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Chromomagnetic Gluon Condensation George Savvidy

1. Effective Action in QED and QCD

In this presentation I will reexamine the effective action in QED and QCD by using the
perturbative loop expansion and renormalisation group equations and discuss the physical
consequences which can be derived from their explicit expressions. The discovery of the
chromomagnetic gluon condensation in Yang-Mills (YM) theory and the new results will
be discussed and analysed [11, 12, 13, 14, 15, 15].

The Heisenberg-Euler effective Lagrangian in QED [1, 2, 3, 4, 5, 6] is a sum of the one
loop diagrams with a vacuum electron-positron pair circulating in the loop and the gluons
and quarks in case of QCD [7, 8, 9, 10, 11, 12, 13, 14, 15]. The effective action Γ[A] has
the following representation:

Γ[A] =
∫
Ldx =

∑
n

∫
dx1...dxnΓ(n)a1...an

µ1...µn(x1, ...,xn)Aa1
µ1(x1)...Aanµn(xn) = S+W (1) + ..., (1.1)

where L is the effective Lagrangian, Γ(n) is a one-particle irreducible (1PI) n-point vertex
function, Aaµ(x)≡ 〈0|Aaµ(x)|0〉 is the vacuum expectation value of the field operator Aaµ and
W (n), n= 1,2, .. represent the terms of the loop expansion.

Considering the limit of massless electrons and quarks one can demonstrate that the
proper time integral in the Heisenberg-Euler Lagrangian can be integrated explicitly [15]
by using covariant renormalisation condition [11, 13, 14]

∂L
∂F
|
t= 1

2 ln( 2e2|F|
µ4 )=G=0

=−1, (1.2)

where F = 1
4G

a
µνG

a
µν is the Lorentz and gauge invariant form of the YM field strength

tensor Gaµν and µ2 is the renormalisation scale parameter. In the massless limit the QED
effective Lagrangian [15] has the exact logarithmic dependence as a function of the invariant
F shown on Fig.1:

Le = −F + e2F
24π2

[
ln(2e2F

µ4 )−1
]
, F =

~H2− ~E2

2 , G = ~E ~H= 0, (1.3)

where ~H and ~E are magnetic and electric fields. This expression should be compared with
the one-loop effective Lagrangian in pure SU(N) gauge field theory, which has the form
[11, 13] (see Fig.2):

Lg =−F − 11N
96π2 g

2F
(

ln 2g2F
µ4 −1

)
, F =

~H2
a− ~E2

a

2 > 0, G = ~Ea ~Ha = 0 . (1.4)

From (1.3) it follows that the corresponding quark contribution considered in the chiral
limit is

Lq = −F + Nf

48π2 g
2F
[
ln(2g2F

µ4 )−1
]
, (1.5)

where Nf is the number of quark flavours.
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Figure 1: The graph shows the qualitative behaviour of the QED vacuum energy density ε( ~H2)
(1.12) and of the effective coupling constant ē2( ~H2) (2.1) as the functions of magnetic field. The
effective coupling constant is singular at ~H0

2
, the "Moscow zero" [25, 26].

The effective Lagrangian technique allows to calculate the magnetic induction ~B of the
vacuum through the derivative of the effective Lagrangian [11]:

~Ba =− ∂L
∂ ~Ha

= µvac ~Ha. (1.6)

From (1.3), (1.4) and (1.5) it follows that in QED the vacuum responds to the background
magnetic field as diamagnet and in QCD as paramagnet with the magnetic permeabilities
of the following form [11]:

µQED = 1− e2

24π2 log(e
2 ~H2

µ4 ) < 1, diamagnetic, (1.7)

µQCD = 1 + g2

96π2 (11N −2Nf ) log g
2 ~H2

a

µ4 > 1, paramagnetic, N >
2
11Nf . (1.8)

The diamagnetism of the QED vacuum (1.7) means that it repels the magnetic fields by
forming induced magnetic field in the direction opposite to that of the applied magnetic
field. This phenomenon is similar to the Landau orbital diamagnetism of free electron gas
when the counteracting field is formed when the electron trajectories are curved due to the
Lorentz force [17].

The paramagnetism of the QCD vacuum (1.8) means that it amplifies the applied
chromomagnetic field by generating induced chromomagnetic field in the direction of the
applied field. In QCD the large polarisation of the gluon spins is responsible for the ampli-
fication of the background field. This phenomenon is similar to the Pauli paramagnetism,
an effect associated with the polarisation of the electron spins [16].

Using the effective Lagrangian approach one can calculate the quantum-mechanical
corrections to the energy momentum tensor by using the formula derived by Schwinger [5]:

Tµν = (FµλFνλ−gµν
1
4F

2
λρ)

∂L
∂F
−gµν(L−F ∂L

∂F
−G ∂L

∂G
). (1.9)
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In case of the Heisenberg-Euler effective Lagrangian Schwinger presented the expression
for the Tµν in terms of the fine structure constant α= e2/4π expansion:

Tµν = TMµν

(
1− 16

45m4α
2F
)

+gµν
2

45m4α
2
(
4F2 + 7G2

)
+ ... (1.10)

with its nonzero trace

T = Tµµ = 8
45m4α

2
(
4F2 + 7G2

)
+ ... (1.11)

In massless QED using the one-loop expression (1.3) for Tµν we can get

Tµν = TQEDµν

[
1− e2

24π2 ln 2e2F
µ4

]
+gµν

e2

24π2F , G = 0. (1.12)

The Tµν becomes proportional to the space-time metric tensor gµν at the extreme magnetic
field H2

0 = H2
c exp(6π/α) and therefore induces a positive effective cosmological constant

(see Fig.1).
To calculate the energy momentum tensor Tµν in pure SU(N) YM theory one should

use the expression (1.4). Considering the QCD in the limit of chiral fermions, one should
also add the quark contribution (1.5) by using the substitution 11N → b= 11N −2Nf :

Tµν = TQCDµν

[
1 + b g2

96π2 ln 2g2F
µ4

]
−gµν

b g2

96π2F , G = 0. (1.13)

It is worth to compare the expressions for the energy momentum tensors in QED (1.12)
and QCD (1.13). They clearly stress the physical differences between the two gauge field
theories, exposed in the form of opposite signs in front of the logarithmic terms and in
the front of the anomalous contributions to the energy momentum tensor traces. The last
terms are proportional to the metric tensor of the space time and naturally generate the
effective contribution to the cosmological constant [18, 19, 20]. These contributions are
well defined and are finite physical quantities in renormalisable gauge field theories. Both
expressions for the energy momentum tensors allow directly analyse the structure and the
physical properties of the vacuum in respective gauge field theories [27, 28, 29, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47]

Let us consider first the vacuum energy density T00 ≡ ε(F) which has in QCD the
following form [13]:

ε(F) = F + b g2

96π2F
(

ln 2g2F
µ4 −1

)
. (1.14)

The energy density has its new minimum outside the perturbative vacuum stateG2
µν(〈A〉) =

0, at Lorentz and renormalisation group invariant field strength which receives a nonzero
contribution through the chromomagnetic gauge field condensate [13]

〈2g2F〉vac = µ4 exp(− 96π2

b g2(µ)) = Λ4
QCD, (1.15)

where b= 11N −2Nf and 〈...〉vac means the average over the vacuum gauge field orienta-
tions. The Lorentz invariant form of the effective action (1.4) suggests that there are many

3
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Figure 2: The graph shows the qualitative behaviour of the vacuum energy density ε(F) (1.14). At
the intersection point F0 (2.11) the effective coupling constant is small (2.12) and the intersection
angle θ is strictly positive (2.13). The energy density curve can be continuously extended from point
F0 deep into the negative energy density region arbitrary close to the value of the vacuum condensate
〈F〉vac by considering a larger values of N and keeping the t’Hooft coupling constant g2N fixed
(2.14), (2.15). This proves that there is a nonzero energy gap εgap > 0 between perturbative and
true vacuum states. The vacuum is characterised by the nonzero value of the chromomagnetic field
strength tensor (1.15), (2.7) and the energy density gap εgap (1.17) [13, 27].

states which have the same energy density as the covariantly constant chromomagnetic
field. In a series of articles [21, 22, 23, 24] the authors found and explored spatially ho-
mogeneous solutions of the YM equations which are invariant with respect to the Lorentz
transformations and conveniently represent the gauge field fluctuations in the vacuum. The
average 〈...〉vac can be understood as average over these gauge field configurations. The
condensate generates a dynamical symmetry breaking of the scaling invariance1:

〈Tµµ〉vac =− b

48π2 〈2g
2F〉vac.

Substituting the vacuum field intensity (1.15) into the expression for the energy momentum
tensor (1.13) one can get that in the vacuum the tensor Tµν is proportional to the space-time
metric gµν :

〈Tµν〉vac =−gµν
b

96π2 〈g
2F〉vac. (1.16)

In this form the energy momentum tensor represents the relativistically invariant equation
of the vacuum state εvac =−Pvac and uniquely characterises the vacuum [18, 19, 20] with
its negative energy density εvac. The vacuum energy momentum tensor (1.16) generates
the effective cosmological constant Λeff

Rµν−
1
2gµνR= gµνΛeff + 8πG

c4 Tµν = 8πG
c4 (〈Tµν〉vac+Tµν)

1The ΛQCD is defined here through the covariant subtraction scheme (1.2). The relation with other
renormalisation schemes was derived in [27].
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of the form:
εvac = c4Λeff

8πG =− b

96π2 〈g
2F〉vac =− b

192π2 Λ4
QCD , (1.17)

where the chromomagnetic condensate (1.15) is < 2g2F >vac= Λ4
QCD. The magnetic per-

meability (1.8) in the vacuum state (1.15) is equal to zero:

µQCDvac = 1 + b g2

96π2 log 〈2g
2F〉vac
µ4 = 0. (1.18)

The chromomagnetic condensate (1.15) is of order Λ4
QCD, and the vacuum energy density

is negative and is about εvac ≈ −b 10−8GeV 4 . The value of the cosmological constant
measured in the observation of the high-z Type Ia supernovae [48, 49, 50, 51] and by the
Plank Collaboration [52, 53] εΛ = c4Λobser/8πG ≈ 10−47GeV 4 is about 39 decimal places
smaller and positive. The energy gap depends on a gauge group and a matter content,
the b parameter in beta function, as well as of the temperature of the universe [44]. At
high temperatures the curve of the effective potential moves upward, the value of the
chromomagnetic gluon condensate tends to zero, as well as the Λeff , and the scaling
invariance get restored. The phase transition is of the second-order [44]. In the article [54]
the authors suggested a possible cancelation mechanism between chromomagnetic and its
"mirror chromoelectric" condensates.

2. Effective Lagrangian and Renormalisation Group

It is useful to derive the expression of the effective Lagrangian by using the renor-
malisation group equation [13, 14]. The solution of the renormalisation group equation in
terms of effective coupling constant ḡ(g, t), with the boundary condition ḡ(g,0) = g, has
the following form [13, 14]:

∂L
∂F

=− g2

ḡ2(t) ,
dḡ

dt
= β(ḡ) , t= 1

2 ln(2g2F/µ4). (2.1)

The derivative (2.1) of the effective Lagrangian has transparent expression in terms of the
effective coupling constant and allows to obtain the effective Lagrangian by integration
over F in all order of the perturbative expansion:

L(F) =−µ4
∫

e2t

ḡ2(t)dt , t= 1
2 ln(2g2F/µ4), (2.2)

and find out the expressions for the physical quantities beyond the one-loop approximation.
One can calculate different observables of physical interest that will include the effective
energy momentum tensor, vacuum energy density, the magnetic permeability, the effective
coupling constants and their behaviour as a function of the external fields. In particular,
the vacuum magnetic permeability introduced in (1.6) will take the following form [11]:

µvac = g2

ḡ2(t) , G = 0. (2.3)

5
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and the energy momentum tensor (1.9) can expressed in the form:

Tµν = −
(
GµλGνλ−gµν

1
4G

2
λρ

) g2

ḡ2(t) +gµν
(∫ e2t

ḡ2(t)dt−
1
2
e2t

ḡ2(t)
)
µ4. (2.4)

The vacuum energy density in terms of the trace Tµµ is:

ε= T00 =
~Ha

2

2
g2

ḡ2(t) + 1
4Tµµ, G = 0, (2.5)

where the trace of the energy momentum tensor Tµµ is given by the following expression:

Tµµ = 4µ4
∫
e2tβ(ḡ(t))
ḡ(t)3 dt , t= 1

2 ln(2g2F/µ4). (2.6)

The last formula provides all-loop expression for the conformal anomaly in gauge field
theories2. As far as the beta function β̄(g) has no zeros, is negative analytical function
of the coupling constant and

∫∞
g

dg
β(g) <∞, the minimum of the energy density curve is

defined by the extremum, where the derivative (2.1) vanishes. It follows that the value of
the chromomagnetic condensate is [13]

〈2g2F〉vac = µ4 exp
(
2
∫ ∞
g(µ)

dg

β(g)
)
. (2.7)

Let us analyse the behaviour of the effective coupling constant. The Callan-Symanzik beta
function can be calculated by using (2.1) and (1.4):

β = 1
2g
∂M
∂t
|t=0 =− 11N

96π2 g
3 (2.8)

and the effective coupling constant as a function of the field takes the form

ḡ2(F) = g2

1 + 11g2N
96π2 ln 2g2F

µ4

, (2.9)

where we introduced the Casimir operator C2(G) =N for the gauge group G= SU(N). Let
us consider the value of the field strength tensor F0 at which the vacuum energy density
(1.14) vanishes ε(F0) = 0, as it is shown on Fig.2:

2g2F0 = µ4 exp(− 96π2

11g2N
+ 1) = e〈2g2F〉vac. (2.10)

The effective coupling constant (2.9) at this field strength has the value

ḡ2(F0) = 96π2

11N . (2.11)

It follows that the effective coupling constant at the intersection point F0 is small:

ḡ2(F0) = 96π2

11N � 1 if N � 96π2

11 . (2.12)

2If one considers the approximation in which ḡ(t) is field independent ḡ(t) ≡ g then (2.6) will reduce to
the one given in literature [55, 56, 57, 58].
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The energy density curve ε(F) (1.14) intersects the horizontal zero energy line at the
nonzero angle θ (see Fig.2):

tanθ = 11g2N

96π2 > 0. (2.13)

This means that i) the true vacuum state is below the perturbative vacuum and that ii)
there is a nonzero chromomagnetic field in the vacuum. Now the question is, how far into
the infrared region one can continue the energy density curve by using the one-loop result ?
Let us consider the fields which are approaching the infrared pole. This can be done, in
particular, by using the following parametrisation:

Fn = e1−n〈F〉vac, (2.14)

where the parameter n is less than one, and we have Fn → 〈F〉vac when n tends to unity
from below. At these fields values the effective coupling constant (2.9) tends to zero:

ḡ2(Fn) = 96π2

11N(1−n) → 0 (2.15)

if the product N(1−n)→∞ is large and the t’Hooft coupling constant g2N = λ is fixed
and small. It follows then that the effective coupling constant can be made small in order
to justify the use of the one-loop result and the behaviour of energy density curve which
is continuously extended infinitesimally close to the value of the vacuum field 〈F〉vac, as
it is shown on Fig.2. Let us analyse how the field at the intersection point (2.10) and the
effective coupling constant (2.11) are changing when we include the two-loop contribution.
The two-loop3 effective Lagrangian has the form [11]

L=−F −
( 11

6(4π)2 g
2N + 34

6(4π)4 (g2N)2
)
F
(

ln 2g2F
µ4 −1

)
. (2.16)

The field at the intersection point (2.10) is shifted by an exponentially small correction

2g2F ′0 = exp
(
− 96π2

11λ ·
1

1 + 17
88π2λ

+ 1
)
. (2.17)

At this field the effective coupling constant is smaller by the factor 1/1 + 17
88π2λ

ḡ2(F ′0) = 96π2

11N ·
1

1 + 17
88π2λ

� 1, (2.18)

and the inequality (2.18) is fulfilled at smaller values of N than in the first approxima-
tion (2.12). The chromomagnetic condensate in the two-loop approximation will take the
following form:

〈2g2F〉vac = µ4 exp
(
− 1
β1g2

[
1− β2g

2

β1
ln(1 + β1

β2g2 )
] )

. (2.19)

3The beta function coefficients β̄ = −β1g
3 −β2g

5 + .. are given by β1 = 11N
6(4π)2 and β2 = 34N2

6(4π)4 [60, 61].
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It is interesting to know if the energy density curve is a continuous function of the
field strength F in the infrared region [0,〈F〉vac], which is outside of the validity of the
perturbative calculations, and if the energy density curve is a convex function for all values
of fields: from ultraviolet region down to infrared region. A non-perturbative functional
method developed by Zwanziger in [42] is answering to these questions affirmatively. It
seems that further development of his approach can shed even more light to the behaviour
of the effective Lagrangian in the infrared region [0,〈F〉vac].

Let us see what can be obtained in this respect analysing the renormalisation group
results. We already obtained the first derivative of the energy density curve (2.1),(2.4) and
can calculate its second derivative as well:

∂ε

∂F
= g2

ḡ2 , F ∂2ε

∂F2 =−g2 β(ḡ)
ḡ3 . (2.20)

Thus the convexity of the energy density curve is defined by its second derivative which
depends on the sign of the beta function. In QCD, in the perturbative regime the β(ḡ) is
negative and the second derivative in (2.20) is positive:

F ∂2ε

∂F2 = 11
6(4π)2 g

2N + 34
6(4π)4 (g2N)2 + .... (2.21)

and the energy density curve is convex (see Fig.2). In QED the overall sign is negative and
the energy density curve is concave (see Fig.1).

In summary one can conclude that any non-perturbative information about the ratio
β(ḡ)/ḡ3 can be translated into the information about property of the energy density curve
ε(F). As far as the beta function β(g) has no zeros, is a negative analytical function of
the coupling constant and

∫∞
g

dg
β(g) <∞, then it follows from (2.20) that the energy density

curve is convex and that the minimum of the energy density curve ε(F) is defined by the
extremum where its first derivative vanishes.

In this presentation we discussed the phenomena of the YM condensation investigating
the effective action Γ[〈A〉], a functional which depends on the vacuum expectation value of
the gauge field operators Aaµ(x)≡ 〈0|Aaµ(x)|0〉, as it was defined in (1.1). The condensate
is of the chromomagnetic type and has a physical value proportional to the Λ4

QCD which
is of the order of few hundred MeV 4

〈2g2F〉vac = 〈g
2

2 G
2
µν〉vac = 〈g2( ~H2

a− ~E2
a)〉vac = µ4 exp

(
2
∫ ∞
g

dg

β̄(g)

)
= Λ4

QCD > 0 (2.22)

or in terms of the strong coupling constant

〈αs
π
G2
µν〉vac = 〈 g

2

4π2G
2
µν〉vac =

Λ4
QCD

2π2 . (2.23)

It should be stressed that in our investigation we were studying the effective action Γ[A]
(1.1), which depends on the VEV of the gauge field operator 〈0|Aaµ(x)|0〉 ≡ Aaµ(x). The
effective action is well defined functional, renormalisable in all order of the loop expansion
and fulfils the renormalisation group equation. Its first variational derivative provides a
complete quantum mechanical equations of motion δΓ[A]/δAaµ(x) = 0.

8
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3. Conclusion

The short overview of the publications devoted to the chromomagnetic gluon conden-
sation and QCD vacuum are given below. The confinement problem from the point of view
of the QCD vacuum and chromomagnetic gluon condensate was considered in the articles of
Mandelshatam [69, 70, 71], Nambu [72], Adler and Piran [74] and Nielsen and Olesen [34].
The thermodynamics of the Yang-Mills gas by Linde [73]. The publication on generation
of galactic magnetic field due to the condensation of vector field was considered in [67].
The induced gravity was considered by Adler [59]. The magnetostatics was considered in
[68]. The phenomenology of hadrons and the properties of the QCD vacuum by Shuryak
[66]. The mechanism of dynamical supersymmetry breaking and string compactification to
four dimension due to the properties of the non-Abelian effective action was suggested by
Veneziano and Taylor [62]. The dynamical mass generation in QCD and glueballs spectrum
by Cornwall [75, 76]. The string-like solution in YM theory were considered in [63, 64, 65].
Knot-like string solutions in YM theory stabilised in the presence of the chromomagnetic
condensate by Faddeev and Niemi [77, 78] and the monopole condensation by Cho [79].
A complementary approach for the construction of effective actions at different scales, the
Wilsonian effective actions, was developed by Reuter and Wetterich in [80, 81, 82, 83]. The
effective action in generalised YM theory was considered in [97].

Alternative approach for the investigation of the Yang-Mills condensates was suggested
in [84, 85, 86, 87, 88] by performing the Monte Carlo lattice simulations. The lattice
formulation is offering a non-perturbative regularisation of the YM theory and in principle
allows to measure different condensates. The aims was to extract the VEV of the composite
operator:

〈0|αs
π
GµνGµν |0〉. (3.1)

In perturbation theory this VEV is represented by the vacuum diagrams without external
particles, these diagrams are diverging as the fourth power of the cutoff and in a standard
renormalisation scheme are set equal to zero. As it was stressed in references [84, 85, 86, 87,
88], the main difficulty in measuring the condensates of the type (3.1) lies in the necessity
to subtract the dominant and diverging perturbative contribution and then extract the
exponentially falling non-perturbative term which is the only one of interest from the
point of view of continuum theory. The evaluation of the VEV requires the calculation
of the expression: lima→0

C
a4 〈0|(1−P )|0〉meas−〈0|(1−P )|0〉pert = 〈0|αsπ GµνGµν |0〉+ ...,

where P is the plaquette operator and dots denote the operators of higher dimension.
The perturbative VEV is represented by a diverging series [89, 90, 91]: 〈0|(1−P )|0〉pert =∑∞
n=0 cnα

n
s . It was demonstrated in [84, 85, 86, 87, 88], that the separation of perturbative

and non-perturbative contributions has arbitrariness which makes the determination of the
composite operator condensate (3.1) ambiguous. In our investigation we were studying a
different observable, the effective action Γ[A] , which depends on the VEV of the gauge
field theory operator A ≡ 〈0|A|0〉. The effective action (1.1) is well defined functional
renormalisable in all order of the perturbative loop expansion, fulfils the renormalisation
group equations and providing the exact quantum mechanical field equations in terms of
its first functional derivative.

9
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The phenomena of chromomagnetic gluon condensation [13] initiated series of publi-
cations by the ITEP group where they used the gluon condensate to improve their pertur-
bative sum rule equations [92, 93] 4. The determination of the gluon condensate numerical
value from hadronic τ decay data and from the charmonium sum rules is reviewed in [94].
The values of the condensate, extracted from QCD sum rules from experimental data, are
given in Table 1 [94]. The separation of perturbative and non-perturbative contributions
has arbitrariness [93] as it was pointed out by Ioffe [94, 95, 96]. The sum rule equations
are defined in terms of the operator product expansion of currents that includes the VEVs
of composite operators of the type 〈0|G2

µν |0〉 [94]. In the actual calculations of these VEVs
terms, the quark and gluon propagators ∆(x,y,A) in the background field [12] of the gluon
condensate A≡ 〈0|A|0〉 [13] are used [93, 94], that yields into the quantity G2

µν(A) instead
of 〈0|G2

µν |0〉. This has resulted in an apparent theoretical inconsistency of the sum rule
equations and echoes the remarks made above concerning the VEV of composite operator
〈0|G2

µν |0〉 and arbitrariness in separation of perturbative and non-perturbative contribu-
tions.

References

[1] F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der
relativistischen Theorie Diracs, Z. Phys. 69 (1931) 742. doi:10.1007/BF01339461

[2] W. Heisenberg, Bemerkungen zur Diracschen Theorie des Positrons, Z. Phys. 90 (1934) 209

[3] H. Euler and B. Kockel, Über die Streuung von Licht an Licht nach der Diracschen Theorie,
Naturwiss. 23 (1935) 246.

[4] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936)
714.

[5] J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664.
doi:10.1103/PhysRev.82.664

[6] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous
Symmetry Breaking, Phys. Rev. D 7 (1973) 1888. doi:10.1103/PhysRevD.7.1888

[7] V. S. Vanyashin and M. V. Terentev, The Vacuum Polarization of a Charged Vector Field,
Zh. Eksp. Teor. Fiz. 48 (1965) no.2, 565 [Sov. Phys. JETP 21 (1965) no.2, 375].

[8] V. V. Skalozub, The Vacuum Polarization of the Charged Vector Field in the Renormalized
Theory, Yad. Fiz. 21 (1975) 1337.

[9] M. R. Brown and M. J. Duff, Exact Results for Effective Lagrangians, Phys. Rev. D 11
(1975) 2124. doi:10.1103/PhysRevD.11.2124

[10] M. J. Duff and M. Ramon-Medrano, On the Effective Lagrangian for the Yang-Mills Field,
Phys. Rev. D 12 (1975) 3357. doi:10.1103/PhysRevD.12.3357

4In 1977 the author gave a theoretical seminar on the chromomagnetic gluon condensation [13] in ITEP.
At end of the seminar one of the participants, Victor Novikov, on our way back to the metro station by
tram, remarked to the author that the theoretical prediction of the chromomagnetic condensate presented
at the seminar [13] can be crucial in improving the naive sum rule equations published earlier in [92] by
introducing the chromomagnetic condensate in the form of power corrections. A year later, the proposal
was realised in [93].

10



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
6
2

Chromomagnetic Gluon Condensation George Savvidy

[11] G. K. Savvidy, Vacuum Polarisation by Intensive Gauge Fields, PhD 1977,
http://www.inp.demokritos.gr/ savvidy/phd.pdf

[12] I. A. Batalin, S. G. Matinyan and G. K. Savvidy, Vacuum Polarization by a Source-Free
Gauge Field, Sov. J. Nucl. Phys. 26 (1977) 214 [Yad. Fiz. 26 (1977) 407].

[13] G. K. Savvidy, Infrared Instability of the Vacuum State of Gauge Theories and Asymptotic
Freedom, Phys. Lett. 71B (1977) 133. doi:10.1016/0370-2693(77)90759-6

[14] S. G. Matinyan and G. K. Savvidy, Vacuum Polarization Induced by the Intense Gauge Field,
Nucl. Phys. B 134 (1978) 539. doi:10.1016/0550-3213(78)90463-7

[15] G. Savvidy, From Heisenberg-Euler Lagrangian to the discovery of chromomagnetic gluon
condensation, Eur. Phys. J. C 80 (2020) no.2, 165 doi:10.1140/epjc/s10052-020-7711-6
[arXiv:1910.00654 [hep-th]].

[16] W. Pauli, Über Gasentartung und Paramagnetizmus, Zs. Phys. 41 (1927) 81

[17] L. Landau, Diamagnetism of Metals, Zs. Phys. 64 (1930) 629

[18] Y. B. Zel’dovich, The Cosmological constant and the theory of elementary particles, Sov.
Phys. Usp. 11 (1968) 381 [Usp. Fiz. Nauk 95 (1968) 209].
http://dx.doi.org/10.1070/PU1968v011n03ABEH003927; JETP Lett. 6 (1967) 316

[19] S. Weinberg, The Cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1-23

[20] A. D. Linde, Is the cosmological constant really a constant?, JETP Lett. 19 (1974) 183
[Pisma Zh. Eksp. Teor. Fiz. 19 (1974) 320].

[21] G. Baseyan, S. Matinyan and G. Savvidy, Nonlinear plane waves in the massless Yang-Mills
theory, Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 641-644

[22] S. Matinyan, G. Savvidy and N. Ter-Arutyunyan-Savvidi, Classical Yang-Mills mechanics.
Nonlinear colour oscillations, Zh. Eksp. Teor. Fiz. 80 (1980) 830-838

[23] G. Savvidy, The Yang-Mills classical mechanics as a Kolmogorov system, Phys. Lett. 130B
(1983) 303-307 ; The Yang-Mills quantum mechanics, Phys. Lett. 159B (1985) 325-329

[24] G. Savvidy, Classical and Quantum mechanics of non-Abelian gauge fields, Nucl. Phys. 246
(1984) 302-334

[25] L. D. Landau, A. A. Abeikosov and I. M. Halatnikov, Asymptotic Expression for the
Photon Green Function in Quantum Electrodynamics Dokl. Akad. Nauk SSSR 95 (1954)
1177.

[26] B. L. Ioffe, Bez retushi, [Without Retouching] (in Russian), Phasis. Printing House "Nauka"
Moscow 2004, 17-19.

[27] H. B. Nielsen, Approximate QCD Lower Bound for the Bag Constant B, Phys. Lett. 80B
(1978) 133. doi:10.1016/0370-2693(78)90326-X

[28] N. K. Nielsen and P. Olesen, An Unstable Yang-Mills Field Mode, Nucl. Phys. B 144 (1978)
376. doi:10.1016/0550-3213(78)90377-2

[29] V. V. Skalozub, On Restoration of Spontaneously Broken Symmetry in Magnetic Field, Yad.
Fiz. 28 (1978) 228.

[30] J. Ambjorn, N. K. Nielsen and P. Olesen, A Hidden Higgs Lagrangian in QCD, Nucl. Phys. B
152 (1979) 75. doi:10.1016/0550-3213(79)90080-4

11



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
6
2

Chromomagnetic Gluon Condensation George Savvidy

[31] H. B. Nielsen and M. Ninomiya, A Bound on Bag Constant and Nielsen-Olesen Unstable
Mode in QCD, Nucl. Phys. B 156 (1979) 1. doi:10.1016/0550-3213(79)90490-5

[32] H. B. Nielsen and P. Olesen, A Quantum Liquid Model for the QCD Vacuum: Gauge and
Rotational Invariance of Domained and Quantized Homogeneous Color Fields, Nucl. Phys. B
160 (1979) 380. doi:10.1016/0550-3213(79)90065-8

[33] H. B. Nielsen and M. Ninomiya, Instanton Correction to Some Vacuum Energy Densities and
the Bag Constant, Nucl. Phys. B 163 (1980) 57. doi:10.1016/0550-3213(80)90390-9

[34] H. B. Nielsen and P. Olesen, Quark Confinement In A Random Color Magnetic Ether,
NBI-HE-79-45.

[35] J. Ambjorn and P. Olesen, On the Formation of a Random Color Magnetic Quantum Liquid
in QCD, Nucl. Phys. B 170 (1980) 60. doi:10.1016/0550-3213(80)90476-9

[36] J. Ambjorn and P. Olesen, A Color Magnetic Vortex Condensate in QCD, Nucl. Phys. B 170
(1980) 265. doi:10.1016/0550-3213(80)90150-9

[37] V. V. Skalozub, Nonabelian Gauge Theories In External Electromagnetic Field. (in Russian),
Yad. Fiz. 31 (1980) 798.

[38] H. Leutwyler, Vacuum Fluctuations Surrounding Soft Gluon Fields, Phys. Lett. 96B (1980)
154. doi:10.1016/0370-2693(80)90234-8

[39] H. Leutwyler, Constant Gauge Fields and their Quantum Fluctuations, Nucl. Phys. B 179
(1981) 129. doi:10.1016/0550-3213(81)90252-2

[40] C. A. Flory, A Selfdual Gauge Field, Its Quantum Fluctuations, and Interacting Fermions,
Phys. Rev. D 28 (1983) 1425. doi:10.1103/PhysRevD.28.1425

[41] W. Dittrich and M. Reuter, Effective QCD Lagrangian With Zeta Function Regularization,
Phys. Lett. 128B (1983) 321. doi:10.1016/0370-2693(83)90268-X

[42] D. Zwanziger, Nonperturbative Modification of the Faddeev-popov Formula and Banishment of
the Naive Vacuum, Nucl. Phys. B 209 (1982) 336. doi:10.1016/0550-3213(82)90260-7

[43] C. A. Flory, Covariant Constant Chromomagnetic Fields And Elimination Of The One Loop
Instabilities, Preprint, SLAC-PUB-3244, http://www-
public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=SLAC-PUB-3244;
https://lib-extopc.kek.jp/preprints/PDF/1983/8312/8312331.pdf

[44] D. Kay. Unstable modes, zero modes, and phase transitions in QCD, Ph.D Thesis, Simon
Fraser University, August 1985.

[45] A. Yildiz and P. H. Cox, Vacuum Behavior in Quantum Chromodynamics, Phys. Rev. D 21
(1980) 1095. doi:10.1103/PhysRevD.21.1095

[46] G. V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, hep-th/0406216.

[47] G. L. Pimentel, A. M. Polyakov and G. M. Tarnopolsky, Vacua on the Brink of Decay, Rev.
Math. Phys. 30 (2018) no.07, 1840013 doi:10.1142/S0129055X18400135, [arXiv:1803.09168
[hep-th]].

[48] A. G. Riess et al. [Supernova Search Team], Observational evidence from supernovae for an
accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009
doi:10.1086/300499 [astro-ph/9805201].

12



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
6
2

Chromomagnetic Gluon Condensation George Savvidy

[49] J. L. Tonry et al. [Supernova Search Team], Cosmological results from high-z supernovae,
Astrophys. J. 594 (2003) 1 doi:10.1086/376865 [astro-ph/0305008].

[50] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measurements of Omega
and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565
doi:10.1086/307221 [astro-ph/9812133].

[51] M. Betoule et al. [SDSS Collaboration], Improved cosmological constraints from a joint
analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568 (2014) A22
doi:10.1051/0004-6361/201423413 [arXiv:1401.4064 [astro-ph.CO]].

[52] R. Adam et al. [Planck Collaboration], Planck 2015 results. I. Overview of products and
scientific results, Astron. Astrophys. 594 (2016) A1 doi:10.1051/0004-6361/201527101
[arXiv:1502.01582 [astro-ph.CO]].

[53] N. Aghanim et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters,
arXiv:1807.06209 [astro-ph.CO].

[54] R. Pasechnik, G. Prokhorov and O. Teryaev, Mirror QCD and Cosmological Constant,
Universe 3 (2017) no.2, 43 doi:10.3390/universe3020043 [arXiv:1609.09249 [hep-ph]].

[55] S. L. Adler, J. C. Collins and A. Duncan, Energy-momentum-tensor trace anomaly in spin
1/2 QED, Phys. Rev. D 15 (1977) 1712.
J. C. Collins, A. Duncan and S. D. Joglekar, Trace And Dilatation Anomalies In Gauge
Theories, Phys. Rev. D 16 (1977) 438.

[56] N.K. Nielsen, The energy-momentum tensor in a non-Abelian quark gluon theory, Nucl.Phys.
B 120 (1977) 212.

[57] P. Minkowski, On the anomalous divergence of the dilatation current in gauge theories, Bern
preprint (1976).

[58] M. J. Duff, Observations on Conformal Anomalies, Nucl. Phys. B 125 (1977) 334.
doi:10.1016/0550-3213(77)90410-2

[59] S. L. Adler, Einstein Gravity as a Symmetry-Breaking Effect in Quantum Field Theory, Rev.
Mod. Phys. 54 (1982) 729 Erratum: [Rev. Mod. Phys. 55 (1983) 837].
doi:10.1103/RevModPhys.54.729

[60] D. R. T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B 75 (1974) 531.
doi:10.1016/0550-3213(74)90093-5

[61] W. E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order,
Phys. Rev. Lett. 33 (1974) 244. doi:10.1103/PhysRevLett.33.244

[62] T. R. Taylor and G. Veneziano, Strings and D=4, Phys. Lett. B 212 (1988) 147.
doi:10.1016/0370-2693(88)90515-1

[63] N. K. Nielsen and P. Olesen, Electric Vortex Lines From the Yang-Mills Theory, Phys. Lett.
79B (1978) 304. doi:10.1016/0370-2693(78)90249-6

[64] H. B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973)
45. doi:10.1016/0550-3213(73)90350-7

[65] C. A. Flory, Stability Properties Of An Abelianized Chromoelectric Flux Tube, Phys. Rev. D
29 (1984) 722. doi:10.1103/PhysRevD.29.722

13



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
6
2

Chromomagnetic Gluon Condensation George Savvidy

[66] E. V. Shuryak, Theory and phenomenology of the QCD vacuum, Phys. Rept. 115 (1984) 151.
doi:10.1016/0370-1573(84)90037-1

[67] K. Enqvist and P. Olesen, Ferromagnetic vacuum and galactic magnetic fields, Phys. Lett. B
329 (1994) 195; doi:10.1016/0370-2693(94)90760-9 [hep-ph/9402295].

[68] H. Pagels and E. Tomboulis, Vacuum of the Quantum Yang-Mills Theory and
Magnetostatics, Nucl. Phys. B 143 (1978) 485. doi:10.1016/0550-3213(78)90065-2

[69] S. Mandelstam, Approximation Scheme for QCD, Phys. Rev. D 20 (1979) 3223.
doi:10.1103/PhysRevD.20.3223

[70] S. Mandelstam, Review of recent results on QCD and confinement, UCB-PTH-79-9.

[71] S. Mandelstam, General Introduction To Confinement, Phys. Rept. 67 (1980) 109.
doi:10.1016/0370-1573(80)90083-6;

[72] Y. Nambu, Effective Abelian Gauge Fields, Phys. Lett. 102B (1981) 149.
doi:10.1016/0370-2693(81)91051-0

[73] A. D. Linde, Infrared Problem in Thermodynamics of the Yang-Mills Gas, Phys. Lett. 96B
(1980) 289. doi:10.1016/0370-2693(80)90769-8

[74] S. L. Adler and T. Piran, Relaxation Methods for Gauge Field Equilibrium Equations, Rev.
Mod. Phys. 56 (1984) 1. doi:10.1103/RevModPhys.56.1

[75] J. M. Cornwall, Dynamical Mass Generation in Continuum QCD, Phys. Rev. D 26 (1982)
1453. doi:10.1103/PhysRevD.26.1453

[76] J. M. Cornwall and A. Soni, Couplings Of Low Lying Glueballs To Light Quarks, Gluons,
And Hadrons, Phys. Rev. D 29 (1984) 1424. doi:10.1103/PhysRevD.29.1424

[77] L. D. Faddeev and A. J. Niemi, Aspects of Electric magnetic duality in SU(2) Yang-Mills
theory, Phys. Lett. B 525 (2002) 195 doi:10.1016/S0370-2693(01)01432-0 [hep-th/0101078].

[78] L. D. Faddeev, Notes on divergences and dimensional transmutation in Yang-Mills theory,
Theor. Math. Phys. 148 (2006) 986 [Teor. Mat. Fiz. 148 (2006) 133].
doi:10.1007/s11232-006-0095-4

[79] Y. M. Cho, Monopole condensation and mass gap in SU(3) QCD, Int. J. Mod. Phys. A 29
(2014) 1450013. doi:10.1142/S0217751X14500134

[80] M. Reuter and C. Wetterich, Indications for gluon condensation for nonperturbative flow
equations, hep-th/9411227.

[81] M. Reuter and C. Wetterich, Search for the QCD ground state, Phys. Lett. B 334 (1994) 412
doi:10.1016/0370-2693(94)90707-2 [hep-ph/9405300].

[82] M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution
equations, Nucl. Phys. B 417 (1994) 181. doi:10.1016/0550-3213(94)90543-6

[83] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993)
90 doi:10.1016/0370-2693(93)90726-X [arXiv:1710.05815 [hep-th]].

[84] A. Di Giacomo and G. C. Rossi, Extracting the Vacuum Expectation Value of the Quantity
α×G2/π from Gauge Theories on a Lattice, Phys. Lett. 100B (1981) 481.
doi:10.1016/0370-2693(81)90609-2

14



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
6
2

Chromomagnetic Gluon Condensation George Savvidy

[85] J. Kripfganz, Gluon Condensate From SU(2) Lattice Gauge Theory, Phys. Lett. 101B (1981)
169. doi:10.1016/0370-2693(81)90666-3

[86] A. Di Giacomo and G. Paffuti, Precise Determination of Vacuum Expectation Value of
α×G2/π From Lattice Gauge Theories, Phys. Lett. 108B (1982) 327.
doi:10.1016/0370-2693(82)91204-7

[87] E. M. Ilgenfritz and M. Muller-Preussker, SU(3) Gluon Condensate From Lattice MC Data,
Phys. Lett. 119B (1982) 395. doi:10.1016/0370-2693(82)90698-0

[88] G. S. Bali, C. Bauer and A. Pineda, Model-independent determination of the gluon
condensate in four-dimensional SU(3) gauge theory, Phys. Rev. Lett. 113 (2014) 092001
doi:10.1103/PhysRevLett.113.092001 [arXiv:1403.6477 [hep-ph]].

[89] F. J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85
(1952) 631. doi:10.1103/PhysRev.85.631

[90] L. N. Lipatov, Divergence of the Perturbation Theory Series and the Quasiclassical Theory,
Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411].

[91] G. ’t Hooft, in Proceedings of the International School of Subnuclear Physics: The Whys of
Subnuclear Physics, Erice, 1977, edited by A. Zichichi (Plenum, New York, 1979).

[92] V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and
V. I. Zakharov, Sum Rules for Charmonium and Charmed Mesons Decay Rates in Quantum
Chromodynamics, Phys. Rev. Lett. 38 (1977) 626. doi:10.1103/PhysRevLett.38.791.2

[93] V. I. Zakharov, Gluon condensate and beyond, Int. J. Mod. Phys. A 14 (1999) 4865
doi:10.1142/S0217751X9900230X [hep-ph/9906264].

[94] B. L. Ioffe, V. S. Fadin and L. N. Lipatov, Quantum chromodynamics: Perturbative and
nonperturbative aspects, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 30 (2010).
doi:10.1017/CBO9780511711817

[95] K. Zyablyuk, Gluon condensate and c quark mass in pseudoscalar sum rules at three loop
order, JHEP 0301 (2003) 081; doi:10.1088/1126-6708/2003/01/081 [hep-ph/0210103].

[96] A. Samsonov, Gluon condensate in charmonium sum rules for the axial-vector current,
hep-ph/0407199.

[97] G. Savvidy, Generalisation of the Yang-Mills Theory, Int. J. Mod. Phys. A 31 (2016)
1630003. doi:10.1142/S0217751X16300039; Proceedings of the Conference on 60 Years of
Yang-Mills Gauge Field Theories. Nanyang Technological University, Singapore, 25 - 28 May
2015. doi:10.1142/9789814725569-0015

15


