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Constructing PineAPPL grids on hardware accelerators
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In this proceedings we demonstrate how to implement and construct the PineAPPL grids, designed
for fast-interpolation of Monte Carlo simulation with electroweak and QCD corrections, using
the VegasFlow framework for Monte Carlo simulation on hardware accelerators. We provide an
example of synchronous and asynchronous filling operations of PineAPPL grids fromMonte Carlo
events generated by VegasFlow. We compare the performance of this procedure onmultithreading
CPU and GPU.
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1. Introduction and implementation

The fast evaluation of theoretical predictions for a generic set of parton distribution functions [1]
and scale variation choices is a common request that has been addressed by generic tools such as
APPLGRID [2], FastNLO [3] and more recently PineAPPL [4, 5]. In particular, the technology
developed by the PineAPPL library provides the possibility to produce fast-interpolation grids of
physical cross sections, computed with a general-purpose Monte Carlo generator, accurate to fixed
order in the strong, electroweak, and combined strong-electroweak couplings.

In order to construct and use PineAPPL grids we need to interface the code to a Monte Carlo
simulation library that generates event weights and kinematics configurations for the grid filling
procedure. In this proceedings we use VegasFlow [6, 7], a Monte Carlo simulation framework with
support for multithreading CPU, single-GPU and multi-GPU setups. The choice of VegasFlow
relies on high efficiency when performing simulation thanks to its flexibility to distribute event
generation across multiple hardware accelerators. Furthermore, when combined to PDFFlow [8, 9],
it is possible to perform a full simulation of physical processes with quite competitive performance
in comparison to specialized codes.

However, the integration of PineAPPL, or any other external library that expects input from
VegasFlow, may generate a natural performance deterioration of theMonte Carlo simulation thanks
to operations that may not benefit from the multithreading paradigm of VegasFlow on hardware
accelerators. PineAPPL is designed for CPUs and provides to the developer the possibility to be
distributed in a multithreading configuration, however it does not provide a GPU implementation
and methods for asynchronous grid filling.

In order to provide a solution for such a problem, in Figure 1 we represent schematically the
approach proposed here. The Monte Carlo simulation is driven by the VegasFlow framework,
which takes care of generating events and distributing them among available devices such as CPUs
and/or GPUs. Each batch of events evaluates a large number of matrix element weights and phase
space configurations which are subsequently sent to the PineAPPL library for the construction of
fast-evaluation grids. In a multithreading CPU and GPU environment, a sequential synchronous
fill operation may reduce drastically the performance of the Monte Carlo simulation, by increasing
the total amount of time needed to achieve precise predictions. In order to avoid such a perfor-
mance deterioration, we propose to detach the computation between the VegasFlow Monte Carlo
event simulation from the PineAPPL grid filling operation by creating a CPU thread pool that
asynchronously queues and executes the operations required by PineAPPL.

From a technical perspective all steps presented in the previous paragraph can be achieved using
the Python interfaces of VegasFlow and PineAPPL. In particular, we can generate Monte Carlo
events using the eager mode feature in VegasFlow and including an asynchronous job execution
CPU thread pool using the standard Python multiprocessing module1.

2. Measuring performance

In order to test the asynchronous approach proposed in the previous section, we use VegasFlow
with a simplified simulation of Drell–Yan, which only calculates the leading-order matrix element

1https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
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Figure 1: Schematic representation of the VegasFlow and PineAPPL integration. The evaluation of Monte
Carlo events is driven by the VegasFlow framework. At the end of each event, a separate CPU thread pool
receives all the required information to fill a PineAPPL grid. The procedure is asynchronous between the
Monte Carlo integration and grid fill.

for the photon-induced process, WW → ℓℓ̄. The simple structure of the corresponding matrix
element and phase space allows to easily test a wide range of phase-space points. Furthermore, the
evaluation is cheap enough to highlight the overhead of filling a PineAPPL grid, which is basically
a constant of the number of partonic processes; when simulating more complex processes, we
therefore expect the relative overhead to be much lower.

At the end of each batch of events, we compute a PineAPPL grid for the |Hℓℓ̄ | observable. In
terms of physical cuts we consider a single invariant-mass slice of a CMS 8 TeV analysis [10], which
requires 60 < <ℓℓ̄ < 120 GeV, ?ℓ

)
> 14 GeV, |Hℓℓ̄ | < 2.4 and |Hℓ | < 2.4. From the VegasFlow

point of view we tested the performance by increasing number of events before cuts from 103 to
109, using the default maximum number of events per device of 106.

In the left plot of Figure 2 we show the total computing time of the Monte Carlo simulation for
an increasing number of events. We compare runs without PineAPPL (green) to the synchronous
(blue) and asynchronous (orange) approaches with PineAPPL. Similarly, on the right plot of Fig-
ure 2, we present performance results on GPU. The synchronous approach produces a performance
deterioration up to ≈ 30% on CPU and ≈ 80% on GPU, while the asynchronous approach reduces
the overall deterioration by ≈ 10%. The main advantage of the asynchronous approach is the possi-
bility to detach the Monte Carlo event simulation from the operations related to the construction of
PineAPPL grids. From the Monte Carlo simulation perspective we observe a negligible overhead
due to the submission of asynchronous jobs. On the other hand, the CPU thread pool, used by the
asynchronous job, can be further optimized depending on the available system resources. Note that
the system used for the performance measurement in Figure 2 has a fast clock CPU thus the expect
larger performance deteriorations on average professional grade hardware.
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Figure 2: Performance results for the Monte Carlo simulation of photon-induced Drell–Yan channel using
VegasFlow and PineAPPL on CPU (left) and GPU (right). The synchronous approach produces a perfor-
mance deterioration up to ≈ 30% on CPU and ≈ 80% on GPU, while the asynchronous approach reduces the
overall deterioration by ≈ 10%. Note that the asynchronous approach detaches the Monte Carlo integration
from the grid filling operations providing further options for optimization.

3. Outlook

The example presented in this proceedings shows that an asynchronous approach to filling fast-
interpolation grids using PineAPPL is feasible and provides a useful interface to detachMonte Carlo
event simulation from sequential operations without introducing a strong performance deterioration.

We have compared the performance of synchronous and asynchronous approaches on CPU
and GPU for a leading-order Drell–Yan photon-induced simulation. As expected, the performance
from an asynchronous approach outperforms the sequential synchronous mechanism and does not
introduce overheads to the Monte Carlo event simulation.

The code for the exercise presented in this manuscript is public available at the VegasFlow
repository [6, 7] inside the examples folder.
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