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Conformal invariance of TMD rapidity evolution
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Very well known schemes to regulate the rapidity/UV divergences of the Transverse Momentum

Distribution operators due to the infinite light-like gauge links are the Collis Soper Sterman for-

malism or the Soft Collinear Effective Theory formalism. An alternative choice is provided by

the scheme used in the small-x physics. The corresponding evolution equations differ already at

leading order. In view of the future Electron Ion Collider accelerator, which will probe the TMDs

at values of the Bjorken x in the region between small-x to x ∼ 1, the different formalisms need

to be reconciled. I will discuss the conformal properties of TMD operators and present the result

of the conformal rapidity evolution of TMD operators in the Sudakov region.
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1. Introduction

The TMDs (for a review, see Ref. [1]) are defined as matrix elements of quark or gluon

operators with attached light-like gauge links (Wilson lines) going to either +∞ or −∞ depending

on the process under consideration. It is well known that these TMD operators exhibit rapidity

divergences due to infinite light-like gauge links and the corresponding rapidity/UV divergences

should be regularized. Known schemes are based on CSS or SCET formalism. An alternative

scheme is inspired by the small-x physics [2, 3]. The obtained evolution equations differ even at

the leading-order level and need to be reconciled, especially in view of the future EIC accelerator

which will probe the TMDs at values of Bjorken x between small-x and x ∼ 1 regions.

A good starting point is to obtain conformal leading-order evolution equations. In our case,

since TMD operators are defined with attached light-like Wilson lines, formally they will transform

covariantly under the subgroup of full conformal group which preserves this light-like direction.

However, as we mentioned, the TMD operators contain rapidity divergencies which need to be

regularized. At present, there is no rapidity cutoff which preserves conformal invariance so the

best one can do is to find the cutoff which is conformal at the leading order in perturbation theory.

In higher orders, one should not expect conformal invariance since it is broken by running of QCD

coupling. However, if one considers corresponding correlation functions in N = 4 SYM, one

should expect conformal invariance. After that, the results obtained in N = 4 SYM theory can be

used as a starting point of QCD calculation. Thus, the idea is to find TMD operator conformal in

N = 4 SYM and use it in QCD.

In the next sections we report results published in Ref. [7].

2. Conformal invariance of TMD operators

For simplicity, we will consider the gluon operators with light-like Wilson lines stretching to

−∞ in “+” direction. The gluon TMD (unintegrated gluon distribution) is defined as [4]

D(xB,k⊥,η) =
∫

d2z⊥ ei(k,z)⊥D(xB,z⊥,η), (2.1)

g2
D(xB,z⊥,η)

z−=0
=

−x−1
B

2π p−

∫

dz+ e−ixB p−z+⟨P|F a
ξ (z)[z−∞n,−∞n]ab

F
bξ (0)|P⟩

where |P⟩ is an unpolarized target with momentum p≃ p− (typically proton) and n= ( 1√
2
,0,0, 1√

2
)

is a light-like vector in “+” direction. Hereafter we use the notation

F
ξ ,a(z⊥,z

+) ≡ gF−ξ ,m(z)[z,z−∞n]ma
∣

∣

∣

z−=0
(2.2)

where [x,y] denotes straight-line gauge link connecting points x and y: [x,y]≡ Peig
∫

du (x−y)µ Aµ(ux+(1−u)y)

To simplify one-loop evolution we multiplied Fµν by coupling constant. Since the gAµ is renorm-

invariant we do not need to consider self-energy diagrams (in the background-Feynman gauge).

Note that z− = 0 is fixed by the original factorization formula for particle production [1] (see also

the discussion in Ref. [5, 6]).

The algebra of full conformal group SO(2,4) consists of four operators Pµ , six Mµν , four

special conformal generators Kµ , and dilatation operator D. It is easy to check that in the leading
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order the following 11 operators act on gluon TMDs covariantly [7]

Pi,P−,M12,M−i,D,Ki,K−,M−+ (2.3)

while the action of operators P+,M+i, and K+ do not preserve the form of the operator (2.2).

The corresponding group consists of transformations which leave the hyperplane z− = 0 and vec-

tor n invariant. Those include shifts in transverse and “+′′ directions, rotations in the transverse

plane, Lorentz rotations/boosts created by M−i, dilatations, and special conformal transformations

z′µ =
zµ−aµ z2

1−2a·z+a2z2 with a = (a+,0,a⊥).

As we noted, infinite Wilson lines in the definition (2.2) of TMD operators make them diver-

gent. As we discussed above, it is very advantageous to have a cutoff of these divergencies compat-

ible with approximate conformal invariance of tree-level QCD. The evolution equation with such

cutoff should be invariant with respect to transformations described above.

3. TMD factorization and one-loop evolution in the Sudakov region

It is convenient to consider as a starting point the simple case of TMD evolution in the so-

called Sudakov region corresponding to small longitudinal distances. First, let us specify what we

call a Sudakov region. A typical factorization formula for the differential cross section of particle

production in hadron-hadron collision is [1, 8]

dσ

dηd2q⊥
= ∑

f

∫

d2b⊥ei(q,b)⊥D f/A(xA,b⊥,η)D f/B(xB,b⊥,η)σ( f f → H)+ ... (3.1)

where η = 1
2 ln q+

q− is the rapidity, D f/h(x,z⊥,η) is the TMD density of a parton f in hadron h, and

σ( f f → H) is the cross section of production of particle H of invariant mass m2
H = q2 ≡ Q2 in

the scattering of two partons. (One can keep in mind Higgs production in the approximation of

point-like gluon-gluon-Higgs vertex). The Sudakov region is defined by Q ≫ q⊥ ≫ 1GeV since at

such kinematics there is a double-log evolution for transverse momenta between Q and q⊥. In the

coordinate space, TMD factorization (3.1) looks like

⟨pA, pB|g2Fa
µνFaµν(z1)g

2Fb
λρFbλρ(z2)|pA, pB⟩ (3.2)

=
1

N2
c −1

⟨pA|Õi j(z
−
1 ,z1⊥ ;z−2 ,z2⊥)|pA⟩σA⟨pB|O i j(z+1 ,z1⊥ ;z+2 ,z2⊥)|pB⟩σB + ...

where Oi j, Õi j, and F i,a are defined in Ref. [7]. Here pA =
√

s
2n+ p2

A√
2s

n′, pB =
√

2
s
n′+ p2

B√
2s

n and

n′ =
(

1√
2
,0,0,− 1√

2

)

. Our metric is x2 = 2x+x−− x2
⊥.

As we mentioned, TMD operators exhibit rapidity divergencies due to infinite light-like gauge

links. The “small-x style” rapidity cutoff for longitudinal divergencies is imposed as the upper

limit of k+ components of gluons emitted from the Wilson lines. As we will see below, to get the

conformal invariance of the leading-order evolution we need to impose the cutoff of k+ components

of gluons correlated with transverse size of TMD in the following way:

F
i,a(z⊥,z

+)σ ≡ gF−i,m(z)
[

Peig
∫ z+

−∞dz+A−,σ (up1+x⊥)
]ma

,

Aσ
µ(x) =

∫

d4k

16π4
θ
(σ

√
2

z12⊥

− |k+|
)

e−ik·xAµ(k) (3.3)
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Similarly, the operator Õ is defined with with the rapidity cutoff for β integration imposed as

θ
(

σ̃
√

2
z12⊥

− |k−|
)

.

Figure 1: Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel. The

dashed lines denote gauge links.

The Sudakov region Q2 ≫ q2
⊥ in the coordinate space corresponds to z2

12∥
≡ 2z−12z+12 ≪ z2

12⊥

where z12 ≡ z1 − z2. In the leading log approximation, the upper cutoff for k+ integration in the

target matrix element in Eq. (3.2) is σB = 1√
2

z12⊥
z−12

and similarly the β -integration cutoff in projectile

matrix element is σA = 1√
2

z12⊥
z+12

1.

Let us derive the evolution of gluon TMD operator with respect to cutoff σ in the leading log

approximation. As usual, to get an evolution equation we integrate over momenta σ2

√
2

z12⊥
> k+ >

σ1

√
2

z12⊥
. To this end, we calculate diagrams shown in Fig. 1 in the background field of gluons with

k+ < σ1

√
2

z12⊥
. The result is

O
σ2(z+1 ,z

+
2 ) =

αsNc

2π

σ2
√

2
z12⊥
∫

σ1
√

2
z12⊥

dk+

k+
KO

σ1(z+1 ,z
+
2 ) (3.4)

where the kernel K is given by [7]

KO(z+1 ,z
+
2 ) = O(z+1 ,z

+
2 )

∫ z+1

−∞

dz+

z+2 − z+
e
−i

z12⊥
σ

√
2(z2−z)+ +O(z+1 ,z

+
2 )

∫ z+2

−∞

dz+

z+1 − z+
e

i
z12⊥

σ
√

2(z1−z)+

−
∫ z+1

−∞
dz+

O(z+1 ,z
+
2 )−O(z+,z+2 )

z+1 − z+
−
∫ z+2

−∞
dz+

O(z+1 ,z
+
2 )−O(z+1 ,z

+)

z+2 − z+
(3.5)

where we suppress arguments z1⊥ and z2⊥ since they do not change during the evolution in the

Sudakov regime. The first two terms in the kernel K come from the “production” diagram in Fig.

1a while the last two terms from “virtual” diagram in Fig. 1b. The approximations for diagrams in

Fig. 1 leading to Eq. (3.5) are valid as long as k+ ≫ z+12

z2
12⊥

which gives the region of applicability of

Sudakov-type evolution.

Evolution equation (3.4) can be easily integrated using Fourier transformation (see [7] for

details) and one easily obtains

Oσ2(z+1 ,z
+
2 ) = e

−2ᾱs ln
σ2
σ1

[ln σ1σ2+4γE−ln2
]

∫

dz′+1 dz′+2 Oσ1(z′+1 ,z′+2 ) z
−2ᾱs ln

σ2
σ1

12⊥

×
1

4π2

[

iΓ
(

1−2ᾱs ln σ2
σ1

)

(z+1 − z′+1 + iε)1−2ᾱs ln
σ2
σ1

+ c.c.

][

iΓ
(

1−2ᾱs ln σ2
σ1

)

(z+2 − z′+2 + iε)1−2ᾱs ln
σ2
σ1

+ c.c.

]

(3.6)

1Hereafter we use the simplified notation z12⊥ ≡ |z12⊥ |.
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where we introduced notation ᾱs ≡ αsNc

4π . It should be mentioned that the factor 4γE is “scheme-

dependent”: if one introduces to α-integrals smooth cutoff e−α/a instead of rigid cutoff θ(a > α),

the value 4γE changes to 2γE . It is easy to see that the r.h.s. of Eq. (3.6) transforms covariantly

under all transformations (2.3) except Lorentz boost generated by M+− (see [7] for details).

4. Conclusions and Outlook

The first result is that the 11-parameter subgroup of SO(2,4) formed by generators (2.3) for-

mally leaves TMD operators invariant.

The second result is related to the fact that conformal invariance is violated by the rapidity

cutoff (even in N = 4 SYM). We have studied the TMD evolution in the Sudakov region of

intermediate x and demonstrated that the rapidity cutoff used in small-x literature preserves all

generators of our subgroup except the Lorentz boost which is related to the change of that cutoff.

Our main outlook is to try to connect to small-x region, first in N = 4 SYM and then in QCD.

As we mentioned above, although the TMD evolution in a small-x region is conformal with respect

to SL(2,C) group, and our evolution (3.6) is also conformal (albeit with respect to different group

of which SL(2,C) is a subgroup), the transition between Sudakov region and small-x region is

described by rather complicated interpolation formula [9] which is not conformally invariant. Our

hope is that in a conformal theory one can simplify that transition using the conformal invariance

requirement. The study is in progress.
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