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1. Introduction

Dimensionally reduced Yang-Mills models are among the best candidates for testing the noto-
rious gauge/gravity conjecture, the most researched example is the BFSS model [1, 2] and its max-
imally supersymmetric mass deformed version, the BMN model [3]. Bosonic and supersymetric
models also arise from quantization of membranes and supermembranes on various backgrounds
[1, 4].

This family of quantum matrix models, which can also be interpreted as models of interacting
D0-branes, has a surprisingly rich phase structure including deconfining phase transitions as the
temperature is varied [5, 6, 7, 8, 9, 10].

In the large-mass limit, the BMN model reduces to a gauged Gaussian model that can be
solved analytically and has a single phase transition. At zero mass, based on the gauge/gravity
duality conjecture, the model is connected to the Gregory-Laflamme [11, 12] transition. Our goal
is to connect those two regimes nonperturbatively using numerical simulations.

The massless version of the model, the bosonic BFSS model, has been studied extensively
both analytically and numerically [13, 14, 15, 16, 17, 18]. Initial studies reported two close thermal
phase transitions which were in a good agreement with the results from 1/D (D is the number of
matrices) expansion performed in [14]. Later it was realised that in the large-N limit there is only
a single phase transition [18], which appears to be of the 1st order. Our study of the bosonic BMN
model for µ = 2 agrees with this conclusion [10].

In this paper we report our findings regarding the phase structure of the bosonic BMN model.
At finite N, we observed two distinct phase transition which merge in the large-N limit into a single
one. Even though one of our approaches indicates that the transition is a standard 1st order one,
showing clear signs of a transitioning two-level system, another approach suggests the transition
might be more related to the Hagedorn transition. We leave this question open at this moment.

For µ = 2 we gather enough data to extrapolate the results to the large-N limit. For other
values of µ we fixed N = 12 and produced a phase diagram with two (pseudo)critical temperatures
for each value of µ . These are expected to merge in the large-N limit and their finite-N values can
serve as upper and lower boundaries for the large-N critical temperature.

2. Model and observables

The gauged quantum model is defined using D = 9 Hermitian N×N matrices that transform
as adjoint representation of SU(N) and are placed on a thermal circle with the action defined as

S[X ,A] = N

β∫
0

dτ Tr

[
1
2 DτX iDτX i− 1

4

(
[X r,X s]+ iµ

3 εrstXt

)2
(2.1)

−1
2 [X

r,Xm]2− 1
4 [X

m,Xn]2 + 1
2

(
µ

6

)2 X2
m

]
,

where i = 1, . . . ,9; r,s = 1,2,3 and m,n = 4, . . . ,8,9. The mass parameter is µ , β = 1/T is the
inverse temperature and Dτ · = ∂τ · −i[A, ·] is the covariant derivative. The SO(9) symmetry is
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explicitly broken to SO(6)×SO(3) by the mass terms and the cubic Myers term. We fixed A to be
diagonal and time independent which invokes the Vandermonde determinant described in [15].

Mean values of observables O are defined by path integration over Hermitian matrix elements
as

〈O〉=
∫
[dX ][dA] O e−S[X ,A]

Z
, Z =

∫
[dX ][dA]e−S[X ,A]. (2.2)

We employ the usual lattice formulation where the matrices X i are placed on temporal nodes
and A on the links between them. The (Euclidean) time τ is discretised as τ → βk/Λ, where
k = 1, . . . ,Λ. To reduce the discretisation effects from the kinetic term we use the method discussed
in [9, 19]. The coupling constant has been fixed to 1 and all dimensional quantities are expressed
in these natural units.

The standard set of observables for analysis of thermal phase transitions is the energy E,
the specific heat Cv, the extent of eigenvalues 〈R2〉 and the Polyakov loop 〈|P|〉 which serves as
an order parameter in the deconfining transition. The Myers observable, M, is important in the
supersymmetric formulation of the model as fermionic degrees of freedom can stabilise fuzzy-
sphere configurations [9], we have not not observed such behaviour in the bosonic model. The list
of observables follows:

E = N−2(−∂β ) logZ,

Cv = β
2
∂

2
β

logZ,

〈|P|〉 =
〈

1
N
|Tr (exp(iβA))|

〉
, (2.3)

〈R2〉 =

〈
1

Nβ

β∫
0

dτ Tr
(
X iX i)〉 ,

M =

〈
i

3Nβ

β∫
0

dτ ε
rst Tr

(
X rX sX t)〉 .

Typical behaviour of these observables is shown in the figures 1 and 2. We have also introduced
two new observables that improve the accuracy of measurements of (pseudo)critical temperatures
for finite values of N. We performed Hybrid Monte Carlo (HMC) simulations of the system to
evaluate the path integrals and noticed that close to the apparent transition temperature, the system
transitions between two distinct levels, one close to 〈|P|〉 ≈ 1/N and one close to 〈|P|〉 ≈ 1/2. At
low temperature, the system spends the entire Monte Carlo time at the bottom level, but as the
temperature is increased it tends to spend larger portion of it in the top one. Therefore, we defined
the observable P that captures which level is preferred by the system at a given temperature defined
by

Px =

1∫
x

P(q)dq , with P0.5 = P, (2.4)

where P(q) is the probability distribution for the Polyakov loop. Quite surprisingly, this observ-
able shows a very clear piecewise linear behaviour, see the figure 3 1. It is constant well bellow and

1We have tested that using P0.4 or P0.3 yields similar results.
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above the transition and linear in the middle of it. We take the root of the linear function describing
the transition region to be Tc1. As the steepness of this line increases with N indefinitely, values of
Tc1 defined by any point on it converge to the same value. The second introduced observable is

〈|Pn|〉=
〈

1
N
|Tr (exp(inβA))|

〉
. (2.5)

This observable for n > 2 captures the behaviour of higher moments of the eigenvalue dis-

tribution of A expressed as un =
π∫
−π

ρ(θ)einθ dθ . In the zero-temperature limit, the eigenvalues of

A are distributed uniformly, un = 0 for n ≥ 1. Then, with increasing temperature, the distribution
becomes nonuniform, u1 > 0 while u2 = u3 = ... = 0. With further increasing temperature, the
distribution develops a gap, all moments become excited or equivalently 〈|Pn|〉 > 0 for n ≥ 1. For
all values of N we observe a very sharp change in the behaviour of 〈|P2|〉. It is constant below a
certain temperature and then start growing above it. We denote this temperature Tc2. Higher modes
〈|Pn|〉, n = 3,4, ... are growing as well, but at a slower rate than 〈|P2|〉 so we use it to mark the
transition.

3. Thermal phase transition(s)

The figure 1 shows the behaviour of the observables for µ = 2, N = 32 and Λ = 24. We
can clearly see that the system undergoes either one or more (closely separated) phase transitions
around T ∼ 0.92. Measurements of the Polyakov loop and specific heat for increasing values of
N are shown in figure 2, confirming that the transition region shrinks in the large-N limit and the
scaling of Cmax

V signals a 1st order phase transition.
Let us now focus on the case of µ = 2, N = 32 and Λ = 24. The root of the growing linear

function in the left panel of figure 3 is taken to be at the first (pseudo)critical temperature, Tc1, where
the underlying eigenvalue distribution becomes nonuniform. The bending point in the function in
the right panel, which is measured as a crossing point of two linear fits, is taken to be at the second
(pseudo)critical temperature, Tc2, where the eigenvalue distribution becomes gapped. Details of
this behaviour are discussed in [10].

We have measured the values of Tc1 and Tc2 for N = 12, 24, 32, 48 and extrapolated them
to infinite N, the results are shown in the figure 4. The (pseudo)critical temperatures merge into
a single one, the exact value depends only slightly on the choice of the fitting function. The best
agreement is for the quadratic fit, yielding Tc1 → 0.9137(9) and Tc2 → 0.914(2) in the large-N
limit.

The critical temperature can be approximately obtained even with a single, possibly small,
value of N. To do so, one needs to have a good theoretical prediction for 〈|P|〉 as a function of T
with finite-N corrections included. We used

〈|P|〉(T ) = P0 +

√
〈l〉N
N

e−m(T−1−T−1
H ) for T < TH (3.1)

〈|P|〉(T ) = 1
2

em(T−1−T−1
H )

1−
√

1−m
(
T−1−T−1

H

) for T > TH . (3.2)
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Figure 1: Observables of the model for µ = 2, N = 32 and Λ = 24. The Myers observable seems to be
negligible and copies the shape of 〈R2〉. All observables point to either a single or multiple transitions
around T ≈ 0.92. The split between SO(3) and SO(6) components of 〈R2〉 is due to different masses.
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Figure 2: The evolution of the Polyakov loop 〈|P|〉 for µ = 2, Λ = 24 with increasing N. The transition
region becomes sharper with larger N. The right figure grows as Cmax

V = 9.1(8)+0.037(2)N2.

Here, 〈l〉N = e
m(T−1

H −T−1)

1−e
m(T−1

H −T−1)
− c e(T−1

H −T−1)c m N2
N2

1−e(T−1
H −T−1)c m N2 , m = TH ln 9 and c is chosen so the two

functions meet at T = TH . This is obtained in the Hamiltonian approach to the gauge Gaussian
model, [6, 20] and will be discussed in our forthcoming work [21]. TH is to be interpreted as
the Hagedorn temperature and we have measured its values for N = 12, 24, 32, 48 as TH =

0.924(1), 0.9167(4), 0.9136(3), 0.9127(2). This is very close to the results obtained from the
previous method of extrapolating two (pseudo)critical temperatures. The values of P0 are zero-
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Figure 3: Values of P and 〈|P2|〉 for µ = 2, N = 32 and Λ= 24 and increasing value of temperature T = β−1.
The points in the transition region in the left plot were fit by a linear function whose slope increases with N.
The four coloured points correspond to T = 0.8621, 0.9099, 0.9120 and 0.9174.
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Figure 4: Extrapolations of the (pseudo)critical temperatures from results obtained from N = 12, 24, 32, 48.
The left plot is using a linear fit, the middle plot is using linear fit while omitting N = 12 value, the right one
is using a quadratic fit. All fits are performed functions of N−1.

temperature contributions to 〈|P|〉 and are understood to be only finite-N effects, their values for
N = 12, 24, 32 are P0 = 0.058(4), 0.028(2), 0.008(3). We have set P0 = 0 for N = 48 as we did
not obtain enough data points for T � TH .

The same two methods can be applied to the model for any value of µ . At µ = 0 the model
is just the bosonic part of the BFSS model which has been well researched both theoretically and
numerically. At first, it was believed that there are two, closely separated phase transitions, one of
the 2nd and one of the 3rd order. The latest research [18], however, reports only a single 1st order
phase transition. Our µ = 2 extrapolations to infinite N are in an agreement with a single phase
transition which seems to be of the nature of the Hagedorn phase transition, see the figure 5.

We have performed a detailed study of the gauge Gaussian model with µ = 2 and shown that
the leading finite-N effects in the low temperature phase are substantial. The results are shown in
the figure 6. The solid curves are those described by 〈l〉N discussed above where 〈l〉N uses the
sharp cutoff on states in the Hamiltonian formulation described by words of length cN2− 1 and
〈l〉N describes the mean word length, see [6, 20].

For large values of µ , only the quadratic terms contribute and the model effectively reduces to
a gauged Gaussian model that has a single critical temperature located at Tc =

µ

6ln(3+2
√

3)
.

We have produced the phase diagram for N = Λ = 24, it is shown in the figure 7. The gray
points mark two (pseudo)critical temperatures measured using 〈|P2|〉 and P, the red poins show the

5
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Figure 5: Numerically obtained values of 〈|P|〉 for µ = 2,Λ = 24 and various values of N. The solid lines
are fits using theoretical predictions 3.1 and 3.2 with parameters TH and P0 obtained by fitting.

critical temperature measured by TH , which, as expected, lay between the other two. The dashed
line shows the large-µ critical temperature which the points asymptote to.

4. Conclusions

We have analysed the behaviour of the bosonic BMN matrix model, focusing on the thermal
deconfining phase transition at finite µ . We observed that at finite N we can distinguish two closely
separated (pseudo)critical temperatures Tc1 and Tc2. At T > Tc1 the system prefers states with
〈|P|〉 ≥ 1/2 and the eigenvalue distribution is nonuniform. At T > Tc2 higher moments of the
eigenvalue distribution develops nontrivial expectation values, the distribution is gapped. We have
also observed that these two (pseudo)critical temperatures merge into one in the large-N limit.

We were able to fit the data for Polyakov loop 〈|P|〉 using functions obtained from a theo-
retical description of the model at finite N. The fitting parameter TH is to be interpreted as the
Hagedorn temperature (details will be discussed in our upcoming work), which is consistent with
the aforementioned single large-N critical temperature.

Exact nature of the phase transition remains unclear at this point. Analysing the Monte Carlo
trajectories of the system shows clear signs of two-level system well approximated by two Gaussian
distributions [22, 23]. However, fitting using 3.1 and 3.2 shows a clear relation to the Hagedorn
phase transition as well.

For a single finite value of N, we have constructed the phase diagram, which interpolates
smoothly between the zero-mass BFSS prediction and large-mass prediction of the gauged Gaus-
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Figure 6: We have tested the theoretical predictions 3.1 and 3.2 also for the pure Gaussian model with µ = 2
for which the critical temperature is known exactly. In these plots we have set P0 = 0.

sian model. It is plausible that in the large-N limit the two (pseudo)critical temperatures shown in
7 merge into one, possible close to the value predicted by the Hagedorn fit (red points in the same
diagram). In [10] we have also tested that with our lattice formulation the results depend only very
weakly on lattice parameter Λ and are reasonably close to the continuum value.

Our choice of the fitting function, equations 3.1 and 3.2, contained a contribution from the
T → 0 behaviour of the Polyakov loop, denoted P0. We know that in this limit the eigeinvalues of A
are uniformly distribution over the entire interval. We can model them as a set of random numbers
θi =

2πi
N + f where i = 1, . . . , N and f is a random number that describes their fluctuations. We can

take f to be random with central Gaussian distribution with σ = 2πa
N . This way, N and a determine

the value of 〈|P|〉.
For N = 12, 24, 32 we have obtained, for the data at the lowest measured temperatures

(β = 2.2, 1.85, 1.7) the values of a and used it to compute P0. The results of the calcula-
tion (0.082, 0.043, 0.029) are very close to the values of 〈|P|〉 measured at those temperatures
(0.08(2), 0.0427(9), 0.034(1)). Given the knowledge of a, we can estimate the value of P0 rather
precisely.

The next step is, instead of measuring a, to have a theoretical estimate for it. The dominant
effect in the zero-temperature limit is the logarithmic repulsion between the eigenvalues. If an
eigenvalue is positioned between two others, separated by a distance of a 2π

N from each of them, it
will be moving in an effective potential U(x) = U0− x2

(a 2π

N )
2 + . . .. This means that the dispersion

is proportional to the separation and we should take a = 2−1/2. Actually, as the logarithmic force

7
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Figure 7: The (pseudo)critical temperatures for N = Λ = 24. The gray points were obtained using P and
〈|P2|〉. The red points were obtained by measuring TH using 3.1 and 3.2. The dashed line shows the large-µ
prediction Tc =

µ

6ln(3+2
√

3)
.

decays rather slowly, we should take other eigenvalues into account as well, changing the estimate
to a = 2−1/2(1+ 1/2+ 1/4+ . . .+ 1/(N/2)2 = 2−1/2H(N/2,2), where H is a harmonic number.
This yields, given only N, the estimate for 〈|P|〉 as 0.13,0.052,0.035 which, given the the bold
estimates, is reasonably close to the measured values. Therefore, we believe that describing the
low temperature behaviour of A using a set of uniformly separated eigenvalues fluctuating around
their mean positions in the presence of logarithmic repulsion is accurate.

Our results are in a broad agreement with 1/D studies [17, 25] but does not match it exactly
as the authors observe two closely separated phase transitions. As a recent numerical study of the
BFSS model [18] also reports a single phase transition, we believe that by including higher terms in
the 1/D expansion, the two phase transitions would merge into a single one in this approximation
as well.

A possible line of future research is the study of bosonic version of the D0–D4 Berkooz-
Douglas model [26, 27, 28]. The model has degrees of freedom that transform under the funda-
mental representation of SU(N f ) and the work [9] reported exceptional behaviour for N f = 2N
which should be interesting to study in the bosonic model.
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[21] Y. Asano, S. Kováčik and D. O’Connor In preparation.

[22] M. E. Fisher and A. N. Berker, “Scaling for first-order transitions in thermodynamic and finite
systems,” Phys. Rev. B 26, 2507 (1982). doi:10.1103/PhysRevB.26.2507

[23] D. P. Landau and K. Binder, “Finite-size scaling at first-order phase transitions” Phys. Rev. B 30
(1984) 1477. doi:10.1103/PhysRevB.30.1477

[24] M. S. S. Challa, D. P. Landau and K. Binder, “Finite size effects at temperature driven first order
transitions,” Phys. Rev. B 34 (1986) 1841. doi:10.1103/PhysRevB.34.1841

[25] S. Takeuchi, “D-dependence of the gap between the critical temperatures in the one-dimensional
gauge theories,” Eur. Phys. J. C 79 (2019) no.7, 548 doi:10.1140/epjc/s10052-019-6941-y
[arXiv:1712.09261 [hep-th]].

[26] V. G. Filev and D. O’Connor, “A Computer Test of Holographic Flavour Dynamics,” JHEP 1605
(2016) 122 doi:10.1007/JHEP05(2016)122 [arXiv:1512.02536 [hep-th]].
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