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1. Introduction

One of the main purposes of the present investigation is the the study of the time evolution problem for
discrete quantum integrable systems, i.e. the derivation of the quantum analogue of the Semenov-Tian-
Shansky formula [1] for both periodic and open boundary conditions [2]. More precisely, the quantum
hierarchy of the time components of the Lax pairs is extracted via the underlying quantum algebra. Based
on the frame of the quantum auxiliary problem we then introduce the notion of quantum Darboux-Bäcklund
transformations (BT). This is the first time, to our knowledge, that the issue of quantum Darboux-Bäcklund
transformations is treated in the context of continuum time. To date, quantum BTs have been derived using
the Q-operator setting [3, 4] and are basically associated to integrable quantum systems with discrete time.
Here we present the general setting and employ the system of N q-oscillators as a paradigm to illustrate our
formulation. It is worth noting that previous similar findings on the time independent part of the quantum
BT [4], obtained via the Q-operator approach for an analogous model, the quantum Ablowitz-Ladik lattice,
are essentially recovered.

The proposed setting is closely related to the theme of quantum quenches [5], given that the time
evolution of the quantum observables for N-body systems is the question at hand (see also relevant recent
results at the classical level [6]). Especially relevant in this context is the information one obtains from the
time part of the quantum BT. Also, in view of recent results on the relation of the time part of the BT with the
time evolution of local integrable defects [7, 8, 9], it is clear that the time evolution is a particularly relevant
issue in this setting as well. In this spirit the space-time duality established in [10] can be further explored,
specifically at the quantum level and in relation to systems with discrete space and time. Another associated
problem of significance is the derivation of the quantum Gelfand-Levitan-Marchenko (GLM) equation (see
e.g. [11, 12]). The GLM equation arises naturally via the Zakharov-Shabat dressing formulation [13, 14] as
part of a Darboux-type transformation [15], where the involved quantities are now integral operators.

The outline of this article is as follows: In section 2 we introduce the concept of the quantum auxil-
iary linear problem for semi-discrete integrable systems with periodic boundary conditions. Employing the
notions of quantum R-matrix and the underlying quantum algebra we rigorously derive the universal expres-
sion that provides the whole hierarchy of the quantum time components of the Lax pairs for the various time
flows. Note that a similar formula is presented in [16] for closed spin chains. Then, the periodic q-oscillator
spin chain is considered as a paradigm, and the quantum time components of the Lax pairs associated to
first integrals of motion are explicitly constructed. In section 3 we extend our analysis to the case where
integrable boundary conditions are also incorporated. The universal expression for the time components
of the Lax pairs is also constructed, and it turns out to have a distinctly different form compared to the
classical analogue derived in [2]. The corresponding open q-oscillator chain is then considered and ex-
plicit computations of boundary time components of the Lax pairs are performed. In section 4 the quantum
Bäcklund transformation is discussed. We start our analysis from a generic Darboux matrix satisfying a
certain algebraic structure and we then explicitly derive the quantum BT relations. We find both the time
independent part, which is similar to the corresponding result in [4], as well as the time dependent part of
the BT relations. The time dependent expressions are particularly relevant, especially regarding the problem
of integrable discontinuities on the real line. A brief discussion on the suitable quantum state picture, i.e.
Bethe ansatz methodology as well as coherent state path integral formulation associated to the problem at
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hand is presented in section 5, together with a discussion on the main findings of this article as well as on
possible future directions is given.

2. Time evolution: the closed quantum spin chain

Before we proceed to our main aim, which is the derivation of the time components of quantum Lax pairs
(Ln, An) let us recall the semi-discrete auxiliary linear problem [11]

Ψn+1(λ ) = Ln(λ ) Ψn(λ ),

∂tΨn(λ ) = An(λ ) Ψn(λ ).
(2.1)

A similar discussion is provided in [16] and the final expression formally resembles our findings. Here we
are mostly interested in models with open boundary conditions, which will be discussed in detail in the
subsequent section.

The fundamental structure underlying quantum integrable models comes from the Yang-Baxter equa-
tion [16]

Rab(λ −µ)Rac(λ )Rbc(µ) = Rbc(µ)Rac(λ )Rab(λ −µ), (2.2)

where R is a matrix that acts on two copies of an underlying vector space, V⊗V , with the subscripts denoting
which two copies it acts on, so that the whole equation acts on V ⊗V ⊗V . The R-matrices are allowed to
depend on some additional free parameter, denoted by either λ or µ , called the spectral parameter.

In the quantum setting (in the Heisenberg picture), the time evolution of the operators in a system is
given by Heisenberg’s equation: ∂tO =

[
H, O

]
, where O is the operator in question and H is the Hamilto-

nian. Thus, if we want to consider the time evolution of a system, we need to first find expressions for the
commutators between the fields of the model. We do this through the RLL relation

Rab(λ −µ)Lan(λ )Lbn(µ) = Lbn(µ)Lan(λ )Rab(λ −µ). (2.3)

It will be beneficial to rewrite this in a more explicit manner[
Lan(λ ), Lbm(µ)

]
=
(
Rab(λ −µ)Lan(λ )Lbn(µ)−Lbn(µ)Lan(λ )Rab(λ −µ)

)
δnm, (2.4)

where we define for compactness Rab(λ ) = Iab−Rab(λ ). The Kronecker delta factor is introduced to more
generally describe the commutativity of matrices acting on wholly different spaces.

The generation of commuting quantities now follows , where we first define

Ta(n,m;λ ) = Lan(λ ) · · ·Lam(λ ), (2.5)

with n > m, and then the monodromy matrix as Ta = Ta(N,1). The monodromy matrix also satisfies an
fundamental relation (2.3). The transfer matrix t is then defined as the trace of the monodromy matrix,
t(λ ) = tra {Ta(λ )}, and by making use of the RTT relation we can see that this commutes with itself for
different values of the spectral parameter. Consequently, if this is expanded as a power series in the spectral
parameter, the coefficients t(k) of λ k will commute with one another:

[
t(k), t( j)

]
= 0.
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As these coefficients all commute with one another, the logarithm of the transfer matrix can be con-
sidered, G (λ ) = ln(t(λ )), and the coefficients in the series expansion of that commute with one another
as well:

[
G (k), G ( j)

]
= 0. Each of the quantities generated in either of these ways can be treated as the

Hamiltonian governing the evolution along a distinct time flow. Then, as we know that they commute with
one another, this tells us that the other quantities will all be constant in this system.

In parallel to how the classical STS formula is derived, we start by using the transfer matrix in place of
the Hamiltonian

∂tLbn(µ) =
[
t(λ ), Lbn(µ)

]
, (2.6)

where t denotes the “universal time" that contains all of the distinct time flows. Then, as the Lan commute
with Lbm when both a 6= b and n 6= m (that is, they act ultra-locally), the only term in the t that interacts with
the commutator will be Lan

∂tLbn(µ) = tra

{
Ta(N,n+1;λ )

[
Lan(λ ), Lbn(µ)

]
Ta(n−1,1;λ )

}
. (2.7)

Using the alternate form of the RLL relation (2.4), we can evaluate this commutator

∂tLbn(µ) = tra

{
Ta(N,n+1;λ )Rab(λ −µ)Ta(n,1;λ )

}
Lbn(µ)

−Lbn(µ)tra

{
Ta(N,n;λ )Rab(λ −µ)Ta(n−1,1;λ )

}
,

(2.8)

however, by comparing this with the compatibility condition of the two halves of the quantum auxiliary
linear problem we have

∂tLan = Aan+1Lan−LanAan. (2.9)

It is thus evident that the A-matrix is expressed as a

Abn(λ ,µ) = tra

{
Ta(N,n;λ )Rab(λ −µ)Ta(n−1,1;λ )

}
, (2.10)

or by recalling the definition of the R-matrix

Abn(λ ,µ) = t(λ )I−Bbn(λ ,µ), (2.11)

where we define
Bbn(λ ,µ) = tra

{
Ta(N,n;λ )Rab(λ −µ)Ta(n−1,1;λ )

}
. (2.12)

To find the A-matrix associated to the Hamiltonian t(k), we simply expand (2.12) about powers of λ

and take the coefficient of order λ k, labelled B(k)
bn , and combine it with the Hamiltonian as

A(k)
bn (µ) = t(k)I−B(k)

bn (µ). (2.13)

If we now insert this into the zero-curvature condition, (2.9), then the terms explicitly containing t(k) are
simply the right-hand side of Heisenberg’s equation. Consequently, it follows that the B(k)

bn are only shifted
by the action of the L-matrix and leave Lan unchanged, i.e. LanB

(k)
an = B(k)

a,n+1Lan. This can in fact be shown
to hold for the entire generator Bbn by using the RLL relation (2.3)

Lan(µ)Ban(λ ,µ) = Ban+1(λ ,µ)Lan(µ). (2.14)

3
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As mentioned when defining the generator of the commuting quantities, we are actually interested in the
quantities generated by G (λ ). Unfortunately, however, the process for finding the A-matrix generator in
this quantum setting is not as simple as it was for the equivalent classical case, since we can no longer use
the fact that

[
ln(a) , b

]
= a−1

[
a, b

]
due to the non-commutativity of t and [t, O]. Nevertheless, suitable

combinations of the non-local A-operators, in analogy to the classical case, can provide the local ones,
compatible also with the equations of motion coming form the corresponding local quantum Hamiltonians.

2.1 Application: the q-harmonic oscillator

To illustrate the setting described in the previous subsection in practice, we choose to consider as an example
the q-harmonic oscillator, which provides a variation of the quantum Ablowitz-Ladik model, as well as a
lattice version of the quantum NLS model, and is also related to the Liouville model. The associated Lax
operator is given by

Ln(λ ) =

(
uvn a†

n

an −u−1vn

)
, (2.15)

where u = eλ . It is convenient in what follows to introduce the fields bn = v−1
n an and b†

n = v−1
n a†

n. We then
use this in the RLL relation, with the familiar XXZ R-matrix [17]

R(λ ) = α

2

∑
i=1

eii⊗ eii +β

2

∑
i 6= j=1

eii⊗ e j j + γ

2

∑
i 6= j=1

ei j⊗ e ji,

α = qu−q−1u−1, β = u−u−1, γ = q−q−1,

where q = eµ̂ , and we define the generic N×N matrix ei j (2×2 in our case) with elements (ei j)kl = δik δ jl .
Hence, we obtain the following commutation relations[

bn,b†
m

]
= (q−q−1)v−2

n δnm,[
bn,vm

]
= (1−q)bnvnδnm,[

b†
n,vm

]
= (1−q−1)b†

nvnδnm,[
bn,bm

]
=
[
b†

n,b
†
m
]
=
[
vn,vm

]
= 0.

(2.16)

Indeed, by expanding the trace of the monodromy matrix about powers of u, we can find the Hamiltonians
for the system. Due to the symmetry in the Ln matrix, we have a choice of sending λ to either plus or
minus infinity, corresponding to the limits u→ ∞ and u→ 0 respectively. In each of these cases, we will
get a slightly different tower of Hamiltonians (labelled H(+,k) and H(−,k) respectively), and the physical
Hamiltonian can be seen to be constructed from the sum H = qH++q−1H−, where H+ = (H(+,0))−1H(+,2)

and H− = (H(−,0))−1H(−,2). Evaluating this, we get that the Hamiltonians H± are

H+ =
N

∑
j=1

b†
n+1bn, H− =

N

∑
j=1

bn+1b†
n. (2.17)

It is clear that any linear combination of H± will also provide an integral of motion. We can now derive the
associated A-operator (details on the computations, and in particular the expressions for the B-operator are

4
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provided in Appendix A). The associated A±n matrices read as

A+
n =

(
ζ u2 +A b†

nbn−1 uBb†
n

uC bn−1 Db†
nbn−1

)
, A−n =

(
˜A b†

n−1bn u−1B̃b†
n−1

u−1C̃ bn ζ̃ u−2 +Db†
nbn−1

)
, (2.18)

where:
ζ = B = q−2−1, ζ̃ = C̃ = q2−1, A = D̃ = 1−q−1,

C = B̃ = q−1−q, D = ˜A = 1−q.
(2.19)

Now that we have both the Hamiltonian (2.17), and the complete Lax pair, we can find the time evo-
lution of the fields vn, bn, and b†

n associated to the sum H = qH++ q−1H−. This choice is convenient as
will become transparent when studying the open spin chain in the subsequent section. Only one of the two
approaches is necessary (either through Hamilton’s equations L̇n =

[
H, Ln

]
or the zero curvature condition

L̇n = An+1Ln−LnAn) as they both yield the same time evolution, namely

v̇n = (1−q)vnb†
n(q
−1bn+1 +qbn−1)− (1−q)vnbn(qb†

n+1 +q−1b†
n−1),

ḃn = (q−1−q)v−2
n (q−1bn+1 +qbn−1),

ḃ†
n = (q−q−1)v−2

n (qb†
n+1 +q−1b†

n−1).

(2.20)

3. Time evolution: the open quantum spin chain

We are particularly interested in the case when integrable boundary conditions are also incorporated. The
expressions for the hierarchy of the time components of the Lax pairs is novel at the quantum level, and has
a non-trivial form compared to the classical case derived in [2]. Similar reasoning can be applied to the open
spin chain, where now one takes also into account the left and right reflection matrices, K+ and K−, where
K− satisfies the reflection algebra [18, 19]

R12(λ −µ)K−1 (λ )R21(λ +µ)K−2 (µ) = K−2 (µ)R12(λ +µ)K−1 (λ )R21(λ −µ), (3.1)

and K+(λ ) = M
(
K−(−λ −ρ

)T for some matrix M that satisfies
[
R12, M1M2

]
= 0. In our example in the

next subsection we are going to focus on the two dimensional case, M = I and ρ = µ̂ , recall also that q = eµ̂ .

With these extra matrices, a modified monodromy matrix is derived [19], which also satisfies the re-
flection algebra above

T (λ ) = T (λ )K−(λ )T̂ (−λ )K+(λ ), (3.2)

where we define T̂0(λ ) = V0 T t0
0 (−λ − ρ) V0, where V is a constant matrix suh that V 2 = I. In the next

subsection we will focus on the two dimensional case, where ρ = µ̂ and V = antidiag(1,1).

Indeed, we shall use the equivalent of (2.3) for the T and T̂ matrices. As will introduce factors of
Rab(λ − µ) into the monodromy matrices, we will introduce the notation that T+

a = Ta(N,n+ 1;λ ) and
T−a = Ta(n−1,1;λ ). With these, we can evaluate the commutator of t with Lbn to get the time evolution of
Lbn, where for brevity, we shall refer to Rab(λ −µ) as R−ab and Rab(λ +µ) as R+

ab

L̇bn = tra
{

T+
a R−abLanT−a LbnK−a T̂aK+

a
}
− tra

{
LbnT+

a LanR
−
abT−a K−a T̂aK+

a
}

+ tra
{

TaK−a T̂−a L̂anR
+
abT̂+

a LbnK+
a
}
− tra

{
TaK−a LbnT̂−a R+

abL̂anT̂+
a K+

a
}
.

5
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In order to compare the latter expression with the discrete zero curvature condition, we need to commute
the Lbn in the first and fourth through the T̂a and Ta respectively. Using the suitable commutators we find
that the terms with the Lbn still in between the monodromy matrices cancel out, leaving

L̇bn = tra
{

T+
a R−abLanT−a K−a T̂aK+

a
}

Lbn−Lbntra
{

T+
a LanR

−
abT−a K−a T̂aK+

a
}

−Lbntra
{

TaK−a T̂−a R+
abL̂anT̂+

a K+
a
}
+ tra

{
TaK−a T̂−a L̂anR

+
abT̂+

a K+
a
}

Lbn

− tra
{

T+
a R−abLanT−a K−a T̂−a L̂anR

+
abT̂+

a K+
a
}

Lbn

+Lbntra
{

T+
a LanR

−
abT−a K−a T̂−a R+

abL̂anT̂+
a K+

a
}
.

If we compare this to the discrete zero curvature condition (L̇n = An+1Ln− LnAn), we can read off the
expression for the A-operator, and if we split the I−Rab terms, this simplifies to

An = tra
{

TaK−a T̂aK+
a
}
− tra

{
T+

a LanR−abT−a K−a T̂−a R+
abL̂anT̂+

a K+
a
}
. (3.3)

Similarly to the case of the periodic chain, this consists of two terms, the first of which is just the
generator of the Hamiltonians. Again, this means that each of the individual An matrices can be written as
the combination A(k)

n = H(k)I−B(k)
n . Notice however the non-trivial structure of the second term of (3.3),

which is quadratic in R as opposed to the periodic case studied earlier in the text. This is not surprising given
that it reflects the structure of the underlying quantum algebra provided by the reflection equation, which is
also quadratic in R. In the periodic case both classical and quantum expressions have the same structure due
to the linearity of the underlying algebras in R. Although the open quantum case is distinctly different to the
classical one, the classical limit of (3.3) naturally leads to the linear expression derived in [2].

In studying the open spin chain, we have to work with both the Ln matrices and L̂n matrices. It is clear
the L̂n are part of their own Lax pair (L̂n, Ân) satisfying the auxiliary linear problem

Ψn = L̂nΨn+1,

∂tΨn = ÂnΨn,
(3.4)

the compatibility condition of which gives the corresponding zero curvature condition. Consequently, we
may be interested in finding the generator Ân for a closed chain of such L̂n, much as we did for the normal
Ln. This is a particularly relevant issue as will become clear below when deriving the K matrices as fixed
BTs at the boundaries of the system.

To derive the Ân we follow much the same procedure, except starting from the equation

˙̂Ln =
[
t̂, L̂n

]
.

After repeating all of the previous steps, we find that the generator is given by

Ân(λ ,µ) = t̂(λ )− tra
{

T̂a(1,n−1;λ )R̂ba(λ −µ)T̂a(n,N;λ )
}
, (3.5)

and we find that Ân = An, as the trace is invariant under both transposition and conjugation.

The transfer matrix t should naturally be constant with respect to time. In the open spin chain case, we
can therefore use this to find relations between the reflection matrices K± and the Lax pairs, (Ln,An) and

6
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(L̂n, Ân). We take first the derivative of the transfer matrix, and also find from the zero curvature condition
that Ṫ = AN+1T − TA1, and ˙̂T = Â1T̂ − T̂ ÂN+1. Inserting these results into our time derivative of the
transfer matrix, and after grouping the terms in a suggestive manner, we get that

ṫ= tr
{
(K̇−−A1K−+K−Â1)T̂ K+T +(K̇++K+AN+1− ÂN+1K+)T K−T̂

}
.

We shall consider the semi-infinite chain N → ∞, so we are mostly interested in the boundary attached to
the first site of the chain. Indeed, the time derivative of the transfer matrix is zero, provided that

K̇− = A1K−−K−Â1. (3.6)

The latter has the appearance of the time part of a BT, with K− being a Darboux-type matrix. Note that
in this case the quantities An and Ân are somehow related via reflection, given the underlying algebraic
construction of the modified monodromy matrix.

3.1 The open q-oscillator model

Once again, we shall use the open q-oscillator chain to test out this novel formulation. The Ln matrix and
R-matrix are the same as they were for the closed spin chain (2.15) and (2.16) respectively, though we now
also need to choose appropriate K± matrices. We will only look at the simplest choice, K± = I. It is worth
pointing out that L̂n(λ ) = L−1

n (−λ ), which can easily be shown by recalling the Casimir a†
nan +qv2

n = 1.

Using the Casimir we can also see that H− = q2H+ (see Appendix B), so the Hamiltonians in these
two limits are equivalent. The benefit of this is that now when trying to find the corresponding An matrix,
we only need to look in one of the two limits (choosing H = qH+ = q−1H−)

H =
N−1

∑
n=1

(qb†
n+1bn +q−1bn+1b†

n)+(qb†
1b1 +q−1bNb†

N). (3.7)

As expected, this Hamiltonian is almost identical to the Hamiltonian (2.17) of the closed chain, up to bound-
ary terms. Therefore the bulk An matrices should also be the same; explicit computation confirms this. Let
us present the An matrix at the boundary i.e. A1 = HI−B1 (see Appendix B for detailed computations).

Seeing as the Hamiltonian (3.7) was found by considering qH+, the corresponding An matrix will be
found by considering An = qH+I−qB+

n . For the boundary case n = 1, the A1 matrix is then given by

A1 = (u2 +u−2)

(
q−1 0
0 q

)
+

(
(q−q−1)b†

1b1 (u+u−1)(q−1−q)b†
1

(u+u−1)(q−1−q)b1 (q−1−q)b1b†
1

)
. (3.8)

As we did in the case of the closed spin chain, we can use the boundary A-operators to find the equations
of motion at the boundaries. We shall look at the boundary, n = 1 (recall that we are considering here the
semi-infinite chain N→ ∞). Then the equations of motion at the boundary read as

v̇1 = (1−q)v1b†
2b1 +(1−q−1)v1b2b†

1,

ḃ1 = (q−2−1)(b1 +b2)v−2
1 ,

ḃ†
1 = (q2−1)(b†

1 +b†
2)v
−2
1 .

(3.9)

7
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The results above agree with those found using the Heisenberg equation. Note also that the choice of K− ∝ I
automatically satisfies the BT like relations for the K-matrix. A full classification of the K-matrices that
satisfy (3.1), and comparison with known (non) dynamical reflection matrices from the reflection equation
is an appropriate issue, which however will be discussed in detail elsewhere (see also [7] for a relevant
discussion).

4. Quantum Bäcklund Transformations

We are now in a position to compute the quantum Bäcklund transformation for the q-oscillator model. Recall
first the Darboux transformation that connects two different auxiliary functions (see [15])

Ψ̃n =Mn(λ ) Ψn. (4.1)

Provided that the transformed auxiliary function Ψ̃n satisfies the auxiliary linear problem (with transformed
L̃n, Ãn), the following fundamental equations that lead to the associated Bäcklund transformation are ob-
tained:

Mn+1(λ ) Ln(λ ) = L̃n(λ )Mn(λ ),

∂

∂ t
Mn(λ ) = Ãn(λ )Mn(λ )−Mn(λ )An(λ ).

(4.2)

Consider the following Darboux matrix (see also [4, 21, 20])

Mn =

(
eλ−ΘAn− e−λ+ΘA−1

n Xn

Yn −e−λ+ΘAn

)
. (4.3)

It is important to note that in our construction here both Ln and L̃n satisfy the same RLL algebra (2.3). In
fact, we choose to consider here the q-harmonic oscillator Ln (2.15), whereas L̃n is essentially the same
operator, but with an→ ãn, a†

n→ ã†
n. Notice that the Darboux matrix chosen above has essentially a similar

algebraic structure as Ln. This is not particularly surprising given that the first of equations (4.2) leads to the
following formal expression for the Darboux matrix Mn

Mn+1(λ ,{Θi}) = T̃ (λ ,{Θi}) M (λ ) T−1(λ ,{Θi}) (4.4)

where we define:
T̃ (λ ) = L̃n(λ ,Θn) L̃n−1(λ ,Θn−1) . . . L̃1(λ ,Θ1)

T−1(λ ) = L−1
1 (λ ,Θ1) L−1

2 (λ ,Θ2) . . .L−1
n (λ ,Θn)

(4.5)

and formally one can define M as a c-number matrix, M = L̃0 M0 L−1
0 . Of course the analytic structure of

the T̃n and T−1
n matrices must be also taken into account when identifying the quantum BT (see also [15]).

In order to explicitly identify the algebraic relations obeyed by the Darboux matrix Mn a set of algebraic
relations between Ln and L̃n is required, as is the case for instance in reflection algebras [18, 19] and generic
quadratic algebras [22], or in the context of integrable defects [9, 8].
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Let us now consider the t-independent part of the BT relations. The basic relations arising from the
time independent part of (4.2) are given by

An+1vn = ṽnAn,

Xn = eΘAnb†
n, Xn+1 = e−Θ(A−1

n+1b†
n− b̃†

nAn+1),

Yn+1 = eΘb̃nAn+1, Yn = e−Θ(Anbn− b̃nA−1
n ).

(4.6)

Note also the Casimir operator (quantum determinant) associated to the Darboux matrix Mn

qA2
n +XnYn = q−1A2

n +YnXn = 1,

which gives:

A−2
n = q+ e2Θb†

nb̃n−1. (4.7)

Suitably comparing equations (4.6) and taking into account (4.7) we obtain the time independent part of the
BT relations

qb†
n−A−1

n+1b̃†
nAn+1 = e2Θb†

n+1

(
1− b̃nb†

n

)
,

qb̃n−q−1AnbnA−1
n =−e2Θ

(
1+ b̃nb†

n

)
b̃n−1.

(4.8)

The latter relations are similar to the ones found in [4] based on the Q-operator approach [3]. From this
point of view the system under study is a discrete time system, and the Q-operator is the generating function
of the quantum BT [3]. Our perspective here is rather different given that we are interested in continuum
time systems, so time evolution in the Heisenberg picture is the problem at hand. Note also a technical
observation; here the element An of the Darboux matrix – although expressed in terms of b†

n, b̃n−1 – is still
apparent in the final expressions of the Bäcklund transformation as opposed to the case considered in [4].
This is essentially due to the fact that a different R-matrix is considered here, and the co-product structure
of the underlying algebra is thus modified. In any case, the similarity between the expressions is apparent.

As already noted we are mostly interested in the continuum time picture of the problem. So in addition
to the time independent relations (4.8) we shall derive below the time dependent part of the BT, in analogy
to the classical case. To achieve this we focus on the second equation of the BT relations. We derived
previously the time components of the Lax pairs for the H± Hamiltonians, thus below we shall derive two
sets of time related equations for A±n via the time part of the BT. In particular, the set of equations associated
to A+

n

Ẋn = A b̃†
nb̃n−1Xn−DXnb†

nbn−1 +Be−Θ

(
A−1

n b†
n− b̃nAn

)
,

Ẏn = D b̃†
nb̃n−1Yn−A Ynb†

nbn−1 +C e−Θ

(
Anbn−1− b̃†

n−1A−1
n

)
,

Ȧn = D
(

b̃†
nb̃n−1An−Anb†

nbn−1

)
, −A−2

n Ȧn = A
(

b̃†
nb̃n−1A−1

n −A−1
n b†

nbn−1

)
.

(4.9)

The second and third equations of the time independent part of the BT (4.6) are also recovered.

9
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Similarly, the relations associated to A−n are given as

Ẋn = D̃ b̃nb̃†
n−1Xn− ˜A Xnbnb†

n−1− B̃eΘAnb†
n−1,

Ẏn = ˜A b̃nb̃†
n−1Yn− D̃Ynbnb†

n−1 +C eΘb̃nAn,

Ȧn = D
(

b̃nb̃†
n−1An−Anbnb†

n−1

)
, −A−2

n Ȧn = A
(

b̃†
nb̃n−1A−1

n −A−1
n b†

nbn−1

)
.

(4.10)

The third and fourth equations in (4.6) are now recovered. It is thus clear that via the time part of the BT for
both A±n all the time independent relations are reproduced, which suggests that in this particular study the
time part provides all the required information.

The set of equations above give rise to more explicit time equations. For instance, focusing on (4.8)
and (4.9), the following expressions are obtained

ḃ†
n = (q−q−1)A−1

n b̃†
nb̃n−1Anb†

n +(q−2−1)e −2Θ(A−2
n b†

n−A−1
n b̃nAn),

ḃn−1 = (q−1−q)b̃n−1Anb†
nbn−1 +(q−1−q)e −2Θ(Anbn−1A−1

n − b̃†
n−1A−2

n ),
(4.11)

where the “dot” denotes derivative with respect to time. Similar expressions, compatible to ones above, arise
from the set (4.8) and (4.10). Detailed discussion on the behaviour of these equations will be presented in a
forthcoming work.

5. Discussion

The main aim now is to compute the time evolution of local operators using the time evolution operator e−itH ,
where H in our case would be the Hamiltonian of the q-harmonic oscillator derived previously. It is clear
that for any integrable system a more general description can be considered regarding the “universal” time
evolution including all the time flows of the integrable hierarchy; in this case the object under consideration
is e−iTt(λ ), where t is the generating function of all integrals of motion and T the universal time.

The object under interest in this context would be the expectation value of local operators O j ∈{b j, b†
j}:

E (t) = 〈Q f |O j(t)|Qi〉, where O j(t) = e−itH O j eitH . (5.1)

Expansion over the complete set of the energy eigenstate (Bethe state) then gives:

E (t) = ∑
n,m
〈Q f |Ψn〉e−i(En−Em)t〈Ψn|O j|Ψm〉〈Ψm|Qi〉

= ∑
n,m

e−i(En−Em)tΨn(Q̄ f )OnmΨ̄m(Qi). (5.2)

The use of coherent states, which is briefly discussed in the subsequent section, leads to a semi-classical de-
scription of the time evolution problem. This issue however will be discussed in more detail in a forthcoming
work.

The Bethe ansatz formulation is used for the derivation of the energy eigenvalues and eigenstates. In
fact, the algebraic Bethe ansatz can be applied given that highest weight states exist, indeed locally one
observes the existence of such states (recall also that qv2 +a†a = q−1v2 +aa† = 1):

a j|0〉 j = 0, v j|0〉 j = q−
1
2 |0〉 j. (5.3)

10
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Then the global reference state is

|Ω〉=
N⊗

j=1

|0〉 j. (5.4)

The monodromy matrix and the generic Bethe state are expressed as

T (λ ) =

(
A B
C D

)
, |ΨM({λk})〉=

M

∏
k=1

B(λk)|Ω〉.

The Bethe roots satisfy the Bethe ansatz equations (BAE). The BAEs are obtained as analyticity conditions
imposed on the spectrum, and read as:

(−q−1)Ne2λiN = ∏
i6= j

sinh(λi−λ j + iµ)
sinh(λi−λ j− iµ)

. (5.5)

The algebraic Bethe ansatz method is used for the derivations of the spectrum and BAE for the model under
consideration. The spectrum of the transfer matrix in the periodic case reads as:

Λ(λ ) = aN
+(λ )

M

∏
k=1

sinh(λ −λk− iµ)
sinh(λ −λk)

+(−1)NaN
−(λ )

M

∏
k=1

sinh(λ −λk + iµ)
sinh(λ −λk)

, (5.6)

where a±(λ ) = e±λ .

Similarly, in the case of the open model with diagonal boundary conditions (we have considered here
for simplicity both K± ∝ I) t he algebraic Bethe ansatz applies for the modified monodromy matrix and the
generic Bethe states are expressed as

T (λ ) =

(
A B

C D

)
, |ΨM({λk})〉=

M

∏
k=1

B(λk) |Ω〉. (5.7)

Use of the algebraic Bethe ansatz for the open model leads to the spectrum:

Λ(λ ) = qNa2N
+ (λ )

M

∏
k=1

sinh(λ −λk− iµ)
sinh(λ −λk)

sinh(λ +λk)

sinh(λ −λk)

+q−Na2N
− (λ )

M

∏
k=1

sinh(λ −λk + iµ)
sinh(λ −λk)

sinh(λ +λk +2iµ)
sinh(λ −λk)

,

(5.8)

and the corresponding BAEs read as

e4λiN = ∏
i 6= j

sinh(λi−λ j + iµ)
sinh(λi−λ j− iµ)

sinh(λi +λ j + iµ)
sinh(λi +λ j− iµ)

. (5.9)

Having at our disposal the spectrum and the corresponding Bethe ansatz equations for both periodic and
open spin chains we can proceed with the computation of time expectation values. It is clear that the study
of the Bethe ansatz equations in the thermodynamic limit will be most relevant in this setting (see e.g. [5]).

An efficient way to deal with the time evolution of a quantum system is the use of coherent states. These
have been extensively used in the context of integrable models, with significant applications for instance in
condensed matter and string theory. Here we shall use the q-coherent states associated also to q-Hermite

11
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polynomials (see e.g. [23] and references therein). The quantum algebra (2.16) can be re-expressed as
follows, after a suitable rescaling of the b, b† operators:

b b†−q2b† b = 1. (5.10)

The local vacuum and the general eigenstate of the local operator b† b are then given by

b |0〉= 0, b† |0〉= |1〉,

|n〉= b†n√
[n]!
|0〉, 〈n|= 〈0| bn√

[n]!
,

(5.11)

where we define the q-factorial [n]! in terms of [n] = q2n−1
q2−1 and [n]! = ∏

n
j=1 [ j]. The coherent state is then

defined as:

|z〉= ∑
n

(zb†)n

[n]!
|0〉= expq(zb†) |0〉, 〈z|= 〈0| ∑

n

(zb)n

[n]!
= 〈0|expq(zb). (5.12)

These states have the advantage of providing a natural semi-classical description of the system under study
as will become clear below. Indeed, coherent states are endowed with the following practical properties

b |z〉= z |z〉, 〈z| b† = 〈z| z∗, (5.13)

and:
〈z|z′〉= expq(z

∗z′),
∫ dzdz∗

2πi
W (|z|2) |z〉〈z|= I. (5.14)

The weight W is derived in terms of expq functions (see [23]).

We are dealing here with an N-body quantum mechanical system, therefore we shall need a “global”
space coherent state |Z〉=

⊗N
j=1 |z j〉, then the resolution of the unit becomes:∫

DZ DZ∗ W (|Z|2) |Z〉〈Z|= I,

W (|Z|2) =
N

∏
j=1

W (|z j|2), DZ DZ∗ =
N

∏
j=1

dz jdz∗j
2πi

.

(5.15)

Indeed, let us now consider the object of interest

G = 〈Ψ f |e−itH |Ψi〉. (5.16)

Inserting the complete set of coherent states we then obtain in the typical path integral formulation

G =
∫

DZ DZ∗ Ψ
∗
f (Z f )Ψi(Zi) W (|Z|2) prodN

j=1

M+1

∏
α=0

expq(z
∗
ja+1z ja) e−iδ ∑α 〈Hα 〉,

DZ DZ∗ =
N

∏
j=1

M+1

∏
α=0

dz jadz∗ja
2πi

, W (|Z|2) =
N

∏
j=1

M+1

∏
α=0

W (|z ja|2),
(5.17)

with the time boundary conditions ZM+1 = Z f , Z0 = Zi, where now the index α is a discrete time index. In
our case here the associated Hamiltonian is given as qH++q−1H− and hence,

〈Hα〉= q
N

∑
j=1

z∗j+1α+1 z jα +q−1
N

∑
j=1

z∗jα+1 z j+1α . (5.18)

12
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The isotropic analogue of the latter expression (e.g. for the discrete NLS model) becomes, given that expq→
exp, and W (|z|2) = exp(−zz∗), and after considering the continuum time limit:

G =
∫

DZ DZ∗ Ψ
∗
f (Z f )Ψi(Zi) e

i
∫ t f

ti
dt ∑ j

(
− i

2 ∂t z∗j z j+
i
2 ∂t z jz∗j−〈h

(n)
j 〉
)

e−
1
2 ∑ j(|z j(t f )|2), (5.19)

where in general H(n) = ∑ j h(n)j is one of the conserved quantities of the hierarchy associated to the time
flow tn.

The latter computation of course can be generalized for the “universal" time flow, where in the expres-
sion above H(n)→ t(λ ). In the case of imaginary time the latter provides the partition function of the 2D
statistical system

Z = tr
{

e−βH
}
=
∫

Dζ 〈ζ |e−βH |ζ 〉. (5.20)

The next natural step is explicit computations via the appropriate differential or difference operator, whose
determinant will be used for the computation of the partition function of the system under study. Detailed
derivations on discrete and continuum NLS model, associated to all time flows, in particular in the presence
of time-like and space-like defects and boundaries will be presented elsewhere. For some recent findings
on explicit computations of the path integral for many body quantum mechanical systems by means of
stochastic analysis arguments we refer the interested reader to [24].

We have considered the quantisation of the auxiliary linear problem and the associated Darboux-
Bäcklund transformation. In this setting we derived the quantum hierarchy of the time components of
the Lax pairs in the case of both periodic and open integrable boundary conditions. Moreover, having iden-
tified via our generic construction the quantum Lax pair for the q-oscillator model, we were able to derive
the quantum Darboux transformation and hence the quantum BT. We worked out explicitly both the time
independent and the time dependant part of the BT. The time part of the BT provides further information
regarding the time evolution of the degrees of freedom of the corresponding Darboux matrix, and in fact
by simply considering the t part of the BT we recover the information provided by the time independent
part as well. We should emphasize once more that our description is a typical Heisenberg time evolution
picture, however possible links to matrix models (random matrices) [25, 26, 27] via the discrete space time
expression (5.17) can be explored. In any case, keeping the ‘time slicing” picture reflected in expression
(5.17) direct analogies to discrete time integrable models at the level of the completely discrete Lax pair can
be made. Indeed, recall the fully discrete auxiliary linear problem described as

Ψ(α,n+1) = L(α,n) Ψ(α,n),

Ψ(α +1,n) = A(α,n) Ψ(α,n),
(5.21)

where α is the discrete time index and n the discrete space index, and in the continuum limit a→ t, n→ x.
In the usual setting of vertex models (2D lattices) L = A, and the global coherent state will be expressed as
|Z〉=

⊗N
j=1
⊗M

α=1 |zan〉, which shows direct analogy to (5.17), where both the space and time discretisations
are kept. In the continuum time limit of course one recovers the semi-discrete case considered here.

The pertinent question is the interpretation of the quantum Darboux-Bäcklund transformation. In [3, 4]
the quantum BT is seen as a quantum canonical transformation and the Q-operator is indeed the generating
function of this transformation. However, it is also known that quantum canonical transformations can be

13
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treated by means of suitable squeezed states (see e.g. [28] and references therein), and this is an interesting
direction to pursue within the present frame. Let us also recall the classical picture associated to the BT,
which is rather closer to our perspective and is also most relevant to the context of super-symmetric quantum
mechanics (see e.g. [29] and references therein). Indeed, at the classical level the BT can be seen as a
canonical transformation that relates two distinct solutions of the same PDE (or different PDEs, hetero-BT).
Let us now ask the same question at the level of Hamiltonian evolution. Let D be the Darboux matrix that
relates two Hamiltonians with two different potentials; in the integrable PDEs frame these potentials can be
two distinct solutions of the same PDE. We focus on the time evolution of the two distinct Hamiltonians and
consequently the Darboux transformation

i∂tΨ = H Ψ, i∂tΨ̃ = H̃ Ψ̃,

H =−∂
2
x +V (x), H̃ =−∂

2
x +Ṽ (x), Ψ̃ = D Ψ.

(5.22)

The equations above lead to the time evolution equation for D:

i∂tD= H̃ D−H D. (5.23)

The significant issue for us is the understanding of the Darboux-matrix as described above for N-body
Hamiltonians. In general, even in the case of the one particle Hamiltonian, the transformation D can be a
differential or an integral operator whose form can be identified after solving (5.23) for known H and H̃.

In general, the path integral quantisation scheme in the context of N-body integrable models can be
utilised to provide significant connections with results already obtained for instance via the Bethe ansatz
formulation, or facilitate certain computations regarding for example the derivation of expectation values.
Immediate links with conformal field theories, diffusion reaction models [30, 24] as well matrix models
and random matrices (see e.g [25, 26, 27]) can also be further pursued in this context, in particular in the
presence of non-trivial boundary conditions. Finally, a natural question to address is the identification of the
quantum hetero-BT in the quantum Liouville theory [31]. Quantization of the classical Darboux hetero-BT
between the Liouville theory and the free massless theory found in [21] is a work in progress. We hope to
address the aforementioned significant matters soon in forthcoming investigations.

Acknowledgements: We are indebted to C. Korff for valuable discussions on quantum Bäcklund transfor-
mations and the Q-operator, and also for sharing his previous results on the matter [4]. We would like to
thank P. Adamopoulou, D. Palazzo, and R. Weston for illuminating comments and insights. We are also
grateful to J. Avan for crucial comments and suggestions regarding the manuscript. A.D. would like to
thank University of Cergy-Pontoise for kind hospitality. I.F. thanks EPSRC for financial support via a DTA
studentship.

A. The B-operators: closed spin chain

Knowing the Hamiltonian, we only need to derive the corresponding Bn matrix, which will similarly be
constructed as:

Bn = (B(+,0)
n )−1B(+,2)

n +(B(−,0)
n )−1B(−,2)

n .
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After an appropriate rescaling of the R-matrix, we can calculate these B(±,k)
n matrices. Looking first at the

results from the u→ ∞ limit, we get that:

B(+,0)
n = u−1vN ...v1

(
q 0
0 1

)
, B(+,1)

n = 0,

B(+,2)
n = vN ...v1

×

(
u−1(q∑

N
j 6=n−1 b†

j+1b j +b†
nbn−1)−uq−1 (q−q−1)b†

n

(q−q−1)bn−1 u−1(∑N
j 6=n−1 b†

j+1b j +qb†
nbn−1)−u

)
.

The factor we are actually interested in calculating is (B(+,0)
n )−1B(+,2)

n , which is:

B+
n =

(
∑

N
j 6=n−1 b†

j+1b j +q−1b†
nbn−1−u2q−2 u(1−q−2)b†

n

u(q−q−1)bn−1 ∑
N
j 6=n−1 b†

j+1b j +qb†
nbn−1−u2

)
.

Next, we need to calculate the B(−,k)
n matrices, found by looking in the limit as u→ 0. These are:

B(−,0)
n = uvN ...v1

(
1 0
0 q−1

)
, B(−,1)

n = 0,

B(−,2)
n = vN ...v1

×

(
u(∑N

j 6=n−1 b j+1b†
j +q−1bnb†

n−1)−u−1 (q−q−1)b†
n−1

(q−q−1)bn u(q−1
∑

N
j 6=n−1 b j+1b†

j +bnb†
n−1)−u−1q

)
.

Looking at the combination (B(−,0)
n )−1B(−,2)

n , we get that:

B−n =

(
∑

N
j 6=n−1 b j+1b†

j +q−1bnb†
n−1−u−2 u−1(q−q−1)b†

n−1

u−1(q2−1)bn ∑
N
j 6=n−1 b j+1b†

j +qbnb†
n−1−u−2q2

)
.

B. The Hamiltonians & B-operators: open spin chain

The Hamiltonians can be found by expanding the generator t about powers of u. Again, we can look at the
two cases where λ →±∞. First, doing so for the u→ ∞ limit, the three lowest order terms are:

H(+,0) = qNv2
N ...v

2
1, H(+,1) = 0,

H(+,2) = qNv2
N ...v

2
1
(N−1

∑
n=1

(b†
n+1bn +q−2bn+1b†

n)+b†
1b1 +q−2bNb†

N

)
,

while the three lowest order terms from the u→ 0 limit are:

H(−,0) = q−Nv2
N ...v

2
1, H(−,1) = 0,

H(−,2) = q−Nv2
N ...v

2
1

(
N−1

∑
n=1

(bn+1b†
n +q2b†

n+1bn)+b1b†
1 +q2b†

NbN

)
.
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Considering the combination H± = (H(±,0))−1H(±,2), we get the physical Hamiltonians for each of the two
limits:

H+ =
N−1

∑
n=1

(b†
n+1bn +q−2bn+1b†

n)+(b†
1b1 +q−2bNb†

N),

H− =
N−1

∑
n=1

(bn+1b†
n +q2b†

n+1bn)+(b1b†
1 +q2b†

NbN).

In the limit as u→ ∞, we can find the first few matrices in the expansion of this generator:

B(+,0)
1 = qNv2

N ...v
2
1

(
q2 0
0 1

)
, B(+,1)

1 = 0,

B(+,2)
1 = qNv2

N ...v
2
1

×

(
b†

1b1 +bNb†
N−u2−u−2 (u+u−1)(q2−1)b†

1

(u+u−1)(1−q−2)b1 q2b†
1b1 +q−2bNb†

N +(q−q−1)2−u2−u−2

)

+qNv2
N ...v

2
1

N−1

∑
j=1

(b†
j+1b j +q−2b j+1b†

j)

(
q2 0
0 1

)
.

From these, we are primarily interested in the combination B+
1 = (B(+,0)

1 )−1B(+,2)
1 , which is:

B+
1 =−(u2 +u−2)

(
q−2 0
0 1

)
+

(
q−2b†

1b1 (u+u−1)(1−q−2)b†
1

(u+u−1)(1−q−2)b1 q2b†
1b1 +(q−q−1)2

)

+

(
N−1

∑
j=1

(b†
j+1b j +q−2b j+1b†

j)+q−2bNb†
N

)(
1 0
0 1

)
.
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