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The approach for solving the Bethe-Salpeter equation of bound systems with spin degrees of
freedom has been further tested by investigating a fermion-scalar bound state. The main outcome
of such a study is given by the extraction of genuinely dynamical information on both the va-
lence probabilities and light-front distributions (longitudinal and transverse ones) and it has been
achieved by exploiting the well-known Nakanishi integral representation of the Bethe-Salpeter
amplitude. The whole set of obtained results improves the perspective of actually constructing
a phenomenological framework where the dynamical features of a bound system can be studied
directly in Minkowski space.
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1. Introduction

The present contribution is devoted to illustrate the recent investigation of a bound system
composed by a fermion and a scalar, interacting through the exchange of scalar or vector quanta,
within a truly relativistic quantum-field-theory (QFT) framework [1]. It has to be emphasized that
such a study is part of a collective effort aiming at exploring the potentiality of the approach for
solving the Bethe-Salpeter equation (BSE)[2], based on the so-called Nakanishi integral represen-
tation of the vertex function, describing in QFT a bound state (see, e.g., for a general introduction
Ref. [3]). The field of application ranges from bound systems without spin dof to the ones with such
a fundamental feature, starting from simple interaction kernel and free propagators (see, e.g., Refs.
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]). The main target of the investigation has been the homogeneous
BSE, pictorially shown in Fig. 1, that amounts to an integral equation fulfilled by an unknown am-
plitude, related to the aforementioned vertex function, once we take into account the propagators of
the constituents. The dynamical content of the BSE is given by the interaction kernel, composed by
2PI diagrams. Noteworthy, each term contributing to the kernel generates an infinite set of quanta
exchanges, given the mathematical structure of any integral equation. This feature qualifies the
BSE as a non perturbative tool for analyzing the dynamics inside a bound state, as well as inside
a scattering state, once the inhomogeneous version of BSE is considered (see, e.g., Ref. [14]). In

I=

Figure 1: Pictorial representation of the homogeneous Bethe-Salpeter equation for a two-body system. The
blob is the unknown Bethe-Salpeter amplitude describing a bound system in QFT, and the interaction kernel
is indicated by I , containing, in principle, an infinite set of 2PI diagrams.

view of both forthcoming and in progress experimental efforts for reconstructing the 3D structure
of hadronic systems with a very high accuracy, it is quite desirable and useful to develop a fully
covariant and non perturbative description of a bound system, with spin dof, in order to study the
phenomenology of the spin-k⊥ correlations. It has to be stressed that both longitudinal and trans-
verse momentum distributions do not belong to the spacelike sector of the Minkowski space, and
this represents a challenge for the nowadays theoretical approaches.

The overall strategy, we would like to pursue, can be summarized in two main steps: i) first,
one has to train and educate his-own physical intuition through simple applications of the Bethe-
Salpeter equation (BSE) in Minkowski momentum-space, like two-scalar, two-fermion, fermion-
scalar, etc. systems, by adopting, e.g., the ladder approximation and disregarding self-energy and
vertex corrections; then one should try to extend the framework by taking into account the gap-
equations for the needed self-energy contributions, e.g. by including results from lattice [15], or
more formally by consistently cutting the tower of Dyson-Schwinger equations.

The Nakanishi Integral Representation (NIR) of both the BS amplitudes (3- and 4-legs tran-
sition amplitudes, for two- and three-body systems) and the self-energies (2-legs transition am-
plitudes) plays a pivotal role in the construction of the non perturbative tool we are discussing.
Moreover the light-front (LF) variables, x± = x0±x3 and x⊥ ≡ {x1,x2}, are very suitable for man-
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aging analytic integrations and spin dof in a very effective way in Minkowski space. Finally, one
should mention a methodological advantage of the Bethe-Salpeter framework: one can add dy-
namical effects in a controlled way, so that the interplay among different dynamical features can be
analyzed more strictly.

2. Generalities

The BSE (cf Fig. 1), without both self-energy and vertex corrections, reads for a Jπ = [1/2]+

state (i.e. the quantum numbers of a nucleon) as follows

Φ
N(k, p,Jz) = G0(p/2− k)S(p/2+ k)

∫ d4k′

(2π)4 iK Ld(k,k′, p) Φ
N(k′, p,Jz) , (2.1)

with

G0(q) = i
1

(q2−m2
S + iε)

, S(q) = i
/q+mF

(q2−m2
F + iε)

(2.2)

where mF(S) is the mass of the constituent fermion (scalar boson).
In our approach, the ladder approximation for scalar and vector exchanges is adopted, i.e.

iK Ld
s (k,k′, p) =−i

λ s
Sλ s

F

(k− k′)2−µ2 + iε
, iK Ld

v (k,k′, p) =−i
λ v

S λ v
F (/p−/k−/k′)

(k− k′)2−µ2 + iε
,(2.3)

with µ the mass of the exchanged boson, and λ
s(v)
S λ

s(v)
F the product of coupling constants at the

interaction vertexes for a scalar (vector) exchange.
From general principles, the BS amplitude of the [1/2]+ fermion-scalar state contains two

unknown scalar functions φi, without exchange symmetry, viz

ΦBS(k, p) =
[
O1(k) φ1(k, p)+O2(k) φ2(k, p)

]
U(p,s) (2.4)

where

O1(k) = I , O2(k) =
/k
M

, (/p−M) U(p,s) = 0 . (2.5)

In the above definitions, the mass of the bound system is M = 2m̄−B, with m̄ = (mF +mS)/2 and
B the binding energy.

By using the proper Dirac traces, one easily obtains the 2-channel system of integral equations
for φ

s(v)
i (the superscripts recall the type of interactions), viz

φ
s(v)
i (k, p) =

i
(p/2− k)2−m2

S + iε
i

(p/2+ k)2−m2
F + iε

∫ d4k′

(2π)4

× (−iλ s(v)
S λ

s(v)
F )

(k− k′)2−µ2 + iε ∑
j=1,2

C
s(v)
i j (k,k′, p) φ

s(v)
j (k′, p) , (2.6)

where C
s(v)
i j (k,k′, p) can be analytically evaluated [1]. The final step is given by the introduction of

the NIR of φ
s(v)
i (k, p), that reads as follows

φi(k, p) =
∫

∞

−∞

dγ
′
∫ 1

−1
dz′

gi(γ
′,z′;κ2)

[k2 + z′p · k−κ2− γ ′+ iε]3
, (2.7)
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with gi(γ,z;κ2) the so-called Nakanishi weight functions (NWFs), and κ2 = m̄2 −M2/4. The
numerical task is represented by the calculation of such NWFs, from which the whole BS amplitude
can be reconstructed. In order to proceed in the numerical evaluation, one expands the NWFs on a
basis given by the Cartesian product: Laguerre Polynomials ⊗ Gegenbauer Polynomials. Hence,
the familiar (in the NIR approach!) generalized eigenvalue problem can be obtained, i.e.

A~v = α B~v

where ~v is the eigenvector, whose components are the two sets of coefficients of the aforemen-
tioned expansion, and α the corresponding eigenvalue, namely the strength of the interaction, in
the adopted ladder approximation. Noteworthy, the validity of the whole approach is checked a
posteriori, once the generalized eigenvalue problem admits solutions.

3. Results

Interestingly, in the scalar-exchange case, for increasing values of B/m̄, the size of the system
shrinks, and repulsion starts to sizably oppose the binding. This can be heuristically explained
by realizing that the fermion-scalar vertex, for on mass-shell fermions, contains the scalar density
u† γ0 u. The Dirac matrix γ0 generates a minus sign in front of the contribution produced by the
small components, that become more and more relevant when the system behaves more and more
relativistically. This feature makes understandable the different size in the values of α needed to
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Figure 2: The binding energy, B/m̄ (with m̄ = mF = mS), vs the coupling constants for µ/m̄ = 0.15 and
µ/m̄ = 0.50. Left panel: calculations for a scalar exchange. Right panel: calculations for a vector exchange.

bind the system, in the scalar and vector exchanges, as illustrated in Fig. 2. Another important
difference between the two plots is the maximal values of the binding energy per unit mass, B/m̄.
This is related to the very nature of the quanta exchange and the scale invariant properties of the
interaction Lagrangian [1]. A typical and distinctive outcome of a dynamical investigation carried
out directly in Minkowski space, is given by the possibility of evaluating the valence probability
Pval i.e. the probability to find the Fock state with the lowest number of particles in the bound
state under scrutiny. The results for the scalar (left panel) and vector (right panel) exchanges are
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illustrated in Fig. 3. Strikingly, one recognizes that the aforementioned repulsion drives the pattern
in the scalar case. In the physical space, one can also evaluate both longitudinal and transverse-
momentum LF distributions, shown in Fig. 4, for a fermion in the valence component of a mock
nucleon with B/m̄ = 0.1, mF = 2mS and a vector exchange. The comparison between the full
calculation and the contribution from a spin configuration where the constituent spin is parallel to
the one of the bound state, confirms the expectation of the leading role of the s-wave in the [1/2]+

state, we are studying. The interested reader can find more details in Ref. [1].
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Figure 3: The valence probability vs the binding energy B/m̄ (m̄ = mF = mS), for µ/m̄ = 0.15 and µ/m̄ =

0.50. Left panel: calculations for a scalar exchange. Right panel: calculations for a vector exchange.
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Figure 4: Light-front distributions for a fermion in the valence component of [1/2]+ state, with B/m̄ = 0.1,
mF = 2mS, and a vector exchange. Thin lines: µ/m̄ = 0.15. Thick lines: µ/m̄ = 0.50. Solid lines: full
calculations. Dotted lines: contribution from the configuration with the constituent spin parallel to the spin
of the bound state. Right panel: longitudinal distributions. Left panel: transverse-momentum distributions.

In conclusion, looking at the whole amount of encouraging results obtained by adopting NIR,
one can clearly realize that an effort aimed at extending the approach by including the self-energies
of the constituents, both exploiting the lattice data and investigating the gap-equation in a more
formal way, is definitely worthwhile.
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