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In the near future, High Energy Physics experiments’ storage and computing needs will go far
above what can be achieved by only scaling current computing models or current infrastructures.
Considering the LHC case, for 10 years a federated infrastructure (Worldwide LHC Computing
Grid, WLCG) has been successfully developed. Nevertheless, the High Luminosity (HL-LHC)
scenario is forcing the WLCG community to dig for innovative solutions. In this landscape,
one of the initiatives is the exploitation of Data Lakes as a solution to improve the Data and
Storage management. The current Data Lake model foresees data caching to play a central role
as a technical solution to reduce the impact of latency and network load. Moreover, even higher
efficiency can be achieved through a smart caching algorithm: this motivates the development
of an AI-based approach to the caching problem. In this work, a Reinforcement Learning-based
cache model (named QCACHE) is applied in the CMS experiment context. More specifically,
we focused our attention on the optimization of both cache performances and cache management
costs. The QCACHE system is based on two distinct Q-Learning (or Deep Q-Learning) agents
seeking to find the best action to take given the current state. More explicitly, they try to learn a
policy that maximizes the total reward (i.e. hit or miss occurring in a given time span). While the
addition Agent is taking care of all the cache writing requests, clearly the eviction agent deals with
the decision to keep or to delete files in the cache. We will present an overview of the QCACHE
framework an the results in terms of cache performances, obtained using using “Real-world” data,
will be compared respect to standard replacement policies (i.e. we used historical data requests
aggregation used to predict dataset popularity filtered for Italian region). Moreover, we will show
the planned subsequent evolution of the framework.
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1. Introduction

The LHC (Large Hadron Collider, [1]) is going to face big challenges in the near future. In fact,
approximately in 2026, with the next planned upgrade, it will enter in the High Luminosity era: the
upgraded machine (High Luminosity LHC, HL-LHC) will reach an instantaneous luminosity of at
least 5×1034 cm−2s−1 and a center of mass energy of 14 TeV (with respect to 5×1034 cm−2s−1 and
14 TeV of last data taking period). As a result, data will be produced at higher rates, with a greater
event complexity. Consequently, computing resources and storage requests from LHC experiments
will increase, getting far above what can be achieved by only scaling today’s technologies: as
can be seen in fig. 1 and fig. 2, looking at the CMS experiment [2] projections for year 2030, the
gap between CPU and disk requirements and actual availability, assuming a flat budget, will be
approximately of a factor 3. Such a scenario is clearly demanding a new computational model that
should optimize both hardware and operational cost.

Figure 1: CPU time requirements (in kilo-HEPSpec06 years) estimated to be required annually for
CMS processing and analysis needs. These results are taken from CMS Offline and Computing
Public Results [3].

At the moment, the community is strongly focusing on the storage problem, mainly due to cost
reasons and the lack of a straightforward solution. Aside from the introduction of a new reduced
data format (e.g., nanoAOD for the CMS experiment [4]), the storage problem can be addressed
with the introduction of a new distributed model: the proposed solution is a Data Lake model [5].
It envisions fewer number of storage endpoints with respect to the current tiered configuration,
with a mix of distributed caches directly accessed from the various compute nodes. In this design,
network and caches are crucial for the development of an optimized system and indeed a lot of
effort has been carried out in the last years on both topics (a non-comprehensive list of projects
that are working on this includes WLCG DOMA [6], EU projects like ESCAPE [7], US CMS Data
lake proposal [8], SoCal Cache [9], INFN distributed cache [10], the IDDLS initiative [11]).

CMS already extensively tested the benefits deriving from the use of a cache system [12]. In
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Figure 2: Disk space requirements (in PBs) estimated to be required annually for CMS processing
and analysis needs. These results are taken from CMS Offline and Computing Public Results [3].

particular it has been shown that cache systems allow to reduce the overall network traffic, thus
making the processing jobs more efficient by reducing I/O wait time for remote data. Similarly a
cache system is capable of providing read ahead capability and to save disk space. A local cache
is also seen as a key component of the future CMS Analysis Facility that is being prototyped at
INFN.

Once that the advantages related to caches are evident in the CMS experiment context, the
main goal is to enhance the efficiency of the cache system with a smart caching approach. Thus,
the subject of Smart Caching project [12] is the development of such a smart cache system using
AI algorithms within the CMS experiment. The main idea is to develop an AI system that directly
manipulates the cache file content, deciding what to write or delete. The ultimate goal is to obtain
an algorithm that uses fewer storage resources with respect to classic cache algorithms (write ev-
erything + LRU, LFU, etc..., [13]) while maintaining similar performance. In order to do this, we
developed the QCACHE framework, which is based on Reinforcement Learning methods.

Finally, it is worth to notice that the impact of this work could be even broader, since many
communities beyond WLCG are facing the same problems in data distribution (e.g. Astroparticle
Physics [14]) and could greatly benefit from an efficient data caching approach, too.

2. Methodology

In the present section we will introduce the main idea beyond the development of an AI system
that directly manipulates the cache file content, as reported in fig. 3. In the last decades, many
studies regarding the optimization of cache systems have been published (e.g. [15–18]), but none
of them focused on a Data Lake architecture. The ultimate goal of the Smart Caching project,
as already partially discussed, is to obtain a framework (named QCACHE) that while using fewer
resources with respect to classic cache algorithms should be able to guarantee similar performances.

2
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Figure 3: A schematic view of Smart Caching approach: AI directly manipulates cache memory.

2.1 Reinforcement Learning

Reinforcement Learning [19] (RL) is the branch of Machine Learning that studies agents that
learn through an iterative trial and error process while interacting within an environment. At each
step, a RL agent receives as input from the environment a state s (or a partial observation o) and
chooses a certain action a, getting a reward (or punishment) r from the environment, which is used
to update the agent itself (see fig. 4). The ultimate goal is to maximize its cumulative reward (the
so-called return).

Figure 4: A Reinforcement Learning step.

More precisely, a RL agent learns a policy π , that is the function used by the agent to choose
which action to take given a certain state or observation and could be either stochastic or deter-
ministic. Seen in these terms, the aim of a RL agent becomes finding optimal policy π∗, which
maximizes the expected return when the agent acts accordingly.

You can then define the Optimal Action-Value Function Q∗(s,a) as the function that gives
the expected return if, starting from s, you take an arbitrary action a and from then on you act
accordingly to the optimal policy. The optimal action is then trivially defined as follows:

a∗(s) = argmax
a

Q∗(s,a) (2.1)

Moreover, the Optimal Action-Value Function Q∗(s,a) obeys a self-consistency equation called
the Bellman equation:

Q∗(s,a) = E
s′∼P(·|s,a)

[r(s,a)+ γ max
a′

Q∗(s′,a′)] (2.2)

where s′ identifies the next state (sampled from the distribution P(·|s,a) governing all environ-
mental transitions) and γ ∈ [0,1] and it is the so-called discount factor.

3
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2.1.1 Q-learning

Q-Learning is one of the best known sets of RL methods: in its simplest form, an ε-greedy Q-
learning agent tries to learn the Q∗(s,a) function by acting ε-greedily, i.e. selecting a random action
a with probability ε (that decays over time), otherwise selecting action a according to eq. (2.3).

a(s) = argmax
a′

Q(s,a′) (2.3)

The first behavior is related to the exploration of all possible actions, whereas the second one
is related to the exploitation of the knowledge gained by the agent. Learned Q-values are stored in
a tabular form for each (s,a) pair, and an update is performed at each step accordingly to eq. (2.4)
which is based on the Bellman Equation (see eq. (2.2)).

Qnew(s,a)←− Q(s,a)+α(rt + γ max
a′

Q(st+1,a′)−Q(st ,at)) (2.4)

The Deep Learning extension of RL is called Deep Reinforcement Learning (Deep RL), where
RL functions are approximated by Deep Neural Networks (DNNs). The most classic and funda-
mental Deep RL extension of Q-learning is the DQN algorithm, which was firstly introduced in
2015 [20].

In the present work, following the approach proposed by Mnih et al. [20], the Q-value function
Q(s,a) is approximated by a DNN, while the objective function is still based on the Bellman Equa-
tion (eq. (2.2)), and an experience replay buffer as well as a target network are used to guarantee a
stable training.

2.2 QCACHE

As a solution to the Smart Caching problem, we developed the RL-based QCACHE frame-
work. In its general form it is based on two distinct Q-Learning (or Deep Q-Learning) agents, as
reported in fig. 5, that take care of two different fundamental aspects, that is writing and removing
files:

• Addition agent: chooses whether to write or not a requested file

• Eviction agent: chooses whether to remove or not a cached file

The first implementation of QCACHE (SCDL QCACHE) has already been shown in a related
work [21] and it is based on a simple Q-Learning addition agent associated to LRU policy for
eviction. In this work, the approach is extended to the Deep RL world with the creation of the
DQN QCACHE, which exploits the DQN algorithm for both agents and will be described in detail
in the next sections, along with the SCDL approach.

2.2.1 SCDL QCACHE

The SCDL QCACHE [21] approach relies on the Q-Learning technique, since an ε-greedy
Q-Learning agent is used for the addition task, while files are evicted via the LRU policy. Each
file request corresponds to a specific input state s for the addition agent, and it is composed with
the basic information (features) taken from the file f statistics collected during the environment

4
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Figure 5: A schematic view of the QCACHE framework.

lifetime, enriched with information about the cache status. The features we are considering are: the
file size, the frequency, the delta time since the last request of the file, cache occupancy percentage
and cache hit rate. Moreover, since the same input state is considered as the next state, the agent
learns which action is the best for the current state in a way similar to that of a Contextual Bandit
approach but using the delayed rewards as stimuli of past decision traces. Of course, since the
number of states must be finite because the agents use a Q-Table to store Q-Values for each state-
action pair, the input features are discretized in a finite number of classes (using a simple binning
technique with ranges).

The system also takes into account the two cache watermarks (a high watermark Whigh and a
low watermark Wlow) which are set accordingly to the amount of available space: when the size of
the files stored in the cache reaches Whigh, the least recently used files are removed until Wlow is
reached.

As for the rewards, the SCDL algorithm assigns a positive or negative reward equal to the size
of the file requested according to the increase or decrease of the data read from the cache memory.

At the very beginning of the cache lifetime, the algorithm sets the value of ε to 1.0, which then
decays exponentially over time to a lower value of 0.1 while still being able to rise again thanks to
an unleash mechanism: when the agent is losing in performance (i.e. if the total reward score is
decreasing for 8 days in a row) the ε is reset to 1.0. The aim of this strategy is to make the agents
able to adapt automatically to new request flow situations. For the same reason, the learning rate
α is set to 0.9 and the discount factor γ is equal to 0.5, because we want to appreciate the request
changing patterns but without lost completely the past made choices.

2.2.2 DQN QCACHE

In the DQN QCACHE framework, both addition and eviction agents are implemented as DQN
agents, and each file request or each cached file, respectively, corresponds to a specific input state
s. When a file request comes in, the addition agent chooses whether that file has to be cached or not

5
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and every k requests, or if a high watermark Whigh is reached, eviction agent is iteratively applied
on every cached file choosing which one has to be evicted or kept.

The reward-giving process is based on the number of times a certain file is requested by users
after a choice has been made about it by one of the agents. That is, if we define as hit a request of
a file that is already present in cache, and as miss a request of a file that is not present in cache, the
reward is computed for both agents observing hwindow requests after the action, and considering the
size of that file. More specifically:

• if the original action was "keep-like" (i.e. store for the addition agent, notevict for the evic-
tion agent), the reward is:

r =

{
nhit · size, if nhit > 0

−size, otherwise
(2.5)

where nhit is the number of hits for that file in the next hwindow requests, and size is the size
of the file;

• if the original action was "notkeep-like" (i.e. notstore for the addition agent, evict for the
eviction agent), the reward is:

r =

{
−nmiss · size, if nmiss > 0

size, otherwise
(2.6)

where nmiss is the number of misses for that file in the next hwindow requests, and size is the
size of the file.

The state st input variables that are fed to both agents are only related to file statistics and
cache status, that is: file size, file frequency, the delta time since the last request of the file and
its datatype (e.g. data or Monte Carlo), cache occupancy percentage and cache hit rate. Every N
requests (N is equal to 30000 in the present study), the algorithm looks for actions for which the
hwindow time is elapsed: when a "terminated window" is found, the next state st+1 is defined (same
size of previous state st , frequency increased by one, same delta time, same datatype and current
cache occupancy and hit rate), the reward rt is computed and the 4-tuple (st ,at ,rt ,st+1) is stored in
the agent’s experience replay memory.

The decay of ε is exponential, starting from a value of 1 until reaching 0.1 as a lower limit,
ensuring an everlasting exploration component. DQN experience replay memory size is set to 1
million, whereas the discount factor γ value is 0.5. The target models are updated every 10000
iteration steps for both agents. hwindow is set to 100000 requests for addition and to 200000 for
eviction, and the eviction k is set to 50000 requests.

Moreover, a relatively small DNN is used (only two hidden layers with low number of neurons)
for both agents. All implementation hyperparameters are shown in table 1.

6



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
9

Reinforcement Learning for Smart Caching at the CMS experiment Tommaso Tedeschi

Parameter Value

Hidden layers 2 (16 and 32 neurons, sigmoid activation)

Output layer 2 neurons, linear activation

Optimizer Adam (lr = 0.001)

Loss function Huber (δ = 1)

Weights initialization Glorot Uniform

Batch size 32

Table 1: DQN QCACHE DNN parameters, valid for both agents.

2.3 Dataset and simulation

As previously stated, in order to get a first feedback on the effectiveness of these approaches
(before moving to a real testbed), we simulated caches with different sizes using data coming
from the real world. Thus, we used a dataset obtained from historical monitoring data about CMS
experiment analysis jobs in 2018 [22, 23] filtered for the Italian region: these data are used to
simulate daily file requests flow for all 2018. In order to give some hints about the complexity of
the problem, fig. 6 displays two plots showing the daily number of files and requests and the daily
average number of requests per file, respectively, as functions of the day of the year: it is clear that,
on average, the number of requests per file is low, thus resulting in a high variability.

Different cache sizes have been simulated: 100TiB, 200TiB, 500TiB and a bandwidth limit is
considered and set as a daily limit to 103 TiB. When the bandwidth limit is reached, the request is
processed as a remote call and is counted as a miss.

Besides, we use a Whigh equal to 95% of the cache size and a Wlow of 75% (only for SCDL
QCACHE and classic cache algorithms).

In the DQN QCACHE case, the ε decay rate is set in order to make sure that the first part
of the year is dominated by exploration (with higher ε values), while the second part is the one
where the agent tends to exploit the gained knowledge (with lower ε values). This behavior is
shown in fig. 7 that displays the daily mean value of ε as a function of the day of the year, plotted
for both the addition agent and the eviction agent, in DQN QCACHE 100TiB simulation. For
SCDL QCACHE, ε decay rate is much higher, but the unleash mechanism ensures a fast response
to environment changes.

2.4 Performance evaluation

In order to evaluate and compare the performance of our solution to those of classic caching
algorithm, we defined a series of quality metrics. In particular, defining readOnHitData as the in-
cremental sum of the size of data read from the cache (thus associated to hits), and writtenData and
deletedData as the incremental sum of the data size written and deleted by the cache respectively,
the cache quality metrics are:

• throughput: to evaluate the quality of a cache in fulfilling the client requests

7
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Figure 6: In the plot above: daily number of files and requests as functions of the day of the year.
In the plot below: daily average number of requests per file (divided in two categories: all, and the
ones requested more than once).

Figure 7: DQN QCACHE 100TiB simulation: mean ε daily value as a function of the day of the
year for the addition agent and the eviction agent, respectively.

8
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throughput =
readOnHitData

Nthroughput
(2.7)

• cost: to evaluate the operational cost of the cache

cost =
writtenData+deletedData

Ncost
(2.8)

• score: to evaluate the trade-off between the aforementioned metrics

score =
throughput

cost
(2.9)

Nthroughput and Ncost are normalization factors that are obtained using the same simulation described
above, but with an infinite cache size that accepts everything. The resulting readOnHitData value
coming from that simulation is the highest possible considering the same time window and the
dataset used. As a consequence, it is used as the Nthroughput normalizing factor. Moreover, we take
into consideration the 2 ·writtenData from that simulation as a baseline reference for the cost value
(using it as Ncost), since it represents the cost of a cache that writes and deletes all files requested
by the clients in a specific time window.

3. Results

The results of the simulations with the different cache sizes are shown in table 2 and in fig. 8.
More precisely, the daily values of the metrics defined above are averaged across all the year, and
QCACHE results are compared to those obtained with classic caching algorithms. The latter in-
clude a Write Everything approach for the addition task associated with different eviction policies:
LRU (Least Recently Used), LFU (Least Frequently Used), Size Big (biggest files are deleted first)
and Size Small (smallest files are deleted first). Results are sorted by score values.

The QCACHE approach shows the best performance in terms of score in all three cases. More-
over, DQN QCACHE outperforms SCDL QCACHE only with 100TiB and 200TiB cache sizes:
this could be related to the fact that DQN QCACHE parameters used for all simulations have been
optimized for 100TiB cache. Thus, DQN could be tuned better on higher cache sizes.

Nevertheless, these results show anyway that the QCACHE approach is able to reduce cost
while keeping throughput at a reasonable value at the simulation level (where to delete and write
are two “zero-time” operations). As a consequence, we expect that a lower cost has a big impact
in a real environment where fewer file deletion and writing operations will surely imply better
performances in terms of file serving.

9
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100 TiB

Algorithm Score Throughput Cost

DQN QCACHE 0.330.330.33 0.40 1.231.231.23

SCDL QCACHE 0.26 0.45 1.74

Write everything + LRU 0.19 0.500.500.50 2.66

Write everything + LFU 0.15 0.43 2.86

Write everything + Size Big 0.12 0.37 3.05

Write everything + Size Small 0.11 0.36 3.09

200 TiB

Algorithm Score Throughput Cost

DQN QCACHE 0.340.340.34 0.41 1.201.201.20

SCDL QCACHE 0.33 0.55 1.65

Write everything + LRU 0.24 0.590.590.59 2.40

Write everything + LFU 0.20 0.52 2.58

Write everything + Size Big 0.15 0.42 2.89

Write everything + Size Small 0.13 0.39 2.98

500 TiB

Algorithm Score Throughput Cost

SCDL QCACHE 0.510.510.51 0.72 1.41

Write everything + LRU 0.39 0.740.740.74 1.90

DQN QCACHE 0.35 0.41 1.161.161.16

Write everything + LFU 0.32 0.67 2.11

Write everything + Size Big 0.22 0.54 2.52

Write everything + Size Small 0.18 0.48 2.70

Table 2: Comparison of results (daily values averaged across the year). The best result for each
metric is displayed in bold.

10
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Figure 8: Throughput, cost and score as functions of cache size for all considered caching algo-
rithms.
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4. Conclusions

In this work, we presented how the Smart Caching problem in the CMS experiment context
can be addressed with the help of Reinforcement Learning methods. In particular, we explained
the QCACHE framework which is based on one or two Q-Learning agents for the addition and for
the eviction part.

Initial results, obtained by simulating caches using real data from CMS monitoring data filtered
for the Italian region, show that QCACHE approach achieves good results in terms of the trade-off
between operational cost and efficiency. More specifically, DQN QCACHE outperforms all other
algorithms in the case of small caches.

In the next future, we plan to optimize parameters for various cache sizes, with the enhance-
ment of the reward-giving process. We will also consider domain features as inputs for the agents
and perform simulations using data filtered for the US region. In the meantime, we are working on
a testbed setup in order to do testing in a real environment, which includes the time domain and
could give us a real feedback on how cache smartness impacts file serving.

12
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