2, R2

Figure 1: Generic (0 → 12) process in the CGC. The partonic lines with a gray blob
represent the effective partonic lines in the external shockwave field [9, 14], as given in
Appendix A.

are color representations. This is a well known form in small-x kinematics: the interaction

with the target can be factorized out in the eikonal limit, and it contains all information

on color flow. The spin structure factorizes in the massless case due to transverse boost

invariance: the mere topology of a diagram is sufficient to predict its momentum structure,

or equivalently in coordinate space its dipole-size dependence. One can easily check that

the amplitudes listed in Appendix B have the form of Eq. (3.1).

The expression for the generic CGC amplitude for a 1 → 2 process expanded to the

n-th power of r is obtained by performing a Taylor series expansion of the Wilson line

operators in A0→12 which can be simply written as

A(n)
0→12 = (2π) δ

(
p+
1 + p+

2 − p+
0

) ∫
d2b d2r e−i(q·r)−i(k·b) r

µ
⊥φµ

r2
(3.2)

× 1

n!
rα1
⊥ ...rαn

⊥

n∑

m=0

(
n

m

)
z̄m (−z)n−m

(
∂α1 ...∂αmUR1

b

)
TR0

(
∂αm+1 ...∂αnUR2

b

)
.

The rest of our discussion relies on a symmetry hypothesis based on our experience of CGC

and BFKL amplitudes.

In the CGC, diagrams where only on one partonic line is interacting with the external

field give (UR1 − 1R1)1R2 and 1R1(UR2 − 1R2) contributions, which once summed up with

the symmetric contribution (UR1 − 1R1)(UR2 − 1R2) lead to the gauge invariant dipole

UR1UR2 − 1R11R2 .

In BFKL computations, diagrams with each parton interacting with a gluon give the im-

pact factor ϕ(k1⊥, k2⊥)+ϕ(k2⊥, k1⊥) while diagrams with only one parton interacting twist

– 10 –

Figure 1: A generic 1→ 2 CGC amplitude. Each gray blob represents the dressing of the partons with
the Wilson line operators. Ri stands for the color representation of each parton. z and z̄ = 1− z are the
longitudinal momentum fractions carried by the partons after the splitting.

A generic 1→ 2 CGC amplitude (see Fig. 1) can be written as

A = 2π δ (p+1 + p+2 − p+0 )
∫

d2r d2be−iqr−ikbH (r)
[(

UR1
b+z̄rT

R0UR2
b−zr

)
−
(
UR1

b T R0UR2
b

)]
(2.7)

with k being the total transverse momenta (k = p1 + p2), q being the transverse boost invariant
momentum (q =

p+2 p1−p+1 p2

p+1 +p+2
) and Q being the invariant mass of the outgoing pair (Q2 = q2

2zz̄ ) which
is the hard scale of the process. One can actually expand this amplitude for small r and O(r)
terms in this expansion corresponds to the correlation limit. As shown in detail in [11] and [12],
one can keep expanding in powers of r, use integration by parts to cast terms in 1-body or 2-
body contributions and then resum those terms. After all said and done, the generic 1→ 2 CGC
amplitude can be written as sum of the 1-body and 2-body amplitudes:

A = A1 +A2 (2.8)

where 1-body amplitude and 2-body amplitudes have the following structures (for the full expres-
sions see [12])

A1 ∝

∫
d2be−ikb (

∂αUR1
b

)
T R0UR2

b (2.9)

A2 ∝

∫
d2b1 d2b2 e−ik1b1−ik2b2

(
∂

iUR1
b1

)
T R0
(
∂

jUR2
b2

)
(2.10)

On the other hand, in [13] a new framework that is referred to as "small-x improved TMD frame-
work" (iTMD) is constructed. iTMD framework is constructed to interpolate between TMD regime
(kt � Q) and the BFKL regime kt ∼ Q regime. In this framework, dijet production cross section
can be written as a convolution of the hard factors that are constructed from off-shell gauge invari-
ant matrix elements and linear combinations of the unpolarized gluon TMDs. In [11] it was shown
that, CGC cross section that is calculated with the resummed 1-body amplitude given in Eq. (2.9)
matches exactly the iTMD cross section.
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2.3 Linearly polarized gluon TMDs

The Fourier transform of the correlators Wilson line operators can be decomposed into two
parts, a part that is linear in Lorentz indices and a part that is is traceless. For example:

∫

zy
eikt(y−z)

〈
tr
[
U†

z (∂
iUz)U†

y (∂
jUy)

]〉
xA

= −g2
s (2π)3 1

4

×
[

1
2

δ
i jF

(3)
gg (xA,kt)−

1
2

(
δ

i j−2
ki

tk
j
t

k2
t

)
H

(3)
gg (xA,kt)

]
(2.11)

where F
(3)
gg (xA,kt) is the linearly polarized Weizsäcker-Williams gluon TMD and H

(3)
gg (xA,kt) is

its linearly polarized partner in an unpolarized target. Polarized gluon TMDs have been computed
in [14] within McLerran-Venugopalan model. It has been shown that linearly polarized gluon
TMDs can be probed in forward dijet production with massive quarks [15] and also in processes
with three final state particles [16, 17]. In the processes with three final state particles, the inter-
mediate partons behave as an effective mass and therefore give the possibility to probe the linearly
polarized gluon TMDs. In [16], forward production of dijet and photon was studied both in quark
and gluon initiated channels. It was shown that in the correlation limit, one gets access to many
different unpolarized and linearly polarized gluon TMDs. Recently, photoproduction of three jets
(quark, antiquark and gluon) have been studied in [17]. There it was shown that this process is only
sensitive to unpolarized and linearly polarized Weizsäcker-Williams gluon TMDs and rapidity evo-
lution of these TMDs have been studied.

3. Summary and outlook

Even though the equivalence between the CGC and the TMD frameworks have been first
established in the correlation limit [8, 9, 10], it is shown in [11, 12] this equivalence can be extended
beyond the correlation limit. One of the biggest advantages of this equivalence is that one can use
CGC techniques to study the gluon TMDs such as using MV model for calculating different TMDs
and studying their rapidity evolution by using JIMWLK equation.

One of the most challenging question that needs to be answered related with the equivalence
of these two frameworks is whether it holds beyond the leading order. The equivalence between
the CGC and the TMD framework have been proven for dijet production beyond the correlation
limit and for three jet production in the correlation limit. Both of these studies are tree level leading
order calculations. The question whether this equivalence can be shown at next to leading order is
still waiting for an answer.
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