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Applying Neural Importance Sampling to gluon scattering
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In this talk we report on a novel approach for the integration of scattering cross sections and the
generation of partonic event samples in high-energy physics, originally presented in [1]. It is
based on an importance sampling algorithm which includes the use of neural networks in order
to overcome typical shortcomings of conventional approaches. At the same time, a potential
pitfall of neural networks in the context of phase-space sampling, namely mappings that are non-
bĳective after trainings with finite data sets, is avoided by employing the technique of Neural
Importance Sampling. With this, full phase-space coverage and the correct reproduction of the
target distribution is guaranteed even for limited training statistics. We study the performance gains
of our implementation for a prototypical high-energy physics example, namely gluon scattering
into three- and four-gluon final states.
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1. Introduction

Matrix element generators in HEP are often limited by the performance of their phase space
(PS) sampler. Insufficient mappings of the target distribution result in large fluctuations of the
event weights and correspondingly a large number of target-function evaluations when generat-
ing unweighted events. Typically the sampling performance deteriorates significantly with the PS
dimensionality/particle multiplicity [2], and the complexity of the integrand arising from inter-
mediate resonances, regularised singularities, quantum-interference effects, or non-trivial PS cuts
that the integrator can not adapt to. Recently, there has been growing interest to employ modern
machine-learning techniques to this problem of PS sampling in particle physics, cf. [3–7]. In this
talk, we discuss potential pitfalls when extending or replacing sampling methods using neural net-
works (NN), and we present and benchmark a novel sampler based on Neural Importance Sampling
(NIS) [8–10], which was initially proposed in the context of rendering 3D scenes. This talk is based
on our work in [1], see therein for additional details. An independent study of applying NIS to
high-dimensional (HEP) integration problems has been simultaneously presented in [11, 12].

2. Neural Importance Sampling with Coupling Layers for High-Energy Physics

A sampling method used for event generation should fulfil three requirements. First, the MC
sample should converge to the true target distribution in the entire PS in the limit of infinite sampling
statistics. This should be guaranteed, even if training samples used to optimise the sampler have
finite statistics and thus can not provide full coverage. Secondly, the method should be general
and self-adaptive, minimising the need for manual intervention. Finally, the produced samples
should consist of uncorrelated events. Standard sampling methods such as VEGAS [13] fulfil these
conditions by construction. ForNN-assisted samplingmethods however, it can be non-trivial to fulfil
them all, in particular the first one. In Ref. [14] it has been cautioned against the use of Generative
Adversarial Networks (GANs) to extrapolate from finite training statistics to large event samples
for physics analysis. While GANs (and NNs in general) can be similarly effective to add statistical
power to a finite training data set compared to a low-parameter fit [15], and a recent study indicates
that a careful NN training procedure can give a map that is bĳective to a good approximation [16],
caution must be applied in particular in the tails of the generated distributions. In [1], we analyse
some previous network-based sampling proposals [3, 4] along these lines, finding that full PS
coverage and hence a reproduction of the true distribution is indeed not always guaranteed.

We therefore choose to use NIS, which meets all of the above requirements. Here, the
PS mapping is optimised through bĳective maps called coupling layers, which get adjusted by
NNs, as initially proposed in [8]. We employ a piecewise quadratic coupling layer structure, first
suggested in [9]. Note that the usage of coupling layers for importance sampling has also been
studied in [10]. The way coupling layers compose mappings gives a computationally very cheap
Jacobian determinant, only growing linearly with the number of dimensions, while at the same time
allowing arbitrarily complex mappings that are highly non-linear, e.g. given by deep NNs. Since
the invertibility property of NIS allows its use within multi-channel sampling, we can use it as a
drop-in replacement of the standard VEGAS optimisation often used within multi-channel Monte
Carlo integration in HEP. The input space is a 3-dimensional hypercube of uniformly distributed
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3 jets 4 jets

Sample nuw �# [pb] %acc nuw �# [pb] %acc

Uniform 3.0 % 24806(55) 89 % 2.7 % 9869(20) 57 %
VEGAS 27.7 % 24813(23) 32 % 31.8 % 9868(10) 17 %
NN 64.3 % 24847(21) 34 % 33.6 % 9859(10) 16 %

Table 1: Results for sampling the total cross section for gluonic jet production at
√
B = 1 TeV, i.e. the MC

integral �# is an estimator for fgg→= jets. Besides �# and its MC error, we also show the unweighting
efficiency nuw and the acceptance rate %acc, comparing unoptimised sampling (“Uniform”) to VEGAS- and
NN-based sampling. All samples consist of # = 106 non-zero weight events.

random numbers, which is then warped by the coupling layers to better match the integrand. Note
that we do not sample points directly in momentum space, which would require the NNs to exactly
adhere to four-momentum conservation and on-shell conditions. Instead, the individual channels
in the multi-channel algorithm employ subsequent (channel-dependent) transforms to translate the
warped random numbers into momenta. This guarantees that physical constraints are automatically
fulfilled. The NN training minimises the Pearson j2-divergence between the target function and the
sample distribution via gradient descent, using minibatches of sampling points for each iteration.
For more details on the training procedure, please refer to [1].

3. Results

We compare our new implementation based on NIS with a reference implementation using
VEGAS. While [1] also discusses top-quark decays and lepton-induced top-quark pair production
and decay, we focus here on gluon-induced multi-jet production, i.e. gg→ = gluons with = = 3, 4.
The channels of the multi-channel are built according to the QCD antenna radiation pattern realised
by the HAAG algorithm [17, 18]. For = = 3, HAAG constructs 24 channels. However, most are
related by a permutation of the momenta, and hence we employ mappings to reduce the number of
(truly independent) channels to 2. For = = 4, HAAG constructs 120 channels, which we reduce to 3
independent ones. Note that one neural importance sampler (with embedded NNs) or alternatively
one VEGAS sampler is used per channel. However, during the training, we optimise all neural
networks simultaneously, see [1] for further details. Each neural importance sampler consists of 5
coupling layers with 32 bins used for the piecewise quadratic mapping.

Jet cross sections are defined using the anti-:C algorithm [19]with ' = 0.4. The renormalisation
scale is set to `' =

√
B. For the cross section regularisation, HAAG uses a cut-off parameter which

we set to B0 = 900 GeV2. On the final state we instigate a cut on the invariant masses of all gluon
pairs of <8 9 > 30 GeV, and the transverse momenta of all particles, ?⊥,8 > 30 GeV. Accordingly,
the optimisers have to deal with “dead” regions in PS and therefore non-continuous integrands.

In Tab. 1, we show the results of sampling the cross section without optimisation (“Uniform”),
with VEGAS optimisation and with our NIS-based “NN” optimisation. The unweighting efficiencies
nuw = Fmax/〈F〉 for = = 3, 4 are about 3 % for the unoptimised sampling, and increase to about
30 % by VEGAS optimisation. The NN optimisation surpasses VEGAS for = = 3 by a factor of
two, whereas for = = 4 we find no significant improvement over VEGAS. Both VEGAS and NN
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Figure 1: Event weight distributions for the three samples as described in Tab. 1.

optimisation give similar improvements for the estimate of the standard deviation for = = 3 and
= = 4. We also quote in Tab. 1 the acceptance rate %acc = #/#trials, i.e. the probability that a
proposed point passes the PS cuts and hence contributes to the integral. In our production setup, the
cuts regularise the matrix elements, the integrand will therefore be large close to these boundaries.
Consequently, both optimisations lead to a decrease in %acc, as they enhance the sampling rate close
to the cuts, with the side effect of proposing points also outside of the fiducial volume.

The resulting event weight distributions for the three samples are presented in Fig. 1. For 3-jet
production, we find that NN optimisation gives the most strongly peaked distribution. The situation
is more ambiguous for 4-jet production. Both VEGAS and NN optimisation significantly sharpen
the distribution, in fact providing quite similar outcomes. However, while NN optimisation results
in a slightly more pronounced peak compared to VEGAS and a slightly faster fall-off towards large
weights, it depletes less quickly towards small weights. In particular for the 3-jet case it might
be surprising that we find a comparable estimate for the standard deviation for NN and VEGAS

optimisation, although the distribution is narrower in the NN case. This apparent discrepancy
originates from the higher fraction of zero-weight events for the optimised samples, i.e. events
that fall outside the physical PS volume and are thus not accepted. The standard deviation of the
integral estimate is in such a case largely determined by the corresponding acceptance rate, since
the weight distribution will then actually contain two peaks: the one at a finite value and one at
F = 0. A further improvement in the sampling accuracy would therefore require a modification
of the optimisation to reduce the number of discarded points. The unweighting efficiency is not
affected by %acc < 1, since it takes into account non-zero weights only.

In this talk we have presented selected results from our recent study [1], applying NIS to optimise
PS sampling in MC integration problems in high-energy physics. The method easily surpasses
VEGAS in all performance measures for 3-jet production, while we find them to be on par for the
more complex 4-jet production. These findings are consistent with those in a parallel study [11] for
V + jets production. The results for the more basic examples are very promising and indicate that
conventional optimisers such as VEGAS could potentially be outperformed by NN-based approaches
also for more complex problems in the future.
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