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Considering quantum chromodynamics in the consistent limit of simultaneouscorrelatedincrease

of the number of colours,Nc, beyond bounds and decrease of the strong coupling to zero allows for

solid statements about qualitative features of the class of“truly exotic” tetraquark mesons carrying

four mutually distinct quark flavours. Consistency criteria extracted from correlation functions for

two-ordinary-mesonscattering suggest the existence of more than one such tetraquarks, at least, of

two tetraquarks of identical quark-flavour content and large-Nc behaviour of the total decay widths

but differing in, and hence discriminable by, their predominant decay modes into two conventional

mesons. This pairwise appearance is in conflict with the unique variant of such a four-quark bound

state arising from the binding ofdiquarkandantidiquarkto a tetraquark by the strong interactions.

Light Cone 2019 — QCD on the light cone: from hadrons to heavy ions — LC2019
16–20 September 2019
École Polytechnique, Palaiseau, France

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/



P
o
S
(
L
C
2
0
1
9
)
0
7
8

Tetraquark Properties at Large Nc Hagop Sazdjian

1. Approach to Non-Conventional Hadrons: Multiquark Hadro ns in Large-Nc QCD

Quantum chromodynamics, the quantum field theory of the strong interactions, does not forbid
the formation of hadrons (colour-singlet bound states of quarks and gluons) other than conventional
quark–antiquark mesons(qq) and three-quark baryons(qqq), viz., of exoticmultiquarkstates such
as tetraquark(qqqq), pentaquark(qqqqq), and hexaquark(qqqqqq) or (qqqqqq) hadron states.
The prospects for such exotics have been studied since long [1]. We focus to the case of tetraquarks.

The framework of our analysis is a generalization of quantumchromodynamics (QCD) dubbed
large-Nc QCD [2]: a gauge theory relying on the gauge group SU(Nc), with all quarks transforming,
by assumption, according to theNc-dimensional, fundamental representation of SU(Nc), considered
in the limit Nc→∞, with the strong coupling parameter,gs, behaving likegs ∝ 1/N1/2

c . In that limit,
QCD catches the main properties of confinement, while getting simplified with respect to secondary
complications,e.g., inelasticity or screening effects. 1/Nc plays the rôle of a perturbative parameter.
The theory’s predictions are easily deduced [3]: the spectrum is saturated by an infinite tower of free
stable mesons with masses of orderO(N0

c ), three-meson interactions behave likeN−1/2
c , four-meson

interactions likeN−1
c , and meson decay rates likeN−1

c . So, in the limitNc→∞ all mesons are stable,
which is one of the main features of confinement. Can we derivesimilar predictions for tetraquarks?

At largeNc, adopting the two-point correlators of colour-singlet tetraquark and ordinary-meson
currents, the propagation of a tetraquark becomes equivalent to that of two free ordinary mesons [4]:

T(x)≡ (qqqq)(x) , j(x)≡ (qq)(x) =⇒ 〈T(x)T†(0)〉
Nc→∞
= ∑〈 j(x) j†(0)〉〈 j(x) j†(0)〉 .

Tetraquark poles thus cannot appear at leading order but maypop up at subleading orders and might
be observable if their widths turn out to be narrow; the latter are expected to fall off likeN−2

c [5–10].

2. Tetraquarks of Flavour-Exotic Quark–Antiquark Composi tion: Line of Approach

We are particularly interested in flavour-exotic tetraquarks: bound states of two quarks and two
antiquarks involving four different quark flavours, here generically denoted 1,2,3,4∈ {u,d,s,c,b}.

We extract basic features of tetraquarks from their appearance as poles in the amplitudes for the
scattering of two ordinary mesons into two ordinary mesons by an investigation [9–11] of four-point
Green functions of colour-singlet quark-bilinear currents, serving as meson interpolating operators.
Identifying spin and parity as irrelevant forqualitativeanalyses, such a currentjab generically reads

jab≡ qaqb , a,b= 1,2,3,4 ,

and couples to an ordinary mesonMab=(qaqb) with strengthfMab of known large-Nc behaviour [3]:

〈0| jab|Mab〉= fMab , fMab ∝ N1/2
c .

Consistency requires us to inspect all channels with potential tetraquark poles, by use of the currents

j12≡ q1 q2 , j34≡ q3 q4 , j14≡ q1 q4 , j32≡ q3 q2 .

In order to ascertain that a given QCD diagram may contain a tetraquark contribution in form of
a pole term, we have to ensure that it receives a four-quark contribution to itss-channel singularities,
in addition to gluon singularities that do not modify that diagram’sNc behaviour. If this tetraquark is
composed of two quarks and two antiquarks with massesmj , j = 1,2,3,4, each diagram in question
should develop, as a function of the Mandelstam variables, a four-particle branch cut, starting at the
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branch points= (m1+m2+m3+m4)
2 [9,10]. The latter’s existence can be easily checked by use of

the Landau equations [12]. Diagrams that exhibit nos-channel singularity at all or only two-particle
(quark–antiquark) singularities cannot contribute to theformation of tetraquarks atNc-leading order
and thus should not be taken into account for theNc-behaviour analysis of any tetraquark properties.
With regard to the allocation of the four unequal quark flavours in initial- and final-state mesons, we
encounter two types of scattering reactions,viz., “direct” processes, where the flavour distribution is
preserved, and “recombination” processes, where the flavour distribution undergoes rearrangement:

M12+M34−→M12+M34 (direct channel I),

M14+M32−→M14+M32 (direct channel II),

M12+M34−→M14+M32 (recombination channel).

For both of the “direct” reactions, we scrutinize [9–11] thetwo four-current Green functions (Fig. 1)

Γ(dir)
I ≡ 〈T( j12 j34 j†12 j†34)〉 , Γ(dir)

II ≡ 〈T( j14 j32 j†14 j†32)〉 .

Only Feynman diagrams of the categories represented by Fig.1(b) may receive contributions from a
tetraquark; the large-Nc behaviour of the two setspotentiallysupporting tetraquarks (T) is the same:

Γ(dir)
I,T = O(N0

c ) , Γ(dir)
II ,T = O(N0

c ) .

Likewise, for the “recombination” reaction we study [9–11]the four-current Green function (Fig. 2)

Γ(recomb) ≡ 〈T( j12 j34 j†14 j†32)〉 .

Only Feynman diagrams of the type of Fig. 2(c) may have tetraquark poles, behaving at largeNc like

Γ(recomb)
T = O(N−1

c ) .

Since the large-Nc behaviours of the pole contribution to direct and recombination correlators differ,

Γ(dir)
I,T = O(N0

c ) , Γ(dir)
II ,T = O(N0

c ) , Γ(recomb)
T = O(N−1

c ) ,

reproducing [9,10] these large-Nc findings (Fig. 3) requires (at least) two tetraquarks, say,TA andTB,
with different couplings to the ordinary-meson pairs and related transition amplitudes behaving like

A(TA←→M12M34) = O(N−1
c ) , A(TA←→M14M32) = O(N−2

c ) ,

A(TB←→M12M34) = O(N−2
c ) , A(TB←→M14M32) = O(N−1

c ) .

O(N2

c )
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Figure 1: Examples of the (a) leading and (b) subleading Feynman diagrams fordirectGreen functionsΓ(dir)
I

[10, Fig. 1]; similar Feynman diagrams exist fordirectGreen functionsΓ(dir)
II . Curly red lines indicate gluons.
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Figure 2: Typical representatives of the (a) leading or (b,c) subleading Feynman diagrams forrecombination
Green functionsΓ(recomb) [10, Fig. 2(a,b,e)]; as in Fig. 1, curly red lines indicate internal exchanges of gluons.
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Figure 3: Meson–meson scattering amplitudes:Nc-leading contributions at two tetraquark poles [10, Fig. 7].

From theNc-leading tetraquark–two-ordinary-meson transition amplitudes, the decay widths of our
pair of tetraquarks,TA andTB, exhibit the same large-Nc behaviour and are definitely narrow [9–11]:

Γ(TA) = O(N−2
c ) , Γ(TB) = O(N−2

c ) .

The above outcome and the colour structure of the intermediate states in the Feynman diagrams
allow us to offer an educated guess on theflavour structureof each of the tetraquarksTA andTB [10].
Specifically, colour exchange between the quarks characterizes the intermediate states. This hints at

TA∼ (q1q4)(q3q2) , TB∼ (q1 q2)(q3q4) .

3. Implications and Conclusions: Doubtful Existence of Flavour-Exotic Tetraquarks

These insights tend to favour a singlet–singlet colour structure (Fig. 4) of the two flavour-exotic
tetraquark companions, perhaps with mixings of orderO(1/Nc) of the two configurations [10]. The
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Figure 4: Formation of tetraquarks: two-ordinary-meson (left) vs. diquark–antidiquark (right) configuration.

mutual interactions of the two colour-singlet clusters areno longer confining: the four-quark system
is no longer compact but resembles amolecularstate. Compact multiquarks result from thediquark
mechanism (Fig. 4) [13–15]: Confining interactions bind colour-nonsinglet diquark and antidiquark
clusters to compact states; attractiveness compels diquarks to form in the sole colour-antisymmetric
representation. That uniqueness is at odds with theNc-driven need for two unequal tetraquarks [11].
Hidden dynamical mechanisms [16,17] can avoid quark–antiquark over diquark forces’ dominance.
Molecular-like tetraquarks are tougher: Typical effective meson–meson couplings are of orderN−1

c .
Thus, bound-state or resonance formation requires to sum diagrams of differentNc behaviours [18]
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