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Neutrino physics Stephen F. King

1. Introduction

Neutrino physics has made remarkable progress since the discovery of neutrino mass and
mixing in 1998 [1]. The reactor angle, unknown before 2012, is now accurately measured by Daya
Bay: θ13 ≈ 8.5◦±0.2◦ [2]. The other lepton mixing angles are determined from global fits to be in
the three sigma ranges: θ12 ≈ 32−36◦ and θ23 ≈ 40−52◦, with the first hints of the CP-violating
(CPV) phase δ = 125−390◦. The best global fit values with one sigma errors are given in Table 1
[3] where the meaning of the angles is given in Table 2.

NuFIT 4.0
θ12 [◦] 33.82+0.78

−0.76
θ13 [◦] 8.61+0.13

−0.13
θ23 [◦] 49.6+1.0

−1.2
δ [◦] −145+40

−29
∆m2

21 [10−5eV2] 7.39+0.21
−0.20

∆m2
31 [10−3eV2] 2.525+0.033

−0.032

Table 1: The nu-fit 4.0 results with one sigma errors
without SK atmospheric data for the normal ordered
(NO) case, favoured by current data [3].
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Table 2: Neutrino mixing angles may be rep-
resented as Euler angles relating the states in
the charged lepton mass basis (νe,νµ ,ντ ) to the
mass eigenstate basis states (ν1,ν2,ν3).

The measurement of the reactor angle had a major impact on models of neutrino mass and
mixing as reviewed in [4, 5, 6] (for earlier reviews see e.g. [7, 8, 9]). In this talk we give a brief
theoretical overview of current neutrino models and CP violation.

2. Quark vs Lepton Mixing

The CKM and PMNS mixing matrices are (in the PDG parametrisation):



c12c13 s12c13 s13e−iδ

−s12c23− c12s13s23eiδ c12c23− s12s13s23eiδ c13s23
s12s23− c12s13c23eiδ −c12s23− s12s13c23eiδ c13c23


 (2.1)

where s13 = sinθ13, etc. with (very) different angles for quarks and leptons. In the case of Majorana
neutrinos, the PMNS matrix also involves the Majorana phase matrix: PM = diag(1,ei α21

2 ,ei α31
2 )

which post-multiplies the above matrix.
It is interesting to compare quark mixing, which is small,

sq
12 = λ , sq

23 ∼ λ
2, sq

13 ∼ λ
3 (2.2)

where the Wolfenstein parameter is λ = 0.226±0.001, to lepton mixing, which is large,1

s13 ∼ λ/
√

2, s23 ∼ 1/
√

2, s12 ∼ 1/
√

3. (2.3)

The smallest lepton mixing angle θ13 (the reactor angle), is of order the largest quark mixing
angle θ

q
12 = θC = 13.0◦ (the Cabibbo angle, where sinθC = λ ). There have been attempts to relate

quark and lepton mixing angles such as postulating a reactor angle θ13 = θC/
√

2 [10], and the
CP violating lepton phase δ ∼ −π/2 (c.f. the well measured CP violating quark phase δ q ∼
(π/2)/

√
2).

1As in section 1 lepton parameters are denoted without a superscript l.
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3. Tribimaximal mixing and its descendants

The tribimaximal (TB) mixing matrix [11] postulated zero reactor angle s2
13 = θ13 = 0 (hence

zero Dirac CP violation), maximal atmospheric angle s2
23 = 1/2 (θ23 = 45◦) and a solar mixing

angle given by s12 = 1/
√

3 (θ12 ≈ 35.26◦). The mixing matrix is given explicitly by

UTB =




√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2


PM, (3.1)

where PM is the Majorana phase matrix defined above (frequently ignored). The trimaximal sym-
metry of the second column, and bimaximal symmetry of the second and third rows, motivates the
use of non-Abelian discrete symmetries such as A4 [12]. TB mixing was killed 2 by the measure-
ment of the reactor angle, but it has surviving descendants as follows.

3.1 Trimaximal lepton mixing and atmospheric sum rules

The first surviving descendants of TB mixing are the twins known as trimaximal TM1 or TM2
lepton mixing which preserve the first or the second column of Eq.3.1 [13],

|UTM1 |=




2√
6
− −

1√
6
− −

1√
6
− −


 , |UTM2 |=



− 1√

3
−

− 1√
3
−

− 1√
3
−


 . (3.2)

These forms survive since the reactor angle becomes a free parameter, while the solar angle may
remains close to its TB prediction (in agreement with data). The unfilled entries are fixed when
the reactor angle is specified. It is important to emphasise that these forms are more than simple
ansatze, since they may be enforced by discrete non-Abelian family symmetry, as discussed in
section 4. For example, TM2 mixing can be realised by A4 or S4 symmetry [14], while TM1 mixing
can be realised by S4 symmetry [15]. A general group theory analysis of semi-direct symmetries
was given in [16].

TM1 implies three equivalent relations:

tanθ12 =
1√
2

√
1−3s2

13 or sinθ12 =
1√
3

√
1−3s2

13

c13
or cosθ12 =

√
2
3

1
c13

(3.3)

leading to a prediction θ12 ≈ 34◦, in excellent agreement with current global fits, assuming θ13 ≈
8.5◦. By contrast, the corresponding TM2 relations imply θ12 ≈ 36◦ [13], which is on the edge of
the three sigma region, and hence disfavoured by current data. TM1 mixing also leads to an exact
sum rule relation relation for cosδ in terms of the other lepton mixing angles [13],

cosδ =− cot2θ23(1−5s2
13)

2
√

2s13

√
1−3s2

13

, (3.4)

2Alternative ansatze such as Bimaximal Mixing (BM) and Golden Ratio (GR) Mixing, not discussed here, have met
the same fate.
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which, for approximately maximal atmospheric mixing, predicts cosδ ≈ 0, δ ≈ ±90◦. 3 Such
atmospheric mixing sum rules may be tested in future experiments [17].

For example, the Littlest Seesaw (LS) model [18] leads to TM1 mixing, for two cases of light
Majorana neutrino mass matrix (in the diagonal charged lepton basis):

Case I : MI
ν = ωma




0 0 0
0 1 1
0 1 1


+ms




1 3 1
3 9 3
1 3 1


 (3.5)

Case II : MII
ν = ω

2ma




0 0 0
0 1 1
0 1 1


+ms




1 1 3
1 1 3
3 3 9


 (3.6)

where ω = ei2π/3. The LS is very predictive since there are only two free (real) input parameters,
where ma≈ 26 meV and ms≈ 2.6 meV gives the best fit to neutrino masses with m1 = 0 and PMNS
parameters including θ23 ≈ 45◦, δ ≈−90◦ (the latter two predictions explained by an approximate
mu-tau symmetry as discussed later).

3.2 Charged lepton mixing corrections and solar sum rules

The second way that TB neutrino mixing can survive is due to charged lepton corrections.
Recall that the physical PMNS matrix in Eq.2.1 is given by UPMNS = UeUν . Now suppose that
Uν = Uν

TB, the TB matrix in Eq.3.1, while Ue corresponds to small but unknown charged lepton
corrections. This was first discussed in [19, 20, 21, 22] where the following sum rule involving the
lepton mixing parameters, including crucially the CP phase δ , was first derived (where 35.26o =

sin−1 1√
3
):

θ12 ≈ 35.26o +θ13 cosδ , (3.7)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections
involving only (1,2) mixing, so that the PMNS matrix is given by [22],

UPMNS =




ce
12 se

12e−iδ e
12 0

−se
12eiδ e

12 ce
12 0

0 0 1







√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2


=




· · · · · · se
12√
2

e−iδ e
12

· · · · · · ce
12√
2

1√
6
− 1√

3
1√
2


 (3.8)

Comparing Eq. 3.8 to the PMNS parametrisation in Eq.2.1, we identify the exact sum rule re-
lations [22], in terms of the elements |Ue3|, |Uτ1|, |Uτ2|, |Uτ3| identified above. The first element
|Ue3| = se

12√
2

implies a reactor angle θ13 ≈ 9◦ if θe ≈ θC (see e.g. the models in [10]). The second
and third elements, |Uτ1|, |Uτ2| after eliminating θ23, yield a new relation between the PMNS pa-
rameters, θ12, θ13 and δ . Expanding to first order gives the approximate solar sum rule relations in
Eq.3.7 [19]. The fourth element implies s2

23 < 1/2 which is somewhat disfavoured by global fits.
The above derivation assumes only θ e

12 charged lepton corrections. However it is possible to
derive an accurate sum rule which is valid for both θ e

12 and θ e
23 charged lepton corrections (while

3Incidentally the reason why cosδ (not sinδ ) is predicted is because such predictions follow from |Ui j| being
predicted, where Ui j = a+ beiδ , where a,b are real functions of angles in Eq.2.1 (hence |Ui j|2 = a2 + b2 + 2abcosδ ,
which involves cosδ ).
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keeping θ e
13 = 0). Indeed, using a similar matrix multiplication method to that employed above

leads to the exact result [23]:

|Uτ1|
|Uτ2|

=
|s12s23− c12s13c23eiδ |
|− c12s23− s12s13c23eiδ | =

1√
2
. (3.9)

After some algebra, Eq.3.9 leads to [23], 4

cosδ =
t23s2

12 + s2
13c2

12/t23− 1
3(t23 + s2

13/t23)

sin2θ12s13
. (3.10)

To leading order in θ13, Eq.3.10 returns the sum rule in Eq.3.7, from which we find cosδ ≈ 0 if
θ12 ≈ 35o, consistent with δ ≈ −π/2. This can also be understood directly from Eq.3.10 where
we see that for s2

12 = 1/3 the leading terms t23s2
12 and 1

3 t23 cancel in the numerator, giving cosδ =

s13/(2
√

2t23)≈ 0.05 to be compared to cosδ ≈ 0 in the linear approximation. In general the error
induced by using the linear sum rule instead of the exact one has been shown to be ∆(cosδ )< 0.1
[23] for the TB sum rule. Recently there has been much activity in exploring the phenomenology of
various such solar mixing sum rules [24]. On the other hand, for a GUT example with θ e

12 ∼ θC/3
and θ e

13 ∼ θC which violates the solar mixing sum rules see [25].

4. Family Symmetry Models

The original motivation for family symmetry was to derive or enforce the TB mixing pattern,
or one of the other simple patterns such as BM or GR. These days, the motivation is similar, but
applied to one of the surviving descendants of TB mixing.

4.1 Symmetry of the mass matrices

The starting point for family symmetry models is to consider the symmetry of the mass matri-
ces. In a basis where the charged lepton mass matrix Me is diagonal, the symmetry is,

T †(M†
e Me)T = M†

e Me (4.1)

where T = diag(1,ω2,ω) and ω = ei2π/n. For example for n = 3 clearly T generates the group ZT
3 .

The Klein symmetry ZS
2 ×ZU

2 of the light Majorana neutrino mass matrix is given by [4],

Mν = ST MνS, Mν =UT MνU (4.2)

S =U∗PMNS diag(+1,−1,−1) UT
PMNS (4.3)

U =U∗PMNS diag(−1,+1,−1) UT
PMNS. (4.4)

4.2 Direct Models

The idea of “direct models” [4], illustrated in Fig. 1 (left panel), is that the three generators
S,T,U introduced above are embedded into a discrete family symmetry G which is broken by
new Higgs fields called “flavons” of two types: φ l whose VEVs preserve T and φ ν whose VEVs

4See also [24] for an earlier derivation based on an analysis of phases.
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Charged 
Lepton Sector

Neutrino 
Sector

S,U  preserved 

G
T preserved   

�l �⌫

Family 
symmetry 

Generators 
S,T,U

A5T7 S4

A4

⌃(168) �(96) SO(3)

�(27)

SU(3)

Figure 1: The diagram on the left illustrates the so called direct approach to models of lepton mixing. The diagram on
the right shows possible choices of the group G.

preserve S,U . These flavons are segregated such that φ l only appears in the charged lepton sector
and φ ν only appears in the neutrino sector, thereby enforcing the symmetries of the mass matrices.
Note that the full Klein symmetry ZS

2×ZU
2 of the neutrino mass matrix is enforced by symmetry in

the direct approach.
There are many choices of the group G, with some examples given in Fig. 1 (right panel), with

each choice leading to different lepton mixing being predicted. For example, consider the group S4

whose irreducible triplet representations are: 5

S =
1
3



−1 2 2
2 −1 2
2 2 −1


 , T =




1 0 0
0 ω2 0
0 0 ω


 , U =∓




1 0 0
0 0 1
0 1 0


 (4.5)

where ω = ei2π/3. Assuming these S4 matrices, the ZT
3 symmetry of the charged lepton mass matrix

and the Klein symmetry ZS
2 ×ZU

2 of the neutrino mass matrix leads to the prediction of TB mixing
(indeed one can check that S and U are diagonalised by UT B as in Eqs.4.3,4.4).

4.3 Semi-direct and tri-direct CP models

In the “semi-direct” approach [4], in order to obtain a non-zero reactor angle, one of the
generators T or U of the residual symmetry is assumed to be broken. For example, consider the
following two interesting possibilities:

1. The ZT
3 symmetry of the charged lepton mass matrix is broken, but the full Klein symme-

try ZS
2 ×ZU

2 in the neutrino sector is respected. This corresponds to having charged lepton
corrections, with solar sum rules in section 3.2.

2. The ZU
2 symmetry of the neutrino mass matrix is broken, but the ZT

3 symmetry of the charged
lepton mass matrix is unbroken. In addition either ZS

2 or ZSU
2 (with SU being the product of

S and U) is preserved. This leads to either TM1 mixing (if ZSU
2 is preserved [15]); or TM2

mixing (if ZS
2 is preserved [14]). Then we have the atmospheric sum rules as discussed in

section 3.1.

5There are precise group theory rules for establishing the irreducible representations of any group, but here we shall
only state the results for S4 in the T -diagonal basis, see [9] for proofs, other examples and bases (e.g. dropping the U
generator leads to the A4 subgroup).
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The “semi-direct approach” may be extended to include a generalised CP symmetry X such
that (Mν)∗ = XT MνX , with a separate flavour and CP symmetry in the neutrino and charged lepton
sectors [26] (see also [27]). Such models typically tend to predict maximal CP violation δ =±π/2
(the first example of such generalised CP symmetry is mu-tau reflection symmetry discussed in the
following subsection).

In the “tri-direct” CP approach [28], a separate flavour and CP symmetry is assumed for each
right-handed neutrino sector (in the framework of two right-handed neutrino models [29]) in addi-
tion to the charged lepton sector.

4.4 Mu-tau reflection symmetry

An early class of flavour CP models are based on mu-tau reflection symmetry under which
νµ ↔ ν∗τ (where the star indicates CP conjugation) leading to the prediction of maximal atmo-
spheric mixing θ23 = π/4 and maximal CP violation δ = ±π/2 [30]. This implies that the ele-
ments of the second and third rows of the PMNS matrix UPMNS are related by complex conjugation
[30] and have equal magnitudes [31]; and that the elements of the light Majorana neutrino mass
matrix Mν are related [32].

For example, the following µτ-LS 6 light Majorana neutrino mass matrices [33]

MI
ν = ms




1 3 1
3 9+11ω 3+11ω

1 3+11ω 1+11ω


 , MII

ν = ms




1 1 3
1 1+11ω2 3+11ω2

3 3+11ω2 9+11ω2


 (4.6)

where ω = ei2π/3, both lead to the PMNS matrix

ULS
µτ =




2√
6

c+√
6

c−√
6

1√
6
− c+√

6
− i c−

2 −
c−√

6
+ i c+

2
1√
6
− c+√

6
+ i c−

2 −
c−√

6
− i c+

2


 (4.7)

which clearly respects µ− τ reflection symmetry and is a special case of tri-maximal TM1 mixing
[13] in Eq.3.2, with a fixed reactor angle c−√

6
, where c± =

√
1± 11

3
√

17
. We emphasise that the

neutrino mass matrices in Eq.4.6 have only one free parameter, namely the neutrino mass scale ms

and so are highly (maximally) predictive! Remarkably, the predicted neutrino masses and PMNS
parameters can agree with data after including renormalisation group running effects [33].

5. Origin of the non-Abelian discrete symmetry

While early family symmetry models focussed on continuous non-Abelian gauge theories such
as SO(3) [19] or SU(3) [34], non-Abelian discrete symmetries [9] are more closely related to TB
mixing or its descendants. Here we briefly mention two possible origins of such symmetry.

6The LS refers to the fact that these matrices are special cases of the Littlest Seesaw model [18] in Eqs.3.5,3.6 if
ma,s are in the special ratio ma

ms
= 11 (close to best fit ma ≈ 26 meV, ms ≈ 2.6 meV).
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5.1 Discrete symmetry from continuous symmetry

It is possible to obtain a non-Abelian discrete symmetry starting from a continuous one [35].
For example, we have discussed [36] the breaking of supersymmetric SO(3) gauge theory down
to A4, where the A4 may be subsequently broken to smaller residual symmetries Z3 and Z2, which
may be used to govern the mixing patterns in the charged lepton and neutrino sectors. The basic
idea is to use a flavon in the 7 dimensional representation of SO(3) aligned in a particular direction
to break it to A4, as depicted in Tables 3,4. Further details are given in [36].

be obtained after the relevant irrep get a VEV. For instance, some of those subgroup
obtained by irreps up to 13 are shown in Table 1. The minimal irrep for SO(3) ! S4

is a 9-plet, while that for SO(3) ! A5 is a 13-plet. Applying a 9-plet flavon ⇢ and a
13-plet flavon  , respectively, we will realise these breakings in a SUSY framework in the
following.

irrep 1 3 5 7 9 11 13
subgroups SO(3) SO(2)

SO(3)
Z2 ⇥ Z2

SO(2)
SO(3)

1
A4

Z3

D4

SO(2)
SO(3)

S4 1
A4

S4

A5

Table 1: The not systematical stabiliser subgroups in the low-dimensional irreducible repre-
sentations of the group SO(3) [27].

2.2.1 SO(3) ! A4

The simplest irrep to break SO(3) ! A4 is using a 7-plet [26, 27]. In this work, we
introduce a 7-plet flavon ⇠ to achieve this goal. In the 3d flavour space, it is represented
as a rank-3 tensor ⇠ijk, which satisfies the requirements in Eq. (3), i.e.,

⇠ijk = ⇠jki = ⇠kij = ⇠ikj = ⇠jik = ⇠kji , ⇠iik = 0 . (5)

Constrained by Eq. (5), there are 7 free components of ⇠, which can be chosen as

⇠111, ⇠112, ⇠113, ⇠123, ⇠133, ⇠233, ⇠333 . (6)

For the A4 symmetry, we work in the Ma-Rajasekaran (MR) basis, where the generators
s and t in the 3d irreducible representation are given by

gs =

0
@

1 0 0
0 �1 0
0 0 �1

1
A , gt =

0
@

0 0 1
1 0 0
0 1 0

1
A . (7)

The A4-invariant VEV, satisfying

(gs)ii0(gs)jj0(gs)kk0h⇠i0j0k0i = h⇠ijki ,

(gt)ii0(gt)jj0(gt)kk0h⇠i0j0k0i = h⇠ijki , (8)

is given by

h⇠123i ⌘
v⇠p
6

, h⇠111i = h⇠112i = h⇠113i = h⇠133i = h⇠233i = h⇠333i = 0 . (9)

The VEV of ⇠ is geometrically shown in Fig. 1.

5

Table 3: Subgroups of SO(3) preserved when
it is broken by flavons in the 1,3,5,7 dimen-
sional representations of SO(3).

Table 4: A4 preserving direction of the 7 di-
mensional representations of SO(3) (depicted
by the red spheres).

5.2 Discrete symmetry from extra dimensions

Non-Abelian discrete symmetries may arise from superstring theory in compactified extra
dimensions, as a finite subgroup of modular symmetry in the target space [37, 38, 39, 40, 41].
Consider a theory with two extra dimensions x = x5 and y = x6 compactified on a torus T 2. If the
torus is cut open, its surface is a flat rectangle. Allowing for a twist angle θ , the torus surface
becomes a parallelogram, and an infinite tiling of such parallelograms with identified sides fills the
(x,y) (or complex z = x+ iy) plane to form a lattice structure as shown in Fig. 2.Modular Transformation

2018/07/04 FLASY 2018 @University of Basel 7

𝜔1

𝜔2

𝜔1′

𝜔2
′ = 0 1

−1 0
𝜔1
𝜔2

=
𝜔2
−𝜔1

𝜔1′

𝜔2
′ = 1 0

1 1
𝜔1
𝜔2

=
𝜔1

𝜔2 + 𝜔1

𝑆-transformation

There are two independent
lattice invariant transformations.

𝑇-transformation

𝜔1′𝜔2
′

𝜔1′

𝜔2
′

Modular Transformation

2018/07/04 FLASY 2018 @University of Basel 7

𝜔1

𝜔2

𝜔1′

𝜔2
′ = 0 1

−1 0
𝜔1
𝜔2

=
𝜔2
−𝜔1

𝜔1′

𝜔2
′ = 1 0

1 1
𝜔1
𝜔2

=
𝜔1

𝜔2 + 𝜔1

𝑆-transformation

There are two independent
lattice invariant transformations.

𝑇-transformation

𝜔1′𝜔2
′

𝜔1′

𝜔2
′

Modular Transformation

2018/07/04 FLASY 2018 @University of Basel 7

𝜔1

𝜔2

𝜔1′

𝜔2
′ = 0 1

−1 0
𝜔1
𝜔2

=
𝜔2
−𝜔1

𝜔1′

𝜔2
′ = 1 0

1 1
𝜔1
𝜔2

=
𝜔1

𝜔2 + 𝜔1

𝑆-transformation

There are two independent
lattice invariant transformations.

𝑇-transformation

𝜔1′𝜔2
′

𝜔1′

𝜔2
′

Figure 2: Two extra dimensions compactified on a torus with a twist angle θ can be represented by a lattice in the
complex plane, with basis vectors as shown.

The lattice is described by two basis vectors (ω1,ω2) in the complex z plane, as shown in the
first panel of Fig. 2. However the choice of lattice basis vectors is not unique, and different choices
of basis vectors (ω ′1,ω

′
2) can describe the same lattice. There are two independent transformations

on the basis vectors (ω1,ω2) which leave the lattice invariant as follows.
The S transformation:

(
ω ′1
ω ′2

)
=

(
0 1
−1 0

)(
ω1

ω2

)
=

(
ω2

−ω1

)
(5.1)

and the T transformation:
(

ω ′1
ω ′2

)
=

(
1 0
1 1

)(
ω1

ω2

)
=

(
ω1

ω1 +ω2

)
. (5.2)
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The real 2×2 matrices S and T (with detS = detT = 1) transform the lattice basis vectors as shown
in the second and third panels of Fig. 2.

Without loss of generality, the lattice can be rescaled as (ω1,ω2)→ (1,τ), where τ ≡ω2/ω1 is
a complex modulus field in the upper half of the complex plane which describes the compactifica-
tion [37]. The S,T transformations above then apply to the special linear fractional transformations
of the modulus field, τ → (aτ + b)/(cτ + d), where a,b,c,d are elements of the matrices S or T
above. Eq. 5.1 transforms τ →−1/τ (associated with compactification radius duality R→ 1/R),
while Eq. 5.2 transforms τ → τ +1, a lattice shift which may be repeated ad infinitum. Applying
the constraint T N = I, reduces the infinite modular group Γ (generated by S,T with S2 = (ST )3 = I)
into its finite subgroup ΓN . For example, Γ3 = A4, Γ4 = S4, Γ5 = A5, are the familiar flavour sym-
metries [37].

Modular invariance controls orbifold compactifications of the heterotic superstring, hence the
4d effective Lagrangian must respect modular symmetry. This implies Yukawa couplings Yi(τ) (in-
volving twisted states whose modular weights do not add up to zero) are modular forms [38]. Thus
the Yi(τ) must form multiplets of ΓN , acting rather like flavon fields with well defined alignments
which depend on 〈τ〉. In general 〈τ〉 is a free parameter [39], but it may be fixed by the orbifold [40]
7. For example, a particular orbifold with Γ3 and 〈τ〉= ω = ei2π/3 gives Yukawa triplet alignments
such as Yi = (−1,2ω,2ω2), respecting mu-tau reflection symmetry in the framework of SU(5)
Grand Unification [40].
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