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Change detection is an interesting task in the field of remote sensing, thanks to many useful
applications that range from land cover studies to anomalies’ observation (landslips, snowslides,
wide firewoods, floods, etc.). Satellites like Sentinel-2 provide a full coverage of our planet every
few days, but transmitting multispectral images of the same region multiple times within a small
time interval is not always an efficient operation. At the same time, the analysis of each image
on ground requires a considerable amount of time and efforts that might be reduced if knowing
in advance that a portion of the new data do not contain any additional information with respect
to data acquired in a previous time. Therefore, the idea of comparing onboard a new image
with an older one of the same region represents a powerful tool that can help to both reduce the
bottleneck effect occurring during the transmission of data to the ground stations and organize the
post-processing analysis in a more efficient way.

In this study, deep learning methods are used to perform the change detection task with Sentinel-2
multispectral images. A pre-existing dataset focused on urban changes is exploited for training
and validation purposes, while adopting two different approaches (semantic segmentation and
classification). In addition, a benchmark test is conducted on a low-power consumption GPU, the
NVIDIA Jetson AGX Xavier, to investigate throughput and speed performance with two different
inference frameworks, TensorFlow and NVIDIA TensorRT, as this energy-efficient platform is
suitable for the installation onboard the satellites in future missions.
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1. Introduction

Earth observation (EO) missions have known an unprecedented growth in the last few years. The
increased number of satellites launched into orbit and the augmented data production capabilities of
the advanced sensor technologies installed onboard the payloads have raised a complex challenge:
the data management and transmission. Processing the huge amount of data acquired everyday in
a more efficient way is becoming crucial indeed, as it requires innovative solutions both onboard,
where the mass memory storage is limited, and on the ground stations, where data are usually
available after a considerable time delay due to the bottleneck effect resulting from the limited
transmission bandwidth. The so-called “Big Data problem” has thus become a relevant feature of
the remote sensing related tasks.

The research of modern solutions to the challenging problem of Earth observation missions
has converged to two main approaches. First, the deep learning (DL) approach has the objective
of identifying data, in a more automated way, that carry important information, as it would be
useful to receive them on ground in shorter times. This strategy implies the introduction of a
pre-processing analysis onboard the payloads that involves relevant computational load. Indeed,
the execution time and the memory occupancy of DL algorithms depend on their complexity, and
become prohibitive when exploiting traditional CPUs only. In addition, the CPUs hosted onboard the
spacecrafts must handle important control operations, and most of the time they cannot be employed
for complex scientific analyses that would require considerable amounts of time. Therefore, the
second approach involves the usage of Graphics Processing Units (GPUs) as more specific dedicated
hardware. These devices have proven to be extremely efficient for DL tasks, as they can accelerate
the inference process by several orders of magnitude.

However, in-depth studies must be conducted to investigate how these new technologies and
methodologies can be exploited within the space scenario, where constraints in terms of energy
efficiency and memory management are particularly challenging.

2. Change detection for Earth observation

An interesting application that benefits from the combination of the DL approach with the
usage of heterogeneous computing in the field of remote sensing is the change detection (CD) task.
Change detection is the process of identifying differences in the state of an object or phenomenon
by observing it at different times [1]. Three main classes of changes can be distinguished:

* urban changes: new houses and infrastructures, roads, bridges, and all those events related
to human intervention;

* natural changes: vegetation growth, snow melting, and all those events related to climate and
seasonal variations;

» anomalies: floods, wildfires, earthquake disasters, and all those “occasional” events that

might be caused from both men and nature.

The large variety of applications, from land usage and surface monitoring to anomaly detection,
makes the CD studies a valuable resource of information. The change detection task applied to
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the development of urban areas [2, 3] is a very useful case study, aiming at monitoring, in a more
automated way, the land usage changes due to urban expansion and urban spread over the years.
It is important to remark that clouds and variations of Earth’s surface brightness condition are
not elements of interest for change detection studies and are usually targeted as “fake” changes;
therefore, any DL model trained for this task should not detect them as changes, which is not trivial.

One of the most common strategies adopted to perform the change detection task in EO is to
compare two satellite images of the same scene but acquired at different subsequent times. Such
comparison can be operated with different methodologies, including DL algorithms. In the onboard-
service approach, two different actions would be operated, depending on the amount of changes
detected by the algorithms. In the first scenario, a few changes are detected and the onboard system
would discard the new acquired image or put it in a “low-priority” queue for delayed download.
This action is motivated by the fact that new data do not provide additional information with respect
to data of the same scene acquired at a previous time. In the second scenario, instead, a significant
number of changes are detected and the onboard system would transmit new data to the ground
stations as fast as possible, as they might contain important information and should be submitted to
an in-depth analysis workflow. The objective of this study is twofold:

1. testing some DL models developed for change detection studies;

2. evaluating the performance of a low-power consumption GPU that could fit the space scenario
and its constraints.

The first task was performed by adopting two different approaches: semantic segmentation and
classification. The semantic segmentation approach is more suitable for in-depth analyses on the
ground stations, as the output of the model developed for this method is a binary map that labels each
pixel as changed or unchanged (pixel-wise classification). In order to obtain such a high-level output
format, the complexity of the algorithm is not negligible in the onboard scenario. The classification
approach, instead, aims to provide fast results at the cost of losing part of the information that
could be later recovered with post-processing; therefore, the output of the model is a single score
indicating if the image pair contains a significant number of changes or not (thus being suitable for
the execution onboard).

3. Dataset overview

In this work, data acquired by the Copernicus Sentinel-2 mission, developed by ESA, were used.
Sentinel-2 consists of a constellation of two twin satellites flying in the same Sun synchronous polar
orbit but phased at 180° at a mean altitude of 786 km, designed to give a high revisit frequency of 5
days at the Equator with a field of view of 290 km. It aims at monitoring variability in land surface
conditions through the acquisition of high-resolution multi-spectral images that can be exploited
for land cover/change classification, atmospheric correction and cloud/snow separation.

Each satellite carries a Multispectral Instrument (MSI) for data acquisition. The MSI measures
the Earth’s reflected radiance in 13 spectral bands: the visible and near-infrared (VNIR) and the
short-wave infrared (SWIR) ranges, with three different spatial resolutions (10 m, 20 m and 60 m).
A schematic view of Sentinel-2 MSI is shown in Figure 1.
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Figure 1: Sentinel-2 MSI internal configuration [4].

Even though large amounts of data are acquired by the Sentinel-2 mission and available for
free, most of the studies require that ground truths (or labels) must be generated with the help of
human eye, in a less automated way. Therefore, since the creation of a new dataset was not intended
among the objectives of this study and it represents a difficult and time-consuming operation, an
existing dataset was used for the purpose. The Onera Satellite Change Detection (OSCD) dataset [5]
consists of 24 Sentinel-2 L1C image pairs, covering regions of approximately 600 x 600 pixels at
10 m resolution (2 — 3 years time difference) with no (or few) clouds. Bands at 20 m and 60 m
resolution were upsampled to the resolution of 10 m such that all the channels have aligned pixels.
Pixel-wise ground truths are available for 14 samples only, in the form of binary “change maps”
(CMs). The dataset is focused on urban areas; thus, only urban changes are labeled, while natural
changes are ignored. A sample image pair (RGB-only) of the Pisa area is shown in Figure 2.

Figure 2: Sample Sentinel-2 image pair of the Pisa area. Left is the image “pre” (before changes), and right
is the image “post” (after changes) [5].
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4. Training strategy

The OSCD dataset is characterized by few images having large sizes; therefore, it is important
to operate a pre-processing step in order to exploit such data for training purposes. For each of
the 14 regions, patches of size 128 x 128 were generated by pointing to random pixel locations
(x, y) and cropping the images [x,x + a,y,y + a], where a = 128. All the 13 bands were used in
this work (thus each image of a pair has size 128 x 128 x 13). Every selection was operated such
that the resulting crop was totally included within the region borders. In addition, one or more
(depending on the changes content) random transformations were applied among the following
ones: rotation of 90°, 180°, 270° or 360°, vertical or horizontal flip. If the ratio between the number
of changed pixels and the total number of pixels was less than 10%, only one transformation among
the available ones was applied and the resulting patch was stored in the training dataset; otherwise,
all the six transformations were operated, one at time, and the six resulting images saved. The same
selections and transformations were applied to both the pre-changes and the post-changes images,
as well as to the associated ground truth. The random selection of the pixel locations and the applied
transformation(s) helps to reduce the effect of pixel correlation between patches generated from the
same initial image. A number of 500 patches were selected in each region, for a total of 13919
input pairs.

Another important aspect of this study was the choice of the loss function that should be
minimized during the learning process. Using a classical binary cross-entropy loss, that generally
provides good results for classification tasks (note that semantic segmentation is nothing but a
pixel-by-pixel classification), would not perform as well as expected. Indeed, the OSCD dataset
(and consequently the training dataset generated with the process described above) is unbalanced
with respect to the classes’ population. This is a typical feature of change detection datasets, due to
the fact that changes can be considered “rare events” as the number of changed pixels only cover a
small fraction of the total number of pixels in each image (about 1%). Therefore, a weighted binary
cross-entropy loss represented a natural choice for this task:

£hee == wit; logs; (1)
i

where i = 0,1 (binary classification), w; is the weight assigned to class i (inversely proportional
to class population, such that samples of the most populated class have a lower weight during the
calculation of the loss function), #; and s; are respectively the ground truth and the output with
respect to class i, both expressed in the form of one-hot vectors.

In addition, k-fold cross validation was adopted, representing a very useful method to evaluate
the performance of the deep learning models, especially when the dataset is small. Specifically,
the dataset was split into k=5 equal parts, with four of them used for training and the last part
reserved for validation. This procedure was repeated five times, each time using a different partition
of the dataset for training and the remaining samples for validation. In the end, five models were
trained and validated for each architecture, and average scores were evaluated in order to measure
the performance of the model architectures independently of the chosen partition.
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4.1 Metrics of interest

In order to evaluate the performance of the trained models, the following metrics have been

considered:
1 T T,
balanced accuracy = = L N ()
2\Tp + Fn Ty + Fp
T
precision = ﬁ (3)
T
recall = —+— 4)
Tp + Fn
Fle2x precision X recall )

precision +recall

where Tp are true positives, Ty true negatives, Fp false positives and Fy false negatives. In this
study, positives are changed pixels.

The balanced accuracy represents the mean value of two accuracy scores, evaluated on the
two classes separately (especially efficient for unbalanced datasets); the precision is the fraction
of positive predictions that are actually correct, while the recall quantifies the fraction of actual
positives that are correctly identified. In this work, recall was chosen as the most important score to
evaluate and to be maximized. Indeed, the general idea is that it is preferable to have more Fp than
losing real changes (resulting in a higher number of Fy ); however, FI-score was also considered,
as it combines both precision and recall to provide an extremely useful value that defines the model
performance.

5. Semantic segmentation approach

As stated above, the semantic segmentation approach aims to produce a binary change map
where each pixel is either O (unchanged) or 1 (changed), depending on the aligned pixels of the
two images acquired on the same region at different times. A UNet-like [6] architecture (fully-
convolutional neural network) is developed for the semantic segmentation approach and shown in
Figure 3. First, the pre-changes and the post-changes images are concatenated along the channel
axis; then, the CNN encoder operates feature extraction on the new image of size 128 x 128 x 26.
It consists of several convolutional layers and max pooling layers, which partially drop spatial
information that is later recovered by the CNN decoder through the skip-connections method
(concatenation of layers in the decoding part of the network with corresponding layers, of the same
size, from the encoding part). The CNN decoder reconstructs the binary change map by exploiting
features extracted by the encoding part of the network, providing the final output of the algorithm.

An important preliminary step is the selection of the change threshold. Indeed, in the output
change map each pixel has a value that ranges from 0 to 1; however, marking as “changes” those
pixels whole value is above 0.5 is not necessarily the best choice according to the objective of this
work. In order to maximize the recall value while keeping high the value of the F/-score too, the
average values (across the five models trained with cross validation) of the metrics were calculated
for different thresholds and shown in Figure 4. Selecting a threshold equal to 0.3 (which means
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Figure 3: Model architecture developed for the semantic segmentation approach. The two input images
are concatenated along the channel axis (EarlyFusion method); then, the CNN encoder extracts features at
different abstraction levels, while the CNN decoder reconstructs the output change map, recovering spatial
information through the skip-connection technique.
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Figure 4: Trends of the average values of the metrics of interest as a function of the change threshold, for
the semantic segmentation approach.

predicting as changes all those pixels, in the output change map, having values of 0.3 or larger)
maximizes the recall; furthermore, the precision value is larger than 90%, which indicates that the
fraction of false positives is still small and ensures the goodness of the model performance.

Figure 5 shows the validation scores obtained by the five models trained with cross validation
(left) and their average values (right) for the semantic segmentation approach. Error bars are
calculated as the standard deviation across the five models trained with cross validation. The results
are comparable with the state of the art [7]. The large error bar on the recall score is caused by
anomalous performance of one of the five models during the training process; despite regularization
techniques were used, small effects of vanishing gradient (loss function stuck in a local minimum)
might always occur.

5.1 Sample change maps

Two sample change maps reconstructed by the semantic segmentation model are here presented.
Figure 6 shows the comparison between the ground truth and the predicted change map on the Pisa
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Figure 5: (Left) Validation scores of the five models trained with cross validation. (Right) Average values
of the validation scores obtained by the five models. Error bars represent the standard deviation calculated
across the five models. Plots represents results obtained with the semantic segmentation approach.

Figure 6: Comparison between the ground truth (left) and the predicted change map (right) of the Pisa area.
In green are outlined some of the small changes that are not detected by the algorithm, while in red are
located some large changed structures correctly identified.

area (the pre-changes and post changes images have been shown in Figure 2). Most of the changes
are detected at the correct locations, but not perfectly outlined. This result indicates that a possible
overtraining effect is mitigated by regularization techniques, dropout and batch normalization layers
included within the network’s architecture. In addition, a few small changes are not detected, while
the reconstruction of large changed clusters can be improved by using proper post-processing
algorithms.

Figure 7 shows the image pair of the Hong Kong area included in the OSCD dataset, and
the comparison between the ground truth and the predicted change map. Also in this case, some
small changes are not detected while large structures are correctly outlined, suggesting that network
capacity of detecting changed regions is limited to clusters of a certain size. In addition, a region of
false positives is located in the bottom left part of the change map, which represents a “drawback”
effect of having selected a change threshold equal to 0.3. The choice of a higher change threshold
might exclude such structure from predictions at the cost of a lower recall value.
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Figure 7: From left to right: sample Sentinel-2 image pair of the Hong Kong area (pre-changes and post-
changes images) [5] and comparison between the ground truth and the predicted change map. In green are
outlined some of the small changes that are not detected by the algorithm, in red are located some large
changed structures correctly identified, while the blue square outlines a region of false positives.

6. Classification approach

The classification model was designed with speed and efficiency in mind; therefore, a smaller
architecture was chosen to perform change detection onboard future satellite missions. A classical
CNN was used for the purpose, and the architecture is shown in Figure 8. The two input images
are concatenated along the channel axis and features are extracted by the CNN encoder as in the se-
mantic segmentation approach. Then, a flattening operation is performed to achieve dimensionality
reduction, followed by a multi-layer perceptron part consisting of a few dense layers and a single
output neuron providing the final score.

Ground truth was defined based on the change map provided in the OSCD dataset. The ratio
between the number of changed pixels and the total number of pixels was again calculated; if its
value was larger than 0.15% (that, for images of size 128 x 128, corresponds to ~ 25 pixels), the
image pair was labeled as containing changes of interest (numerically 1, O otherwise). In addition,

Concag,
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m - -

| IR N—

i EarlyFusion method i

Figure 8: Model architecture developed for the classification approach. The two input images are con-
catenated along the channel axis (EarlyFusion method), and the CNN encoder extracts features at different
abstraction levels. Dimensionality reduction is then performed, and a few dense layers provide the final score
(single neuron output).
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Figure 9: Trends of the average values of the metrics of interest as a function of the change threshold, for
the classification approach.

since the output of the network is a single score ranging from O to 1, the change threshold represents
here the minimum value above which such output is considered to be equal to 1. The threshold was
set to 0.3 as in the semantic segmentation approach, as it provides the highest values for both recall
and FI-score (the latter being almost constant in the range 0.3 — 0.5). The average values of the
scores as a function of the change threshold are shown in Figure 9.

Figure 10 shows the validation scores obtained by the five models trained with cross validation
(left) and their average values (right) for the classification approach. Error bars are calculated as the
standard deviation across the five models trained with cross validation. High values of recall and
Fl-score are achieved, even though they strongly depend on the ground truth definition. Indeed,
in this work a simple choice was operated, without restrictive requirements on the changed pixels.
However, better choices could be adopted, such as requiring the presence of a large cluster of
changed pixels in the change map, etc. The results obtained with this simple approach are though
very promising, and future improvements might be considered for the execution of deep learning
algorithms onboard the satellites before downloading new data to the ground stations for further
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Figure 10: (Left) Validation scores of the five models trained with cross validation. (Right) Average values
of the validation scores obtained by the five models. Error bars represent the standard deviation calculated
across the five models. Plots represents results obtained with the classification approach.
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analyses. It is important to note that, due to its smaller architecture, the classification model can be
executed faster than the fully-convolutional network used for semantic segmentation, and requires
less memory occupancy. These two features make the CNN ideal for the execution onboard satellites
to allow a fast decision making process.

7. Benchmark test

The semantic segmentation and classification models were both tested with a low-power con-
sumption GPU: the NVIDIA Jetson AGX Xavier. This device delivers the performance of a GPU
workstation in an embedded module that features a 512-core Volta GPU with 64 Tensor Cores (ac-
celerating dense linear algebra computations), a 8-core ARM v8.2 64-bit CPU and 2 Deep Learning
Accelerator (DLA) cores (accelerating neural network execution efficiently). Seven power modes
are available, differing from each other for power consumption, number of active CPU cores, GPU
maximal frequency and activation status of DLA cores. Two power modes were selected in this
test: the 15 W default mode, optimal compromise for desktop-usage and low power consumption,
and the 30 W mode, which delivers high performance for scientific purpose.

The benchmark test was set with the following procedure. First, 50 warmup runs were
performed, to ensure that measurements were made with the same GPU’s initial status. Afterwards,
200 valid runs were operated, each of them consisting of performing inference with the selected
model on the entire batch of 42 image pairs, corresponding to the Pisa area included in the OSCD
dataset. Inference time was measured for each run and, finally, throughput was calculated with the
following formula:
nRuns X nIlmagePairs

Throughput = (6)

elapsedTime
The benchmark test involved two inference frameworks: TensorFlow, also exploited during the
training process of the models, and NVIDIA TensorRT, a software development kit for high-
performance deep learning inference on NVIDIA GPUs, delivering low latency and high throughput.
Furthermore, a comparison was made with the performance of TensorFlow on a NVIDIA Tesla
K40, a GPU commonly employed in computing data centers.

Throughput results are shown in Figure 11. NVIDIA TensorRT provides the highest throughput
values, providing speedup factors of 32x and 11x with respect to TensorFlow for the semantic
segmentation and the classification models respectively. The different speedup factors is related to
the design of the software, which can optimize complex architectures better than smaller ones (due
to the larger number of layers that can be optimized and accelerated at inference time). NVIDIA
TensorRT was only used with the GPU Jetson Xavier (in half-precision mode, FP16), since Tesla
K40 is designed for high performance and the throughput delivered by the inference accelerator
on this device was not interesting for the study conducted. For the semantic segmentation model,
TensorRT allows to perform inference on 233 and 292 images per second with power modes 15 W
and 30 W respectively, while for the classification model these values increase to 303 and 361 images
per second. In both cases, TensorRT on Jetson Xavier outperforms TensorFlow on Tesla K40, which
has about 10 times higher power consumption.

11
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Figure 11: Throughput results for the semantic segmentation (leff) and the classification (right) models.

8. Conclusions

Artificial intelligence brings a powerful set of tools in the field of remote sensing, as it allows the
satellites to perform operations and make decisions in an autonomous way. Furthermore, the interest
towards change detection is increasing in last few years, thanks to its useful applications, such as
climate and urban growth studies, emergency management and anomaly detection. However, efforts
are required to integrate heterogeneous platforms in the onboard system, as they can accelerate the
decision making process by several orders of magnitude. Low-power consumption devices must be
considered to fit the space scenario and its constraints, while improving the memory and energy
management onboard the future satellite missions.
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