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We calculate the unpolarized generalized parton distributions (GPDs) of sea quarks in the proton
at zero skewness by using a nonlocal chiral Lagrangian. The one loop contributions from pseu-
doscalar mesons, intermediate octet and decuplet baryons are included. The three dimensional
distribution of sea quark GPDs have been obtained. The flavor asymmetries for sea quarks at zero
momentum transfer, as well as strange form factors are obtained from the GPDs. The results are
comparable with phenomenological extractions and lattice QCD.
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1. Introduction

The parton distribution functions (PDFs) depict the longitudinal distribution of partons in
the hadron. Compared with PDFs, Generalized Parton Distributions (GPDs) [1, 2] contain more
fruitful information on the partonic structure of the nucleon, they can provide the three-dimensional
distribution of partons. In addition, one can obtain the corresponding form factors by integrating
GPDs with momentum fraction x.

Due to the non-perturbative property of QCD, it is very difficult to calculate GPDs from first
principles. In the recent years, although quasi-PDFs [3], pseudo-PDFs [4] and lattice good cross
sections [5] have been proposed, the simulation of GPDs on the Lattice is still in an early stage.
Chiral perturbation theory (χPT) is a powerful tool to study the hadron structures in the non-
perturbative region. Historically, most formulations of EFTs are based on dimensional or infrared
regularisation. Though EFT is a successful and systematic approach, it is only valid for describing
hadron properties at small momentum transfer [6]. In these years, we proposed a nonlocal chiral
effective Lagrangian which makes it possible to study the hadron properties at relatively large
momentum transfer [7, 8]. The nonlocal interaction generates the regulator which makes the loop
integral convergent. The obtained electromagnetic form factors and strange form factors of the
nucleon are very close to the experimental data up to Q2=1 GeV2. This method also has been
applied to calculate the d̄ − ū and s − s̄ flavor asymmetry in the proton [9, 10].

2. Splitting function and convolution formulism

The GPDs are defined by the matrix elements of bi-local field operators as∫
dλ
2π

e−ixλP+ ⟨p′ |q̄(λn
2
)/nq(−λn

2
)|p⟩ = ū(p′)

[
/nHq(x, ξ, t) +

iσµνnµqν
2M

Eq(x, ξ, t)
]
u(p), (1)

where nµ is the light-cone vector projection of the “plus" component of momenta. x = k+

P+ is
the quark longitudinal momentum fraction and P = p′+p

2 . ξ is the skewness parameter defined as
ξ = −q.n

2 = − q+

2P+ and t = (p′ − p)2. After integrating x, the form factors can be obtained as

Fq
1 (t) =

∫ 1

−1
dxHq(x, ξ, t), Fq

2 (t) =
∫ 1

−1
dxEq(x, ξ, t). (2)

The combination of the above form factors can generate the electric and magnetic form factors as

GN
E (t) = FN

1 (t) + t
4m2

N

FN
2 (t), GN

M (t) = FN
1 (t) + FN

2 (t). (3)

We first calculate the splitting functions which are defined by the matrix elements of the vector
currents at hadron level. The vertex is defined as∫

d4k Γ̃µ(k) = ⟨N(p′)|Jµ |N(p)⟩ = ū(p′)
{
γµFN

1 (t) + iσµνqν
2mN

FN
2 (t)

}
u(p) (4)

where Jµ is the electromagnetic current at hadron level and can be found in [12], and k is the
internal meson momentum. The splitting functions are related to the vertex as

ū(p′)
{
γ+ fj(y, t) +

iσ+νqν
2mN

gj(y, t)
}

u(p) =
∫

d4k Γ̃+j (k)δ(y −
k+

P+
) ≡ Γ+j . (5)
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For the case of zero skewness, the convolution formula for the Hq and Eq in the proton can be
written as

Hq(x, t) ≡ Hq(x, ξ=0, t) =
∑
j

∫ 1

0
dy

∫ 1

0
dz δ(x − yz) fj(y, t) qv

j (z, t), (6a)

Eq(x, t) ≡ Eq(x, ξ=0, t) =
∑
j

∫ 1

0
dy

∫ 1

0
dz δ(x − yz) gj(y, t) qv

j (z, t), (6b)

where qv
j (z, t) is the GPD of the valence quark q in the intermediate state j. The sum over j in

Eqs. (6) includes both electric and magnetic couplings, qj → Hq
j or Eq

j . More details can be found
in [12].

3. Numerical results

In the nonlocal chiral Lagrangian, the covariant regulator is naturely introduced to cut off the
UV divergence. The covariant regulator is chosen to be of a dipole form

F̃(k) =
(
Λ2 − m2

ϕ

Λ2 − k2

)2

, (7)

where mϕ is the meson mass. Λ is chosen to be around 1 GeV as in our previous calculation for
nucleon electromagnetic and strange from factors [7, 8].

The flavor asymmetry of sea quark GPDs are plotted in Fig. (1). One can see that xH d̄−ū and
xE d̄−ū are both positive for all x, i.e., the values for d̄ are larger than ū. The d̄ − ū asymmetry is
obvious at small−t and it decreases with increasing momentum transfer. Though the net strangeness
of the nucleon is zero, xHs is larger than xH s̄. For a given x, xHs−s̄ does not decrease monotonously
with −t. The maximum asymmetry of xHs−s̄ is at x between 0.2 and 0.3. For xE s−s̄, the sign
changes with x and one can see that the s − s̄ asymmetry is much smaller than the d̄ − ū asymmetry
in the nucleon.

The Dirac and Pauli form factors of the strange quark can be obtained from the x integrals of
GPDs Hs(x, t) and E s(x, t). We plot the electromagnetic form factors of the strange quark in Fig. (2)
which are the combinations of Dirac and Pauli form factors. The strange electric form factor versus
momentum transfer−t is plotted in the left panel in Fig. (2). The upper and lower lines are for results
withΛ =1.1 GeV and 0.9 GeV, respectively. The data with error bars are from the lattice simulation
at the physical pion mass [13]. When t = 0, the value of Gs

E (0) is 0, which is in agreement with
the zero strangeness of the nucleon. At finite momentum transfer, the strange electric form factor is
always small and positive. It first increases and then decreases slowly with the increasing −t. The
strange charge radius defined as < (rsE )2 >= 6 dGs

E (t)
dt |t=0 is −0.003 fm2 which is not sensitive to

Λ. As for the strange electric form factor, the absolute value of the strange magnetic form factor
will increase with larger Λ. The strange magnetic radius defined as < (rsM )2 >= 6 dGs

M (t)
dt |t=0 is

−0.023±0.007 fm2 for Λ = 1 ± 0.1 GeV. Our results are also consistent with the direct calculation
of the strange form factors with a nonlocal chiral Lagrangian [8].
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(a) (b)

(c) (d)

Figure 1: The 3D GPDs xH d̄−ū , xE d̄−ū ,xHs−s̄ and xE s−s̄ versus momentum fraction x and momentum
transfer −t with Λ = 1 GeV. The corresponding scale is µ2 = 1 GeV2.
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Figure 2: The strange electric form factor (left panel) and magnetic form factor (left panel) of proton versus
momentum transfer −t with 0.9≤ Λ ≤1.1 GeV. The data with error bars are the results of Lattice simulation
[13].
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