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Lensing function relation in Hadrons
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Models provide useful insights in the partonic structure of hadrons. However, one has to use
great care in the interpretation of the results when the models induce non-trivial relations between
parton distributions that are independent functions in QCD. One example is the model-dependent
relation between transverse distortions in the distribution of quarks in impact-parameter space and
analogous distortions in transverse-momentum space due T-odd effects. We discuss the origin of
such relation, pointing out the very specific conditions under which it is realised. These conditions
are typically verified only in relatively simple models that describe hadrons as two-body bound
systems and involve a helicity-conserving coupling between the gauge boson and the spectator
system.
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Introduction

In QCD, we can access a three-dimensional picture of hadrons from two types of parton dis-
tributions. The first ones are impact-parameter dependent parton distributions (IPDs), which con-
tribute to observable asymmetries in exclusive processes involving hadrons. Secondly, there are
transverse-momentum dependent parton distributions (TMDs) that give rise to observable asym-
metries in semi-inclusive deep inelastic (SIDIS) processes. Both distributions depend on the lon-
gitudinal momentum fraction of the partons. The additional two-dimensional information is given
by the transverse parton position (or impact parameter) bbb⊥ in the case of IPDs, whereas it is given
by the transverse parton momentum kkk⊥ for TMDs.

At leading twist, the IPDs quark correlator has, formally, the same structure as the quark
correlator for TMDs, with bbb⊥ taking the role of kkk⊥. However, it is not possible to establish model-
independent relations between IPDs and TMDs because bbb⊥ and kkk⊥ are not conjugate variables.
Non-trivial relations between the two types of distributions show up only in some model calcula-
tions [1, 2, 3]. The most prominent case is the translation of the T-even transverse-position space
asymmetry, described by certain IPDs, into a T-odd transverse-momentum space asymmetry ob-
served in SIDIS processes. This relation is established via the factorisation of the final state inter-
actions (FSIs) in the average transverse momentum of the active quark, as described in a so-called
“chromodynamics lensing function” [4, 5, 6].

In this contribution, we summarise the very stringent conditions for the validity of the lensing
relation that have been discussed more extensively in Ref. [7].

1. Lensing relation

The quark TMD correlator is defined as

Φ
[Γ ] (x,kkk⊥,S) =

1
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, (1.1)

where p = (p+, p−, ppp⊥ = 000⊥) and S are, respectively, the hadron-target momentum and spin, ψ

is the quark field operator, Γ is a generic matrix in the Dirac space and x = k+
p+ is the light-cone

momentum fraction of the quark. The TMD correlator depends on x and on the quark transverse
momentum kkk⊥. The correlator from which the IPDs are defined reads:

F [Γ ](x,bbb⊥,S) =
1
2

∫ dz−

2π
eixp+z−〈p+,RRR⊥ = 000⊥,S|ψ(z1)Γ W (z1,z2)ψ (z2) |p+,RRR⊥ = 000⊥,S〉,

(1.2)

where the quark fields are evaluated at z1,2 = (0+,∓ z−
2 ,bbb⊥) and the hadron is in a state with longitu-

dinal momentum p+ and transverse center of momentum (the infinite-momentum frame equivalent
of the center of mass position) RRR⊥ = 000⊥. The operator W , known as Wilson line or gauge link,
ensures color gauge invariance of the matrix element and is defined as follows:

W (a,b) = Pexp
{
−igs

∫
γ

dζ ·A(ζ )
}
,
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where gs =
√

4παs and γ is a path from a to b. The explicit form of the path is determined by
the physical process under consideration. In the following, we will consider the gauge-link for a
SIDIS process. Once the integration over zzz⊥ in Eq. (1.1) is performed, the analogy between the
TMD correlator and the IPD correlator (under the exchange kkk⊥ ↔ bbb⊥) becomes evident. This
suggests a relation between T-odd TMDs and T-even IPDs for unpolarized (transversely) polarized
quarks in a transversely polarized (unpolarized) target.

We consider the following average quark transverse momenta

〈ki
⊥(x)〉UT =

∫
d2kkk⊥ki

⊥Φ
[γ+](x,kkk⊥,SSS⊥), 〈ki

⊥(x)〉
j
TU =

∫
dkkk⊥ki

⊥Φ
[iσ j+γ5](x,kkk⊥), (1.3)

where the first and second subscripts indicate the quark and hadron polarisation, respectively. We
can rewrite the UT average transverse momentum as (analogous results hold for 〈ki

⊥(x)〉
j
TU )

〈ki
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2π
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i(z2)γ
+

ψ(z2)|p+,RRR⊥ = 000⊥,SSS⊥〉 .

(1.4)

The FSIs are encoded into the operator I i(z):

I i (z) =
gs

2

∫
dy−W

(
(z−,z+,zzz⊥),(y−,z+,zzz⊥)

)
G+i (y−,z+,zzz⊥)W (

(y−,z+,zzz⊥),(z−,z+,zzz⊥)
)
,

(1.5)

with G+i being the gluon-field strength tensor. In the light-cone gauge A+ = 0 with advanced
boundary condition AAA⊥(−∞−) = 0, one has I i (z) = gs

2 Ai
⊥ (∞

−,z+,zzz⊥) and W (z1;z2) = 1. There-
fore the effect of FSIs in Eq. (1.2) becomes trivial and Eq. (1.4) simplifies as
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γ
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z+=zzz⊥=0. (1.6)

One notices from Eq. (1.6) that the FSIs for the average transverse momentum in the light-cone
gauge A+ = 0 reduce to the exchange of a single transverse gluon at light-cone infinity between the
active quark and the spectator system (the same result holds regardless of the boundary conditions
for A).

The first line of Eq. (1.4) can be rewritten via the insertion of two completeness relation:

〈ki
⊥(x)〉UT =

1
2

∫
{dk1}{dk2}{dl}

∫ dz−

2π
eixp+z−e−i z−

2 (k+1 +k+2 +l+)
∑
n,m

∑
ββ ′

∫ n

∏
i=1

dq+i dqqq⊥,i
(2π)32q+i

×
m

∏
j=1

dw+
j dwww⊥, j

(2π)32w+
i
〈p+, ppp⊥ = 000⊥,SSS⊥|φ(k1)γ

+|{q+i ,qqq⊥,i}n,β
′〉〈{q+i ,qqq⊥,i}n,β

′|Ii(l)|{w+
i ,www⊥,i}m,β 〉

×〈{w+
i ,www⊥,i}m,β |ψ(k2)|p+, ppp⊥ = 000⊥,SSS⊥〉 , (1.7)

where {. . .} indicates the Lorentz invariant integration measure and φ
( z

2

)
= ψ̄

(
− z

2

)
W
(
− z

2 ; z
2

)
.

In Eq. (1.7), the indices β and β ′ label the parton, color and the helicity content of the intermediate

2



P
o
S
(
L
C
2
0
1
9
)
0
7
6

Lensing function Simone Rodini

states. The matrix elements of the lensing operator Ii(l) in Eq. (1.8) represent the interaction
between the active parton and the spectator system mediated by the Wilson gluons and correspond
to the FSIs. To recover the IPD definition in Eq. (1.7) and, therefore, to have the factorisation of
the FSIs, the operator Ii(l) has to satisfy the following relation1:

〈{q+i ,qqq⊥,i}n,β
′|Ii(l)|{w+

i ,www⊥,i}m,β 〉

= 2πLi
(

lll⊥
1− x

)
δn,mδββ ′δ (l

+)
n

∏
i=1

(2π)32q+i δ (q+i −w+
i )δ

(
qqq⊥,i−www⊥,i− xi

lll⊥
1− x

)
. (1.8)

Eq. (1.8) holds under the following conditions for the FSIs:

1. the FSIs should connect Fock states with the same number of constituents and the same
parton, helicity and color content;

2. the FSIs should transfer the total transverse momentum lll⊥/(1− x) to the whole spectator
system;

3. the FSIs can not transfer momentum in the light-cone direction to the spectator system;

4. the FSIs should transfer a fraction xi = w+
i /p+ of the total transverse momentum to each

constituent of the spectator system.

The last condition is the most stringent. It is crucial to obtain the correct transverse light-front boost
that gives the non-diagonal matrix element in momentum space and then the transverse distortion
in impact parameter space described by the IPDs. In the light-cone gauge with advanced boundary
conditions, one can easily deduce that the condition (4) can be realised via a single particle coupling
(e.g. perturbative coupling) between the gauge boson and the spectator system only if the latter is
composed by a single constituent, i.e. the hadron target is a two-body bound system. In this case,
the light-cone momentum fraction of the spectator is equal to (1− x) and the constraint on the
transverse momentum transferred by the Wilson gluon to the spectator system follows trivially
from the conservation of the total momentum of the hadron target. Otherwise, the condition (4)
imposes to share the transverse momentum carried by the Wilson gluon with each spectator parton
in a proportion equal to the longitudinal momentum fraction xi. This cannot be realised in systems
composed by more than two constituents by assuming an interaction vertex between the gauge
boson and a single parton in the remnant.

We conclude that if, and only if, the above conditions are fulfilled we can write

〈ki
⊥(x)〉UT =

∫
db⊥L i

(
b⊥

1− x

)
F [γ+](x,b⊥,S⊥), (1.9)

〈ki
⊥(x)〉

j
TU =

∫
db⊥L i

(
b⊥

1− x

)
F [iσ j+γ5](x,b⊥,S⊥). (1.10)

One can check that the conditions ((1))-((4)) are verified in models that describe hadrons as a
two-body system in which the remnant is either massive with spin≤ 1/2 or massless with arbitrary

1xi is the light-cone momentum fraction of each constituent w.r.t. the hadron target light-cone momentum, i.e.
xi = w+

i /p+, and should satisfy the relation ∑i xi = 1− x.
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spin. Examples of models with these features are: the quark target model [1]; for a proton target,
the scalar-diquark spectator model [1, 6] and the axial-diquark models that admit only transverse
polarization for the diquark [8]; for a pion target, relativistic models at the lowest order in the
Fock-space expansion [9, 10]. Viceversa, the conditions are not fulfilled in many-body models for
hadrons, such as the three-quark model for the nucleon [11, 12, 13, 14, 15], or in two-body models
in which the coupling with the Wilson gluon allows a helicity transition for the remnant, as, for
example, the axial-vector diquark model with longitudinally polarised diquark.

To summarise, model calculations of TMDs play a crucial role for building educated Ansätze
for fits of the TMDs and GPDs, and are essential towards an understanding of the non-perturbative
aspects of TMDs. However, it should be avoided to use model-induced relations as constraint to
extract information on these distributions from data. Instead, one should use the results of the
extractions to understand how good the model-induced relations are, because this will eventually
shed light on some of the non perturbative aspects of QCD.

Acknowledgments

This work is supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 647981, 3DSPIN).

References

[1] S. Meissner, A. Metz and K. Goeke, Relations between generalized and transverse momentum
dependent parton distributions, Phys. Rev. D76 (2007) 034002 [hep-ph/0703176].

[2] H. Avakian, A. V. Efremov, P. Schweitzer and F. Yuan, The transverse momentum dependent
distribution functions in the bag model, Phys. Rev. D81 (2010) 074035 [1001.5467].

[3] C. Lorcé and B. Pasquini, On the Origin of Model Relations among Transverse-Momentum
Dependent Parton Distributions, Phys. Rev. D84 (2011) 034039 [1104.5651].

[4] M. Burkardt, Quark correlations and single spin asymmetries, Phys. Rev. D69 (2004) 057501
[hep-ph/0311013].

[5] M. Burkardt, Chromodynamic lensing and transverse single spin asymmetries, Nucl. Phys. A735
(2004) 185 [hep-ph/0302144].

[6] M. Burkardt and D. S. Hwang, Sivers asymmetry and generalized parton distributions in impact
parameter space, Phys. Rev. D69 (2004) 074032 [hep-ph/0309072].

[7] B. Pasquini, S. Rodini and A. Bacchetta, Revisiting model relations between T-odd
transverse-momentum dependent parton distributions and generalized parton distributions, Phys. Rev.
D100 (2019) 054039 [1907.06960].

[8] A. Bacchetta, F. Conti and M. Radici, Transverse-momentum distributions in a diquark spectator
model, Phys. Rev. D78 (2008) 074010 [0807.0323].

[9] L. Gamberg and M. Schlegel, Final state interactions and the transverse structure of the pion using
non-perturbative eikonal methods, Phys. Lett. B685 (2010) 95 [0911.1964].

[10] B. Pasquini and P. Schweitzer, Pion transverse momentum dependent parton distributions in a
light-front constituent approach, and the Boer-Mulders effect in the pion-induced Drell-Yan process,
Phys. Rev. D90 (2014) 014050 [1406.2056].

4

https://doi.org/10.1103/PhysRevD.76.034002
https://arxiv.org/abs/hep-ph/0703176
https://doi.org/10.1103/PhysRevD.81.074035
https://arxiv.org/abs/1001.5467
https://doi.org/10.1103/PhysRevD.84.034039
https://arxiv.org/abs/1104.5651
https://doi.org/10.1103/PhysRevD.69.057501
https://arxiv.org/abs/hep-ph/0311013
https://doi.org/10.1016/j.nuclphysa.2004.02.008
https://doi.org/10.1016/j.nuclphysa.2004.02.008
https://arxiv.org/abs/hep-ph/0302144
https://doi.org/10.1103/PhysRevD.69.074032
https://arxiv.org/abs/hep-ph/0309072
https://doi.org/10.1103/PhysRevD.100.054039
https://doi.org/10.1103/PhysRevD.100.054039
https://arxiv.org/abs/1907.06960
https://doi.org/10.1103/PhysRevD.78.074010
https://arxiv.org/abs/0807.0323
https://doi.org/10.1016/j.physletb.2009.12.067
https://arxiv.org/abs/0911.1964
https://doi.org/10.1103/PhysRevD.90.014050
https://arxiv.org/abs/1406.2056


P
o
S
(
L
C
2
0
1
9
)
0
7
6

Lensing function Simone Rodini

[11] B. Pasquini and F. Yuan, Sivers and Boer-Mulders functions in Light-Cone Quark Models, Phys. Rev.
D81 (2010) 114013 [1001.5398].

[12] B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a
light-cone quark model, Phys. Rev. D78 (2008) 034025 [0806.2298].

[13] S. Boffi, B. Pasquini and M. Traini, Linking generalized parton distributions to constituent quark
models, Nucl. Phys. B649 (2003) 243 [hep-ph/0207340].

[14] B. Pasquini, M. Pincetti and S. Boffi, Chiral-odd generalized parton distributions in constituent quark
models, Phys. Rev. D72 (2005) 094029 [hep-ph/0510376].

[15] B. Pasquini and S. Boffi, Nucleon spin densities in a light-front constituent quark model, Phys. Lett.
B653 (2007) 23 [0705.4345].

5

https://doi.org/10.1103/PhysRevD.81.114013
https://doi.org/10.1103/PhysRevD.81.114013
https://arxiv.org/abs/1001.5398
https://doi.org/10.1103/PhysRevD.78.034025
https://arxiv.org/abs/0806.2298
https://doi.org/10.1016/S0550-3213(02)01016-7
https://arxiv.org/abs/hep-ph/0207340
https://doi.org/10.1103/PhysRevD.72.094029
https://arxiv.org/abs/hep-ph/0510376
https://doi.org/10.1016/j.physletb.2007.07.037
https://doi.org/10.1016/j.physletb.2007.07.037
https://arxiv.org/abs/0705.4345

