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In this talk recent progress in studying the short-distance properties of the hadronic light-by-light
contribution to the muon 6 − 2 is described. The intermediate and short-distance part is a major
contributor to the error of the theoretical prediction as described in the recent white paper [1].
We have shown that the massless quark-loop is the first term in a systematic expansion at short-
distances, a result already used in thewhite paper. Newer results conclude that both nonperturbative
and perturbative corrections are under control. The talk describes these developments and how
they fit in the total theoretical prediction for the muon 6 − 2.
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LO-HVP

@1↗ @2↑ @3↖

@4↓

HLbL
Figure 1: The LO-HVP and HLbL contributions shown schematically. The arrowed line is the muon, wiggly
lines indicate photons and the blobs indicate hadronic contributions.

Long distance Short and medium distance
c0 (and [, [′) pole 93.8(4.0) 10−11 Charm (beauty, top) loop 3(1) 10−11

Pion and kaon box (pure) −16.4(2) 10−11 Axial vector 6(6) 10−11

cc-rescattering −8(1) 10−11 Short-distance 15(10) 10−11

Table 1: The main contributions to the phenomenological evaluation of HLbL as estimated in [1]. Scalars
below 1 GeV are included in cc-rescattering. Scalars above 1 GeV are small.

1. Introduction
There is a long standing difference between the Standard Model (SM) prediction [1] for the

muon anomalous magnetic moment 0` = (6 − 2)/2 and the experimental measurement [2] at
BNL, recently confirmed by the experiment at FNAL [3, 4]. The theoretical prediction, 0("` , and
experimental average, 04G?` , give a difference Δ0` = 251(59) × 10−11. corresponding to 4.2f.

The theoretical error is dominated by two hadronic contributions, the lowest order hadronic vac-
uum polarization (LO-HVP) and the hadronic light-by-light contribution (HLbL), shown schemati-
cally in Fig. 1. The higher order hadronic, electroweak and QED contributions do not significantly
contribute to the theoretical error. The error at the moment is dominated by the LO-HVP but
improvements on both the dispersive and lattice calculations are expected.

The HLbL contribution and its error as estimated in the white paper [1] are 0�!1!` =

92(18) 10−11. Improvements since then include an improved lattice QCD calculation [5] com-
patible with the earlier lattice results [6] and [1]. The main problem with the HLbL calculation
is that, as shown in the right figure of Fig. 1, its evaluation always has one very low momentum,
@4, i.e. the external magnetic field, and momenta @1, @2, @3 which span the entire range, both low
and high. For a long time this only allowed for model calculations, see e.g. [7–12]. More recently
[13, 14] produced a dispersive method allowing better control of the long-distance parts. Tab. 1
summarizes the phenomenological parts of the HLbL from the white paper [1]. The long distance
and heavier quark contributions are under good control. The axial-vectors and the short-distance
part provide the bulk of the error. Their errors were added linearly in [1] and include a guesstimate
of the overlap between the short-distance from the quark-loop and the other contributions, including
from other resonances above 1 GeV. The work described here [15–17] will allow to reduce the error.

Short-distance constraints can be used in many ways, we discuss those for the underlying object
in HLbL, the derivative at @4 = 0 of the four-point function of four electromagnetic currents:

Π`a_f = −8
∫
34G34H34I4−8 (@1 ·G+@2 ·H+@3 ·I)

〈
)

(
9 ` (G) 9 a (H) 9_(I) 9f (0)

)〉
(1)

In the notation of [14] the contribution to 0HLbL` comes via
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Figure 2: (a) The (constituent) quark-loop. (b) The quark-loop with an insertion of the quark-antiquark
vacuum-expectation-value. (c) An insertion of the back-ground field. (d) An example of a gluonic correction.
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Figure 3: The contribution with &8 ≥ &min for (a) "& = 0 and "& = 0.3 GeV, from [1]; (b) the massless
quark-loop (LO) and the gluonic correction (NLO) and its uncertainty due to varying U( , from [17].

Π`a_f =

54∑
8=1
)
`a_f

8
Π̂8 ,

XΠ`a_f

X@4d

����
@4=0

=

54∑
8=1

X)
`a_f

8

X@4d
Π̂8

�����
@4=0

, &2
3 = &

2
1 +&

2
2 + 2&1&2g, (2)

0HLbL` =
2U3

3c2

∫ ∞

0
3&13&2&

3
1&

3
2

∫ 1

−1
3g

√
1 − g2

12∑
8=1
)̂8 (&1, &2, g) Π8 (&1, &2, g) . (3)

The 12 Π8 can be obtained from the Π̂8 for 8 = 1, 4, 7, 17, 39, 54. We use &8 · & 9 = −@8 · @ 9 .

2. Constituent quark-loop and first attempt: naive OPE
The constituent quark-loop was used for full HLbL estimates since the 1970s and was often

recalculated. It was used in [8] for a simple match with short-distances. The total contribution
with "& = 0.3 GeV is 0HLbLQ` = 54 · 10−11 and above 1 GeV only 12 · 10−11. Massless above 1 GeV
is 17 · 10−11. One result is that the latter is the first term in a well defined QCD operator-product-
expansion (OPE). The &min-dependence is shown in Fig. 3(a) and is 1/&2

min as expected.
The usual OPE applied to (1) puts all currents close together or assumes that all |&8 · & 9 | are

large. We then take the derivative w.r.t. @4 and send @4 → 0. The simple quark-loop of Fig. 2(a)
is well defined, with &2

1, &
2
2, &

2
3 ≥ &

2
min � Λ2

QCD. The loop integration over ? damps the infrared
(IR) divergence. The problem comes when we try to add higher orders in the OPE, e.g. a vacuum
expection value contribution shown in Fig. 2(b). The thick propagator becomes divergent when we
send @4 → 0. This method cannot be used to obtain a proper OPE for the HLbL contribution to 0`.

3. OPE in a background field
The same problem with limits appeared in the QCD sum rule calculations for electromagnetic

radii and magnetic moments [18, 19], solved by doing the OPE in a background field. We treat
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Order Contribution &min = &min =

1 GeV 2 GeV
1/&2

min quark-loop 1.73 · 10−10 4.35 · 10−11

1/&4
min

quark-loop,
<2
@

−5.7 · 10−14 −3.6 · 10−15

-2,< −1.2 · 10−12 −7.3 · 10−14

1/&6
min -2,<3 6.4 · 10−15 1.0 · 10−16

-3 −3.0 · 10−14 −4.7 · 10−16

-4 3.3 · 10−14 5.3 · 10−16

-5 −1.8 · 10−13 −2.8 · 10−15

-6 1.3 · 10−13 2.0 · 10−15

-7 9.2 · 10−13 1.5 · 10−14

-8,1 3.0 · 10−13 4.7 · 10−15

-8,2 −1.3 · 10−13 −2.0 · 10−15

(a)

Quark- Gluon corrections
loop ( UB

c
units)

Π̄1 0.0084 −0.0077
Π̄2 13.28 −12.30
Π̄3 0.78 −0.87
Π̄4 −2.25 0.62
Π̄5 0.00 0.20
Π̄6 2.34 −1.43
Π̄7 −0.097 0.056
Π̄8 0.035 0.41
Π̄9 0.623 −0.87
Π̄10 1.72 −1.61
Π̄11 0.696 −1.04
Π̄12 0.165 −0.16
Total 17.3 −17.0

(b)
Table 2: (a) Numerical results for the massless quark-loop and the contributions from condensates. Table
from [16]. (b) Numerical results for the twelve differentΠ8 contributions from the quark-loop and the gluonic
corrections in units of 10−11 and 10−11U(/c. Table from [17].

the @4-leg as a constant background field and do the OPE with this. IR divergences are absorbed
in condensates and the expansion where the three other currents are close, &2

1, &
2
2, &

2
3 � Λ2

QCD,
can be done. A new condensate is the magnetic quark-susceptibility -@, 〈@̄fUV@〉 ≡ 4@�UV-@ .
Pictorially one replaces Fig. 2(b) with Fig. 2(c). The IR divergence in Fig. 2(b) is absorbed via -@

The first term in this expansion is the massless quark-loop [15], the next term is proportional to
the quark-mass and the magnetic susceptibility. More details, including the detailed treatment of the
IR divergences, and the expansion including the first three orders are in [16]. As an example of the
IR interplay, the<2

@ corrections to the quark-loop mix with the magnetic susceptibility contribution.
Using phenomenological estimates or lattice calculations, values for all condensates were

obtained in [16]. The contribution to 0` is shown in Tab. 2. The main message is that all higher
orders are small because of small quark-masses and condensates for a lower cut-off above 1 GeV.

4. Perturbative corrections and Melnikov-Vainshtein limit
Since the nonperturbative corrections were small, the last place where large corrections might

exist are the perturbative corrections, i.e. gluonic corrections to the massless quark-loop as in
Fig. 2(d). We used the method of master integrals, all integrals are known analytically [20], and
dimensional regularization. IR and UV divergences cancel. Results and more details are in [17].
Numerical instabilities appear in the expressions near _ = &4

1+&
4
2+&

4
3−2&2

1&
2
2−2&2

2&
2
3−2&2

3&
2
1 =

0 but one can expand analytically to solve this. The full expressions and all expansions are in the
supplementary material of [17]. Numerical results are shown in Tab. 2(b). Corrections are typically
of order −10%. The main uncertainty, the band in Fig. 3(b), is the value of U( .

A constraint was derived in [21] for two of the @2
8
much larger than the third. Consequences are

very strong because of the anomaly. Recent discussions are in [22–28]. In particular, the massless
quark-loop reproduces this constraint [17, 25] as argued earlier [29]. The short-distance gluonic
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corrections to this constraint, see [23], is correctly reproduced by our gluonic corrections.

5. Conclusions
We studied the short-distance contributions for HLbL for the muon 6 − 2. We have shown that

this can be done properly in QCD and found that there are no unusually large corrections.
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