
P
o
S
(
L
C
2
0
1
9
)
0
5
4

Boson Stars and QCD Boson Stars

Usha Kulshreshtha∗ †

Department of Physics, Kirori Mal College
University of Delhi, Delhi-110007, India.
E-mail: ushakulsh@gmail.com

Sanjeev Kumar
Department of Physics
Pandit Neki Ram Sharma Government Post Graduate College
Rohtak - 124001, Haryana, India.
E-mail: sanjeev.kumar.ka@gmail.com

Daya Shankar Kulshreshtha
Department of Physics and Astrophysics
University of Delhi, Delhi-110007, India.
E-mail: dskulsh@gmail.com

Jutta Kunz
Institute of Theoretical Physics
Carl von Ossietzky University of Oldenburg
D 26111 Oldenburg, Germany
E-mail: jutta.kunz@uni-oldenburg.de

In this talk, we present a review of our work on boson stars in a theory of a massless complex
scalar field in the presence of a U(1) gauge field and gravity. A sequence of bifurcation points
obtained in the phase diagrams of the theory is presented and the plots of the mass M versus
charge Q as well as plots of the mass per unit charge M/Q versus the charge Q of the boson
stars are presented along with a discussion of the results. We also present some ideas on the
possibilities of QCD boson stars.

Light Cone 2019 - LC2019
September 16-20, 2019
Ecole Polytechnique, Palaiseau, France

∗Speaker.
†Invited Talk.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:ushakulsh@gmail.com
mailto:sanjeev.kumar.ka@gmail.com
mailto:dskulsh@gmail.com
mailto:jutta.kunz@uni-oldenburg.de


P
o
S
(
L
C
2
0
1
9
)
0
5
4

Boson Stars and QCD Boson Stars Usha Kulshreshtha

Charged compact boson stars and boson shells represent localized self-gravitating solutions
with sharp boundaries [1]-[9]. They could consist of any kind of particle that could be represented
by scalar fields like the scalar axion, the Higgs boson, the quark-antiquark pair or diquarks or anti-
diquarks etc. One could consider these theories with or without a cosmological constant Λ which
could take positive or negative values corresponding to the de-Sitter (dS) and Anti de-Sitter (AdS)
spaces respectively [1]-[9].

In the following we present a review of our work on a study of boson stars in a theory of
a massless complex scalar field in the presence of a U(1) gauge field and gravity. The phase
diagrams (PDs) obtained in our theory are presented. A sequence of bifurcation points (BPs) is
seen to exist in the PDs of the theory. We also present plots of mass M versus charge Q as well
as plots of the mass per unit charge M/Q versus the charge Q of the boson stars along with a
discussion of the results. We also present some ideas on the possibilities of QCD boson stars [10].

For this we consider boson stars and boson shells in a theory of a complex scalar field Φ

coupled to a U(1) gauge field and gravity in the presence of a conical potential: V (|Φ|) (which
is a function of |Φ| ) defined by: V (|Φ|) := λ |Φ| (where λ is a constant parameter). We study
the properties of the solutions of this theory and determine their domains of existence for some
specific values of the parameters of the theory. The theory could be studied with or without a mass
term for the complex scalar field [3]-[6] and the solutions are seen to exist for a particular range of
the parameters only. In both the theories, we find that a whole series of BPs exists in the PDs of the
theory. Numerically, we have determined up to 4 BPs.

In this work we concentrate on a theory with a massless complex scalar field in the absence of
a cosmological constant. The action of the theory with a massless scalar field is defined as:

S =
∫ [ R

16πG
+LM

]√
−g d4 x , LM =

[
−1

4
FµνFµν − (DµΦ)?(Dµ

Φ)−V (|Φ|)
]

DµΦ = (∂µΦ+ ieAµΦ) , Fµν = (∂µAν −∂νAµ) , V (|Φ|) := λ |Φ|

The asterisk in the above equation denotes complex conjugation. Here R is the Ricci curvature
scalar, G is Newton’s gravitational constant and g = det(gµν ), where gµν is the metric tensor.
These studies not only confirm the existence of a sequence of BPs in the PDs but they also indicate
that there is in fact an infinite series of such BPs (as is seen in our numerical results) [5, 6]. The
equations of motion (EoM) obtained via the variational principle are:

Gµν ≡
[

Rµν −
1
2

gµνR
]
= (8πG)Tµν

∂µ

(√
−gFµν

)
= −i e

√
−g
[

Φ
?(Dν

Φ)−Φ(Dν
Φ)?
]

Dµ

(√
−gDµ

Φ

)
=

[
+

λ

2
√
−g

Φ

|Φ|

]
,

[
Dµ

(√
−gDµ

Φ

)]?
=+

[
λ

2
√
−g

Φ?

|Φ|

]
The energy-momentum tensor Tµν is given by

Tµν =

[(
FµαFνβ gαβ − 1

4
gµνFαβ Fαβ

)
+

(
(DµΦ)?(DνΦ)+(DµΦ)(DνΦ)?

)
−gµν

(
(DαΦ)?(Dβ Φ)

)
gαβ − gµν V (|Φ|)

]
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To construct spherically symmetric solutions we adopt a static spherically symmetric metric with
Schwarzschild-like coordinates as:

ds2 =

[
−A2Ndt2 +N−1dr2 + r2(dθ

2 + sin2
θ dφ

2)

]
.

The components of the Einstein tensor Gµν are obtained as:

Gt
t =

[
− [r (1−N)]′

r2

]
, Gr

r =

[
2rA′N−A [r (1−N)]′

A r2

]
, Gθ

θ =

[
2r [rA′ N]′+

[
A r2N′

]′
2A r2

]
= Gϕ

ϕ .

Here the prime denotes differentiation with respect to r and the arguments of A(r) and N(r)
have been suppressed. Also, the Hilbert-Einstein equation expressed in component form reads:

Gt
t = 8πG T t

t , Gr
r = 8πG T r

r , Gθ
θ = 8πGT θ

θ , , Gϕ

ϕ = 8πG T ϕ

ϕ .

We now work under the assumption of a vanishing magnetic field i.e., we assume that (
−→
B (xµ) =−→

∇ ×−→A (xµ) = 0 ). Then only the time-like component of Aµ is non-vanishing. For the matter
fields we make the following Ansätze: Φ(xµ) = φ(r)eiωt , Aµ(xµ)dxµ = At(r)dt. The components
of the energy-momentum tensor could now be evaluated using the above Ansätze.

Next, we introduce the dimensionless constant parameters and dimensionless field variables
with dimensionless arguments through the following re-definitions (where a is dimensionless):

β =
λ e√

2
, α

2( := a) =
4πGβ 2/3

e2

Also we redefine the functions φ(r) and At(r) through the following relations:

h(r) =
(
√

2 eφ(r))
β 1/3 , b(r) =

(ω + eAt(r))
β 1/3 .

The metric functions A(r) and N(r) here are already dimensionless. We also introduce a
dimensionless coordinate r̂ defined by r̂ := β 1/3 r (which in turn implies d

dr = β 1/3 d
dr̂ ). Above

equations in terms of dimensionless coordinate r̂ become:

h(r̂) =
(
√

2 eφ(r̂))
β 1/3 , b(r̂) =

(ω + eAt(r̂))
β 1/3 .

From now onwards, we change the arguments of the field variables from the dimension-full
radial coordinate r to the dimensionless radial coordinate r̂ . The matter field equations of motion
involving the dimensionless field variables as well as their derivatives (with sign(h) denoting the
usual signature function) then read:

[
ANr̂2h′

]′
=

r̂2

AN

(
A2Nsign(h)−b2h

)
,

[
r̂2b′

A

]′
=

bh2r̂2

AN
.

Primes here denote differentiation with respect to dimensionless radial coordinate r̂ . Eventually,
the set of EoM (expressed in dimensionless constant parameters and dimensionless field variables
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and their derivatives involving dimensionless arguments) which is to be solved numerically is:

h′′ =
[

α2 r̂h′

A2N

(
2A2h+ b′2

)
−

h′
(
1+N

)
r̂N

+
A2N sign(h)−b2h

A2N2

]
b′′ =

[
α2

A2N2 r̂b′
(
A2N2h′2 +b2h2)− 2b′

r̂
+

bh2

N

]
N′ =

[
1−N

r̂
− α2r̂

A2N

(
A2N2h′2 +Nb′2 +b2h2 +2A2Nh

)]
A′ =

[
α2r̂
AN2

(
A2N2h′2 +b2h2)]

The above Eqs. are solved numerically by introducing a new coordinate x as follows:

r̂ = r̂i + x (r̂o− r̂i) , 0≤ x≤ 1

where r̂i and r̂o are the inner and outer radii of the shell. This implies that r̂ = r̂i at x = 0
and r̂ = r̂o at x = 1 . Thus inner and outer boundaries of the shell are always at x = 0 and x = 1
respectively, while their radii r̂i and r̂o become free parameters.

Also, for boson stars r̂i = 0. We then solve these equations under specific boundary conditions
(BCs): A(r̂o) = 1 , N(0) = 1 , b′(0) = 0 , h′(0) = 0 , h(ro) = 0 , h′(r̂o) = 0. For the boson stars
we match the exterior region r̂ > r̂o , with the Reissner-Nordström solutions. For the boson shell
solutions (with empty space-time in the interior of the shells), with r̂ < r̂i , we choose the BCs as:
A(r̂o) = 1 , N(r̂i) = 1 , b′(r̂i) = 0 , h(r̂i) = 0 , h′(r̂i) = 0 , h(r̂o) = 0 , h′(r̂o) = 0, where r̂i

and r̂o are the inner and outer radii of the shell. Here, we match the interior region r̂ < r̂i and the
exterior region r̂ > r̂o , with the appropriate Reissner-Nordström solutions. The U(1) invariance of
the theory leads to a conserved Noether current:

jµ =−i e [Φ(Dµ
Φ)?−Φ

?(Dµ
Φ)] , jµ

;µ = 0

Its time component corresponds to charge density. The global charge Q of the boson star is given
by:

Q =− 1
4π

∫ r̂o

0
jt
√
−gdr dθ dφ , jt =− h2(r̂)b(r̂)

A2(r̂)N(r̂)
.

One can read off the mass from the metric as usual, making use of the fact, that the metric outside
the compact star corresponds to a Reissner-Nordström metric. The mass M of the boson star

solutions is given by: M =

(
1−N(r̂o)+

α2Q2

r̂2
o

)
r̂o
2 .

As explained in Ref. [9], an extremal Reissner-Nordström metric would satisfy a proportion-
ality between the mass M and the charge Q given by M = αQ =

√
aQ , where α(:=

√
a) enters

here because of the units employed (whereas in the usual geometric units the extremal solution
satisfies M = Q ). We can now consider three different cases for the exterior solution (r > ro)
outside the bosonic matter distribution: (i) case M/Q <

√
a corresponds to a horizonless (naked)

Reissner-Nordström solution (we note, that naked solutions would also arise, when the mass and
charge of known elementary particles would be inserted on the left hand side of this relation). (ii)
Case M/Q =

√
a corresponds to an extremal Reissner-Nordström solution (we note, that the sets
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of boson star solutions end, when such an extremal Reissner-Nordström solution is reached and
b(0) = 0). (iii) Case M/Q >

√
a corresponds to a solution where the radius of the boson star is

greater than its putative event horizon radius r̂H (implying that the boson star is well outside the
range of becoming a black hole. This discussion is reflected in the results shown in Fig. 7, which
shows plots of various fields with respect to r̂, implying thereby that the boson stars either have
a radius r̂ > r̂H , or that they are smoothly matched to a naked Reissner-Nordström solution for
M/Q <

√
a . The case M/Q =

√
a is not exhibited in Fig. 7. It would correspond to a solution

where a throat develops and b(0) = 0 (cf. Ref. [9]).
For a study of QCD boson stars [10], we include the QCD Lagrangian density in our theory:

LQCD = (−1
4F̃ a

µνF̃ µν
a )+ (a fermionic piece), where F̃ a

µν = [(∂µAa
ν−∂νAa

µ)+g f abcAb
νAc

ν ]. Here
Aa

µ are the gluon fields and a = 1,2,3, ....,8 for the 8 gluonic degrees of freedom (all symbols
have their usual meanings). The fermionic piece of the Lagrangian density however, vanishes
identically in the case of boson stars (because boson stars do not have any fermions) leaving us
only with the gluonic part: LQCD =−1

4F̃ a
µνF̃ µν

a . We now assume a vanishing chromo-magnetic

field which implies:
−→
B a =

−→
∇ ×−→A a = 0. This leaves us only with the time-like component of Aa

µ

(which is non-vanishing) and the space-like components of Aa
µ do not contribute anything under

this assumption. The energy-momentum tensor Tµν changes under this assumption and one also
obtains an additional EoM for Aa

µ . The phase space of the theory now gets enlarged because of
the inclusion of the QCD Lagrangian. The field variables of this new theory comprise the metric,
the scalar fields, the electromagnetic field and the gluon fields. Such studies require a rather careful
investigation and its details would be published later.

Our numerical results are shown in our various plots [5, 6] for different values of the parameter
a in the range a = 0.0 to a = 0.2500. . The insets in all our figures magnify particular interesting
areas of the figures and the astrisks represent the transition from the boson stars to boson shells.
For further details of our phase diagrams and the BPs, we refer to the work of our Refs. [5, 6]. We
obtain 4 BPs in the phase diagrams of the theory [9] as shown in Fig. 1 and Fig. 2. The results in
Fig. 1 show the first three BPs and the 4th BPs is shown in Fig. 2. Numerical calculations become
increasingly challenging as one progresses from one BP to the next BP (even for getting the 4th
BP we have to go to the 8th digit of numerical accuracy). The asterisks in the above figures reside
on the axis b(0) , corresponding to h(0) = 0 , and they mark the transition points from the boson
stars to boson shells. We present our results on the study of (i) the phase diagrams of the theory
showing BPs in Fig. 1 and Fig. 2 (ii) variations of M and Q with r̂0 in Fig. 3 and Fig. 4 (iii)
variations of M/Q with Q in Fig. 5 and Fig. 6 and (iv) distribution of various fields with r̂0 (for
different values of the dimensionless variable a in the range a = 0.050 to a = 0.250 ) in Fig. 7.

Based on the regularity of the occurence of these BPs we conjecture [9] that perhaps a whole
sequence of BPs may be waiting to be discovered (which might display a self-similar pattern). In
the set of BPs ac1 ,ac2 and ac3 , one notices that the difference between the BPs 4n =(acn−acn−1)

decreases strongly and an exponential approach towards a limiting value ac∞
could be expected.

We thus propose an Ansatz for the nth BP and it seems to work [9]:

acn = ac∞
+ f exp(− b n) = ac∞

+ f an

Where ac∞
, f and b (or a = exp(−b)) are constants. We thus conclude that indeed an infinite
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Figure 1: 2D phase diagram of the theory
showing 3 BP’s in the plot of h(0) versus
b(0) for different values of a .
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Figure 2: 2D phase diagram of the theory
showing 4th BP in the plot of h(0) versus
b(0) for different values of a .
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Figure 3: Plot of M versus Q for different
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Figure 4: Plot of M versus Q for different
values of a

sequence of BPs exists. Using the first 3 BPs and making a prediction for the 4th BP, we indeed
find the 4th BP to be located at ac4 = 0.16827861, which agrees with its predicted value.

Fig. 7 shows the distribution of field variables A(r̂) , h(r̂) , b(r̂) and N(r̂) with respect to
the dimensionless radial coordinate r̂, which are solutions of the final set of four coupled nonlinear
differential equations. The electromagnetic field represented by b(r̂) and the gravitational field
represented by the metric functions A(r̂) and N(r̂) correspond to long range forces. Fig. 8 shows
the exponential fit (solid line) for the 4 BPs (asterisks) obtained from PDs of the theory. The
difference of the predicted values and the values obtained from PDs are seen to be negligible.

We thank Cedric Lorce and Arkadius Trawanski, the organizers of the International Con-
ference on Light Cone Physics (LC-2019) held at Ecole Polytechnique Palaiseau France, during
September 16-20, 2019, for their great hospitality.
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