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We present the two-loop QCD corrections to the amplitude of the Higgs production associated
with a Z boson via the bottom quark-antiquark annihilation channel with a non-vanishing bottom-
quark Yukawa coupling. The computation is performed by projecting the D-dimensional scatter-
ing amplitude directly onto a set of Lorentz structures related to the linear polarisation states of
the Z boson. We cross-check the finite remainders through a computation based on conventional
form factor decomposition. We show that for physical observables, an ultimate D-dimensional
form factor decomposition of amplitudes is not necessary which has a huge potential to simplify
a multiloop computation. We compute numerically the resulting cross sections under the soft-
virtual approximation to NNLO and find it three orders of magnitude smaller than that of the
s-channel.
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1. Introduction and Setup

It is thus very desirable to have a precise knowledge about the V H process at hadron colliders,
especially to meet the foreseeable precision requirements from future experiments for studies of
the 125 GeV Higgs boson as well as potentially non-standard Higgs bosons with ever more details.
In this article, we focus on the b-quark-induced ZH process that involves a non-vanishing Yukawa
coupling λb between the b quark and the Higgs boson:

b(p1)+ b̄(p2)→ Z(q1)+H(q2) . (1.1)

pi, qi represent the momentum of the corresponding particle satisfying on-shell conditions p2
i =

0,q2
1 = m2

z ,q
2
2 = m2

h. mz and mh are the mass of the Z and Higgs boson, respectively. At tree
level, there are three Feynman diagrams, as shown in figure 1. The diagram (A) gives an s-channel
contribution with the same structure as that of the Drell-Yan production, which has been studied
extensively in QCD to order O(α3

s ) in refs. [1, 2, 3, 4]. At the tree level there are three contributing
diagrams for the b-quark-induced ZH process1, as shown in figure 1. In this article, we focus on
the diagrams (B) and (C) that involve λb and compute the two-loop corrections in massless QCD
with n f = 5 flavour scheme under dimensional regularisation.

Figure 1: Feynman diagrams at leading order

The kinematic invariants are defined as

s≡ (p1 + p2)
2 , t ≡ (p1−q1)

2 and u≡ (p2−q1)
2 (1.2)

satisfying s+ t + u = q2
1 + q2

2 = m2
z +m2

h. We keep a non-zero Yukawa coupling between Higgs
boson and b quark, otherwise the mass of the b-quark is set to be zero. For the axial coupling
between Z-boson and massless quarks, we define γ5 in dimensional regularisation [5, 6] (DR)
as [5, 7]

γ5 =
i

4!
εµνρσ γ

µ
γ

ν
γ

ρ
γ

σ . (1.3)

As a consequence of this definition, we need to symmetrise the axial current [8, 9] and upon doing
so, we obtain [8, 9]

γµγ5 =
i
6

εµνρσ γ
ν
γ

ρ
γ

σ , (1.4)

1This holds in the physical unitary gauge where unphysical degree-of-freedoms in electroweak ghosts and would-
be-Goldstone bosons decouple from the spectrum.
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which is used in D-dimensions for our calculation. Moreover, all the Lorentz indices of the Levi-
Civita symbols are considered in D- dimensions [10]. In the next section, we introduce the projector
method that is adopted in this article.

2. Prescription of Projectors

In this work, the polarised amplitudes of the process (1.1) are obtained by projecting the D-
dimensional amplitude directly onto a minimal set of D-dimensional projection operators follow-
ing the approach proposed in [11]. In order to cross-check our calculation, we also compute the
polarised amplitudes by following the conventional method of decomposing the amplitude into in-
dependent Lorentz structures and then applying appropriate projectors in D-dimensions to extract
the corresponding form factors. In this section, we present the recipe for both the methods in brief.

2.1 Projectors for Linearly Polarised bb̄ZH Amplitudes

The polarisation projectors as introduced in [11] are based on the momentum basis represen-
tations of external state vectors (for both bosons and fermions, massless or massive), and all their
open Lorentz indices are by definition taken to be D-dimensional to facilitate a uniform projection
with just one dimensionality D=gµ

µ . This allows us to find a Lorentz covariant representation of
the tensor products of external particles’ state vectors solely in terms of external momentum and
algebraic constants, such as the metric tensor, spinor matrices and Levi-Civita symbol. As all the
open Lorentz indices are considered to be D-dimensional, no dimensional splitting ever comes into
the picture for loop momenta and/or Lorentz indices of inner vector fields.

The amplitude of (1.1) can be schematically parameterised as

M = v̄(p2)Γ
µ u(p1)ε

∗
µ(q1)

= v̄(p2)Γ
µ

vec u(p1)ε
∗
µ(q1) + v̄(p2)Γ

µ

axi u(p1)ε
∗
µ(q1)

≡Mvec +Maxi . (2.1)

The symbol Γ µ ≡ Γ
µ

vec +Γ
µ

axi stands for a matrix in the spinor space with one open Lorentz index µ

which may be carried by either the elementary Dirac matrix γµ or one of the external momentum.
It consists of contributions from the vector and axial coupling of the Z boson, denoted by Γ

µ
vec

and Γ
µ

axi, respectively. Due to the presence of Yukawa coupling λb vertex on the external b quark
line, all non-vanishing amplitudes involve two external massless spinors, u(p1) and v(p2), with
opposite chirality. As a consequence, the power of spinor matrices in Γ µ sandwiched between
the two external massless b quark spinors must be even in order to have a non-vanishing matrix
element between such a pair of spinors.

Following the ref.[11], the projectors are obtained as

ū(p1)Ni v(p2)ε
µ

j , for i = s, p and j = T,Y,L (2.2)

where the Ns = 1, Np = γ5, and ε
µ

j with j = T,Y,L represent the three linear polarisation eigen-
states of Z-boson identified in the center-of-mass frame of the collision. We choose ε

µ

T to be the
transversal polarisation within the scattering plane determined by the three linearly independent
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external momenta, p1, p2,q1. The other transversal polarisation ε
µ

Y is orthogonal to p1, p2, and q1,
and is constructed with the help of Levi-Civita symbol. The third physical polarisation state of the
Z boson, its longitudinal polarisation which is denoted by the vector ε

µ

L , has its spatial part aligned
with its own momentum q1. To get the form of the (2.2), we first write down a Lorentz covariant
ansatz for the ε

µ

j and then solve the orthogonality and normalisation conditions of linear polarisa-
tion state vectors for the linear decomposition coefficients. Once we establish a definite Lorentz
covariant decomposition form in 4 dimensions solely in terms of external momenta and kinematic
invariants, this form is declared as the definition of the corresponding polarisation state vector in D
dimensions. By substituting the obtained results of the polarisation tensor and the definition of γ5

according to (1.3), and then performing the simplification using 4-dimensional Lorentz and spinor
algebra, we choose a set of 6 projectors, Pµ

i to be used in D-dimensions. The explicit form of
the projectors can be found in [12]. We emphasise that since by construction the momentum basis
representations of polarisation state vectors fulfil all the defining physical constraints, hence the in-
dex contraction between the projectors and the amplitude (2.1) is simply done with the space-time
metric tensor gµν instead of physical polarisation sum. From the linearly polarised amplitudes ob-
tained by applying the aforementioned projectors, we can get the helicity (with respect to massless
b-quarks) amplitudes as

M [±±T ] = N −1
±±T

(
Pµ

1 ∓Pµ

4

)
v̄(p2)Γµ u(p1) ,

M [±±Y ] = N −1
±±Y

(
Pµ

2 ∓Pµ

5

)
v̄(p2)Γµ u(p1) ,

M [±±L] = N −1
±±L

(
Pµ

3 ∓Pµ

6

)
v̄(p2)Γµ u(p1) , (2.3)

where the superscript, e.g. ++T , denotes the respective polarisations of the b quark, anti-b quark
and the Z boson. The normalisation factors are explicitly given in ref. [12]. Each helicity amplitude
can be decomposed into vector and axial parts. Moreover, these can be expanded in powers of
strong coupling constant as = αs/4π . In this article, we compute these quantities to second order
in as.

2.2 Projectors for Conventional Form Factors

In order to cross check the results obtained using the linearly polarised projectors, we perform
the calculation using conventional form factor decomposition which we now turn into. The vector
part of the amplitude can be decomposed in terms of 4 linearly independent Lorentz structures as

v̄(p2)Γ
µ

vec u(p1) = F1,vec v̄(p2)u(p1) pµ

1 + F2,vec v̄(p2)u(p1) pµ

2

+ F3,vec v̄(p2)u(p1)qµ

1 + F4,vec v̄(p2)γ
µ
/q1u(p1) , (2.4)

which is followed by the constraints of the presence of even powers of elementary Dirac matrices,
combined with the P-even constraint from the vector coupling. The coefficients Fi,vec are called
vector form factors. The aforementioned basis of Lorentz structures is complete in D-dimensions
even without demanding the transversality of the Z boson’s physical polarisation states, since we
prefer to use the simple metric tensor gµν instead of the physical polarisation sum rule for index
contraction in projections. By computing the inverse of the Gram matrix of the aforementioned
basis, we obtain the explicit form of the projectors for the above form factor decomposition which

3



P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
1
0

bb→ ZH Taushif Ahmed

can be found from [12]. By applying the derived projectors onto the Feynman diagrams, we obtain
the vector part of the amplitudes.

For the form factor decomposition of the axial part of the amplitude, as a result of using the
D-dimensional definition of γ5 which forces us to sacrifice the anti-commuting property, a linearly
independent and complete Lorentz structures in 4-dimensions does not necessarily hold true in
D-dimensions. This is because while constructing the basis structures in 4-dimensions, the anti-
commuting property of γ5 is routinely employed which fails in D-dimensions. To begin with, we
consider the linearly independent and complete basis in 4-dimensions as{

v̄(p2)γ5 u(p1) pµ

1 , v̄(p2)γ5 u(p1) pµ

2 , v̄(p2)γ5 u(p1)qµ

1 , v̄(p2)γ
µ

γ5 /q1u(p1)
}
, (2.5)

which is constructed under the condition of even powers in elementary Dirac matrices combined
with the P-odd constraint from the axial coupling. By substituting the D-dimensional definition of
γ5, we calculate the D-dimensional projectors through computing the inverse of the Gram matrix
whose explicit forms can be found from [12].

Now we address the question whether the vector and axial parts of the amplitudes, Mvec and
Maxi, live in a space spanned by the aforementioned Lorentz structures depicted through (2.4) and
(2.5) in D-dimensions. In order to check it, we calculate the tree level amplitude in D-dimensions
directly from Feynman diagrams, where we make use of the D-dimensional definition of non-
anticommuting γ5, and append the resulting Lorentz structures to the original set (2.4) and (2.5).
Now we find that the rank of the Gram matrix of the vector part remains 4 whereas for the axial it
gets increased to 5. This clearly implies that in D-dimensions the tree-level vector amplitude Mvec

indeed lives in a space spanned by the four Lorentz structures depicted through (2.4), whereas
the tree-level axial amplitude Maxi is not fully spanned by the corresponding structures in (2.5).
Following the same argument, even if we manage to get a complete basis for the tree level amplitude
in D-dimensions, it is not guaranteed to retain the completeness property at loop level with the same
set of structures. So, in general, for axial amplitude it is not easy to construct a complete set of basis
in D-dimensions such that it remains so even at higher loop order. Hence, we can not write down
an exact all order form factor decomposition of the axial part, Maxi, which could be analogous to
the vector counterpart, Mvec in (2.4).

So, the question arises if we start our computation with an incomplete basis of Lorentz struc-
tures in D-dimensions, as depicted through (2.5), would it always lead to correct results, because
for sure the so reconstructed amplitude is not algebraically identical to the original defining form
given by Feynman diagrams. On top of this, there is also no clear statement in the literature
whether one can always set the dimension variable D = 4 in the expressions of the projectors, and
still expect with confidence that the amplitude reconstructed in this way yields correct results of the
physical observables. Keeping the full D-dependence on the axial projectors generally leads to a
cumbersome set of projectors. With this motivation, we start by decomposing the axial part of the
amplitude to linearly independent and complete structures in 4-dimensions but incomplete in D-
dimensions, as presented in (2.5), and construct the projectors. In the expressions of the projectors,
we set D=4 and define the “axial form factors” as

F1,axi ≡ P[4],µ
1,axi v̄(p2)Γ

ν
axi u(p1)gµν

F2,axi ≡ P[4],µ
2,axi v̄(p2)Γ

ν
axi u(p1)gµν

4
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F3,axi ≡ P[4],µ
3,axi v̄(p2)Γ

ν
axi u(p1)gµν

F4,axi ≡ P[4],µ
4,axi v̄(p2)Γ

ν
axi u(p1)gµν (2.6)

where the [4] signifies D = 4 in the original set of projectors P[4],µ
i,axi . Note that, however, when

applying these projectors to Maxi, all the Lorentz and spinor algebra including the contraction of
pair of Levi-Civita symbols must be performed in D-dimensions. Consequently, we build up an
intermediate axial amplitude M̃ µ

axi which is defined as

M̃ µ

axi ≡ F1,axi v̄(p2)γ5 u(p1) pµ

1 + F2,axi v̄(p2)γ5 u(p1) pµ

2

+ F3,axi v̄(p2)γ5 u(p1)qµ

1 + F4,axi v̄(p2)γ
µ

γ5 /q1u(p1) . (2.7)

This quantity M̃ µ

axi is not algebraically identical to the original amplitude M µ

axi = v̄(p2)Γ
µ

axi u(p1)

in D dimensions, while we expect that the two should eventually lead to the same properly defined
finite remainder in 4-dimensions and consequently, lead to correct physical observables.

Indeed, by comparing with the results for polarised amplitudes computed in this article using
physical projectors defined in section 2.1, not relying on any explicit Lorentz tensor decomposition
of the original Feynman amplitude, we have verified that eventually the same finite remainders are
obtained for the axial part of the amplitude hence we confirm a positive answer to the question
raised above. In conclusion, for all practical purposes where we confine ourselves in the compu-
tation of physical observables, we are allowed to decompose the amplitudes in D-dimensions, be
it vector or axial, into a set of Lorentz structures which are linearly independent and complete in
4-dimensions and then construct the corresponding projectors (i.e. a set that is essentially identical
to the respective expressions that would be used in a four-dimensional form factor decomposition).
Applying these 4-dimensional projectors onto the Feynman diagrams and performing everything
in D-dimensions lead to correct finite remainder. We expect this crucial observation to hold true
even beyond the amplitude considered in this article.

3. UV Renormalisation

The bare amplitudes beyond leading order (LO) are ultraviolet (UV) divergent whose recti-
fication requires not only the renormalisation of strong and Yukawa coupling constants, but also
the counterterms arising from the axial currents as a result of using non-anticommuting γ5. The
renormalisations of as and λb are performed in MS scheme [13]. The flavour non-singlet axial
current

Jns
µ,A(x) = ψ̄(x)γµγ5I3ψ(x) =

i
6

εµνρσ ψ̄(x)γν
γ

ρ
γ

σ I3ψ(x) , (3.1)

where I3 denotes the third component of the (weak) isospin operator, is renormalised in MS through
the multiplication of an overall operator renormalisation constant along with a finite renormalisa-
tion [14, 9]

Jns
µ,A(x) = Zns

5,AZns
A Ĵns

µ,A(x) . (3.2)

The hat ( ˆ ) represents the bare quantity. The expressions for the aforementioned renormalisation
constants can be found from [12]. The UV renormalised non-singlet current does not exhibit the
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Ward identity. However, this is not an anomalous property, this happens due to the presence of
a non-zero Yukawa coupling. The failure of holding the Ward identity for non-singlet current is
dictated by classical expectation.

The flavour-singlet (or anomalous) diagrams, characterised by featuring a triangle fermion
loop with axial Z coupling, start to appear at two-loop. Due to Furry’s theorem, only the axial part
of these diagrams survives. The singlet current is defined as

Js
µ,A(x) = ψ̄(x)γµγ5ψ(x) =

i
6

εµνρσ ψ̄(x)γν
γ

ρ
γ

σ
ψ(x) . (3.3)

Similar to the non-singlet current, this is also renormalised through [15, 16, 17]:

Js
µ,A(x) = Zs

5,AZs
AĴs

µ,A(x) , (3.4)

where the renormalisation constants can be found explicitly in ref. [12]. In contrast to the flavour
non-singlet axial current, the singlet current does not satisfy the standard Ward identity even in the
massless quark limit. In other words, this exhibits anomalous properties, known as axial or Adler-
Bell-Jackiw (ABJ) anomaly [18, 19]. The operator relation for the ABJ anomaly of massless axial
current reads [20]

(
∂

µJs
µ,A
)

R
= as

1
2
(
GG̃
)

R , (3.5)

where GG̃≡ εµνρσ Ga
µνGa

ρσ and Ga
µν is the gluonic field strength tensor. The subscript R represents

that these composite local operators need to be properly renormalised. We have verified this oper-
ator level relation explicitly within our computational setup for the singlet axial amplitude which
provides an indirect check to our treatment of these anomalous diagrams.

4. Computation of the Amplitudes

The technicalities of the computation of bare amplitudes closely follow the steps used in the
recent calculation of two-point form factors with two-operator insertion with different virtualities in
maximally supersymmetric Yang-Mills theory [21]. Feynman diagrams are generated symbolically
using QGRAF [22]. At two-loops, there are 153 flavour non-singlet and 6 flavour singlet diagrams
are present. Using in-house routines based on FORM [23] are used to perform the SU(N) colour,
spinor and Lorentz algebras in D-dimensions. Upon applying the projectors onto the Feynman dia-
grams, we end up with thousands of scalar Feynman integrals which are reduced to a much smaller
subset of integrals, called master integrals (MI) with the help of integration-by-parts (IBP) [24, 25]
identities through Kira [26, 27]. In a parallel setup, using an extension of GoSam [28, 29, 30],
we obtain the matrix elements. The bare amplitudes in terms of MI are found to agree in both the
setup. We use the optimised solutions of the MI computed in the article [31] and get the result of
the amplitudes. The MI are also computed in refs. [32, 33, 34]. The analytic results of the UV
renormalised polarised amplitudes to two-loops are attached as ancillary files with the arXiv sub-
mission of ref. [12].
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5. IR Factorisation and RS Independent Finite Remainders

The UV renormalised amplitudes are found to exhibit the expected behaviour [35, 36] of the
soft and collinear (IR) divergences in conventional dimensional regularisation (CDR) which serves
as the most stringent check on our computation.

We have checked explicitly that there is an exact agreement of the vector parts of the six
bare amplitudes (with full D-dependence) between the direct projection calculation and the one
with a detour of conventional D-dimensional form factor decomposition. Consequently, the 4-
dimensional finite remainders are identical in both the methods.

However, for the axial part, the projectors for projecting our “axial form factors” defined in
(2.6) are a bit un-conventional due to two points as already mentioned (1) the basis set (2.5) is
known to be linearly incomplete in D dimensions for Maxi in question; (2) all explicit D appearing
in the corresponding set of projectors are set manually to be 4. This makes the axial form factor
decomposition not qualified as being called D-dimensional faithful representation. Still we defined
an intermediate axial amplitude M̃axi in (2.7) from “axial form factors”. It would be very interesting
to see whether the correct 4-dimensional finite remainders M

[ j]
axi,fin could still be obtained in a

computation based on such an acrobatic version of axial form factor decomposition. We find that
the 4-dimensional finite remainders in both the methods do agree which implies it is not necessary
to construct and use the “ultimate” D-dimensional axial decomposition basis, as long as one is only
concerned with physical quantities. Using the analytical results of the polarised amplitudes, in the
next section, we compute the inclusive production cross-section at NNLO QCD at threshold.

6. Cross-Section to NNLO in Soft-Virtual Approximation

The hadronic cross section of the ZH production that results from the t,u-channels of b quark
initiated partonic sub-processes is given by

σ
ZH
tu = ∑

a=b,b

∫
dx1 fa(x1,µF)

∫
dx2 fā(x2,µF)σ

ZH
aā,tu(x1,x2,mz,mh,µF) . (6.1)

Here, x1,2 are fractions of momenta of incoming hadrons carried away by bottom quarks b and b̄,
and fa is the parton distribution function (PDF) normalised at the factorisation scale µF . The
mass factorised partonic cross section is given by σZH

bb̄,tu. In absence of the results of all the
real emission diagrams, we expand the cross-section around threshold limit z ≡ Q2/s = 1 where
Q2 = (q1 +q2)

2 is the invariant mass square of the final state ZH and obtain the leading contribu-
tion to the cross-section which is called soft-virtual (SV) approximation. Owing to the universality
of the soft contributions, we compute the required counterterm by following the methodology de-
scribed in [37, 38, 39] and consequently, obtain the SV cross-section at NNLO QCD where only the
contributions of the kind δ (1− z) and D j(z)≡

(
log j(1−z)
(1−z)

)
+

are retained. At the 13 TeV LHC, we

compute the numerical contributions arising from the SV cross-section and we find that these t,u-
channels give a three orders of magnitude smaller contribution compared to that of the s-channel
one. This contribution can be enhanced in theories like MSSM where the Yukawa coupling can be
enhanced.

7
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7. Conclusions

Through this work we provide the analytic results of the two-loop massless QCD corrections
to the b-quark-induced ZH process involving non-vanishing b-quark Yukawa coupling λb, which
is a necessary ingredient of the complete O(α2

s ) QCD corrections to this process in the five-flavour
scheme. The computation was performed in two different methods. In the one based on momentum
basis representation of the linear polarisation vector [11], we constructed the linearly polarised pro-
jectors and applied them directly onto the Feynman diagrams to obtain the polarised amplitudes.
The finite remainders are cross-checked against the respective results obtained through the con-
ventional method of form factor decomposition. We confirm that as long as we confine ourselves
to the computation of physical observables it is not necessary to construct and use the “ultimate”
D-dimensional form factor decomposition basis of the amplitudes. An acrobatic version of form
factor decomposition is shown to be sufficient in this computation done with the axial current
regularised in dimensional regularisation, which we think should also hold in other cases. This
conclusion has the potential to simplify multiloop calculation, particularly those involving axial
coupling. As expected, we find that the t,u-channels give a three orders of magnitude smaller
contribution compared to that of the s-channel one towards the SV cross-section at NNLO.
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