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We analize the role played by the thermal f0(500) state or σ in chiral symmetry restoration. The
temperature corrections to the spectral properties of that state are included in order to provide a
better description of the scalar susceptibility χS around the transition region. We use the Lin-
ear Sigma Model to establish the relation between χS and the σ propagator, which is used as a
benchmark to test the approach where χS is saturated by the f0(500) inverse self-energy. Within
such saturation approach, a peak for χS around the chiral transition is obtained when considering
the f0(500) generated as a ππ scattering pole within Unitarized Chiral Perturbation Theory at
finite temperature. That approach yields results complying with lattice data when the uncertain-
ties of the low-energy constants are taken into account. Those uncertainties and the unitarization
method are used to check the robustness of this approximation. Finally, we will discuss some
recent results within the chiral lagrangian framework related to the topological susceptibility and
its connection with chiral and UA(1) restoration.
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1. Introduction

On the one hand these proceedings review our recent analyses of the role of the f0(500) state
in chiral symmetry restoration [1]. For vanishing barion density and 2+ 1 flavours with mu =

md = ml�ms quark masses the chiral transition is a crossover at a transition temperature of about
Tc ∼ 156 MeV [2, 3]. The light quark condensate 〈q̄q〉l = 〈ūu+ d̄d〉 and the scalar susceptibility
χS are the most used parameters to study the restoration of chiral symmetry. In [1] we show the
relation between χS and the sigma self-energy in the Linear Sigma Model (LSM). In section 2, we
will study the dependence on the coupling constant of the model and the momentum of the sigma
self-energy at finite temperature. Next, we will consider the σ resonance which can be generated
within Unitarized Chiral Perturbation Theory (UChPT) and we will present a saturated approach
which will be tested using different analyses.

On the other hand we have calculated the topological susceptibility and the forth order cumu-
lant up to NNLO in U(3) ChPT including the leading isospin-breaking corrections [4]. From that
the effect of the additional U(3) corrections in terms of the Low Energy Constants (LECs) will be
estimated. Finally, we will extend our analysis to finite temperature to analyze the Ward Identity
which relates 〈q̄q〉l with the topological susceptibility (χtop) and the pseudoscalar susceptibility in
the light ηl = iūγ5u+ id̄γ5d channel (χ ll

P ). An important issue studied is if the term proportional to
χ ll

P is suppressed with respect to 〈q̄q〉l .

2. Linear Sigma Model description of the scalar susceptibility and the thermal
f0(500) saturation approach

First we consider the light meson sector of the Linear Sigma Model lagrangian, since it in-
cludes explicitly the scalar σ field:

LLSM =
1
2
(
∂µσ∂

µ
σ +∂µπ

a
∂

µ
π

a)− λ

4
[
σ

2 +πaπ
a− v2

0
]2
+hσ . (2.1)

We proceed defining a shifted sigma field in such a way that the new field is σ̃ = σ − v,
where v is the σ expectation value to leading order. Doing that, we have to take into account
that one-particle reducible diagrams enter in the calculation of the σ̃ propagator. It is because
〈σ̃〉= v(T )−v 6= 0 at finite temperature. We obtain that χS calculated withing the LSM lagrangian
is:

χS(T ) =−
∂

∂ml
〈q̄q〉l =

(
d2h
dm2

l

)
v(T )+

(
dh

dml

)2

∆σ (k = 0;T ), (2.2)

where ∆σ (k;T )= 1/[k2+M2
0σ

+Σ(k0,~k;T )] is the Euclidean propagator of the σ̃ field and Σ(k0,~k;T )
is the self-energy.

Near the transition, the term proportional to v(T ) in (2.2) is expected to be negligible be-
cause of the quark condensate behaviour. That result can be reached using the Ward Identity
χπ = −〈q̄q〉l/ml [5, 6] which implies, together with the equivalence χπ ' χS around the transi-
tion region, that this term is O(M2

0π
/M2

0σ
) suppressed. Thus, the temperature dependence of the

susceptibility is approximately described by

χS(T )
χS(0)

'
M2

0σ
+Σ(k = 0;T = 0)

M2
0σ

+Σ(k = 0;T )
. (2.3)
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We have extended the calculation of the σ self-energy, given in [7, 8] and [9] at zero tempera-
ture and a finite temperature respectively, out of the chiral limit. Calculating perturbatively the pole
of the propagator and comparing that with the pole of a Breit-Wigner resonance sp = (Mp− iΓp/2)2

we obtain that to achieve reasonable phenomenological results the λ parameter has to be large.
Moreover, it is not possible to get good agreement both for Mp and Γp but we have selected a refer-
ence range λ ∼ 10−20 for which the experimental determination of the mass (width) is recovered
with the lower (higher) value of λ .
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Figure 1: Left: Comparison of the sigma self-energy at k = 0 and at k0 = Mσ ,~k =~0, for λ = 10−20. Right:
Saturated and perturbatively susceptibility in the LSM compared to lattice data from [3].

In Figure 1, we show the temperature dependence of the real part of the self-energy evaluated
at s = 0 and s = sp [1]. Although both functions have the same qualitative behaviour the first goes
to zero at a lower temperature. In respect of the saturated susceptibility, it diverges around Tc and
presents a chiral symmetry restoration tendency but is not able to reproduce the crossover peak.
Despite the limitations of the LSM, (2.3) describes lattice data reasonably below Tc.

It is well established that the f0(500) is generated within UChPT as a second Riemann sheet
pole of the ππ scattering amplitude. Thus, the pole position parameters of the f0(500) agree with
their experimental values. The square of the scalar thermal pole mass, M2

S(T ) is dened as the real
part of the self-energy. The theoretical uncertainties involved in MS(T ) are the unitarization method
and the numerical uncertainties of the Low Energy Constants (LECs).
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Figure 2: Saturated susceptibility normalized with AChPT ' 0.15 including the uncertainties coming from
the LEC given in [10].

If the momentum dependence of the real part of the self-energy is soft in such a way that the
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difference between ReΣ f0 from s = 0 to s = sp lies into the uncertainty range of the approach, we
can define the corresponding saturated susceptibility within UChPT which we denote unitarized
susceptibility:

χ
U
S (T ) = A

M4
π

4m2
l

M2
S(0)

M2
S(T )

. (2.4)

As we can see in figure 2, the Inverse Amplitude Method (IAM) prediction for the suscepti-
bility reproduces the crossover peak [11] and most of the lattice data fall into the uncertainty band
below Tc. A comparison with the Hadron Resonance Gas (HRG) is studied in this context in [1].

3. The topological susceptibility in U(3) Chiral Perturbation Theory

The topological susceptibility and the fourth order cumulant to LO, in terms of quark masses
and considering the isospin-breaking corrections, are given by

χ
U(3),LO
top = Σm̂, cU(3),LO

4 =−Σ
m̂4

m̄[3] , (3.1)

with

m̂ =
M2

0 m̄
M2

0 +6B0m̄
, m̄ =

1
mu

+
1

md
+

1
ms

, m̄[3] =

[
1

m3
u
+

1
m3

d
+

1
m3

s

]−1

. (3.2)

We have calculated up to NNLO corrections in U(3) ChPT [4], where the η ′ is considered as a
ninth Godstone boson within the large Nc framework, including also the relevant isospin-breaking
and finite-temperature corrections. Numerical values for the LEC involved and their uncertaintites
are taken from [12]. The numerical results, which can be seen in [4] in the isospin limit, have
been calculated keeping the numerical values of the U(3) LECs and their uncertainties. We get that
the η ′ meson and mixing angle corrections are comparable to the kaon and η ones introduced in
the SU(3) approach. Furthermore, this calculation is compatible with the lattice results within the
range of uncertainty. Numerical corrections due to isospin breaking remain below the 5% level.
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Figure 3: Left: Comparison of χtop(T ) calculated to NNLO in U(3) with lattice data from [13] and [14].
Right: Topological susceptibility scaling compared to different approaches of the 〈q̄q〉l scaling.

In figure 3 we show the temperature dependence of χtop, coming from the meson loops. We
can see the consistency between the U(3) ChPT analysis and lattice data within the theoretical and
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lattice uncertainties. Beside this another important result is that, around the transition point, the χ ll
P

contribution in the Ward identity χtop = −ml(〈q̄q〉l +mlχ
ll
P )/4 [15], may be significant, implying

a departure of the scaling of χtop with the light quark condensate. Thus, in figure 3 we plot the
comparison with the quark condensate calculated from the HRG [16] which clearly deviates from
χtop (dominated by the light degrees of freedom) around Tc. The latter is consistent with a gap
between chiral and U(1)A restoration for physical quark masses.

4. Conclusions

We have related the scalar susceptibility in the LSM to the propagator of the lightest scalar
state at zero momentum. After this, from the UChPT approach and using the IAM we have repro-
duced the crossover peak and have found that most of the lattice data fall into the uncertainty band.
Lastly, as regards χS, the analyses (LEC, unitarization method, LSM) confirms that the thermal
f0(500) saturation approach is robust from the theoretical point of view. And finally, we have esti-
mated the η ′ corrections to χtop and c4 at zero temperature and at finite temperature up to NNLO
in ChPT.
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