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1. Introduction

This article is an introduction to the intersection theory for twisted homology and cohomology
groups based on results in [AK], [CM], [KY1], [M1] and [Y2].

The hypergeometric series F(a, b, c; x) is defined by

F(a, b, c; x) =
∞∑
n=0

(a)n(b)n
(c)nn!

xn,

where x is a main variable in D = {x ∈ C | |x | < 1}, a, b, c are complex parameters with
c , 0,−1,−2, . . . , and

(a)n = a(a + 1) · · · (a + n − 1), (a)0 = 1.

Under Re(a),Re(c − a) > 0, F(a, b, c; x) admits an Euler type integral

F(a, b, c; x) = Γ(c)
Γ(a)Γ(c − a)

∫ 1

0
ta(1 − t)c−a(1 − t x)−b dt

t(1 − t) . (1)
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Here we assign a branch of the multi-valued function u(t) = ta(1 − t)c−a(1 − t x)−b in (1) on the
integration interval (0, 1) by arg(t) = arg(1 − t) = 0, and −π/2 < arg(1 − t x) < π/2 for x ∈ D.

We separate u(t) = ta(1 − t)c−a(1 − t x)−b and φ =
dt

t(1 − t) from the integrand in (1), and regard

this integral as a pairing between the 1-form φ and a pair I ⊗ uI (t) of I = (0, 1) and a branch of
uI (t) = ta(1 − t)c−a(1 − t x)−b on I. With respect to this, any branch uI (t) on I vanishes at the
boundary of I under Re(a),Re(c − a) > 0, and the exterior derivative d acts on u(t)φ as

d(u(t)φ) = u(t) · dφ + du(t) ∧ φ = u(t) ·
(
dφ +

du(t)
u(t) ∧ φ

)
= 0.

Motivated by the above, we define twisted homology and cohomology groups associated with
an Euler type integral of Lauricella’s hypergeometric series FD in m-variables given in (8) as
follows. We set a multi-valued function

u(t) = tα0(t − x1)α1 · · · (t − xm)αm (t − 1)αm+1

on the space Tx = P
1 − {x0, x1, . . . , xm, xm+1, xm+2} for mutually different fixed complex variables

x0 = 0, x1, . . . , xm, xm+1 = 1, xm+2 = ∞ with parameters

α = (α0, α1, . . . , αm, αm+1, αm+2) ∈ (C − Z)m+3, αm+2 = −α0 − α1 − · · · − αm − αm+1.

Let Cu
k

be the space of finite linear combinations
∑

j aj∆j ⊗ u∆ j (t), where aj ∈ C, ∆j is a k-simplex
in Tx and u∆ j (t) is a branch of u(t) on ∆j . A twisted boundary operator is given by the linear
extension of

∂ω : Cu
k ∋ ∆ ⊗ u∆(t) 7→ ∂∆ ⊗ u∆(t)|∂∆ ∈ Cu

k−1 (k = 0, 1, 2),

where ∆ is a k-simplex in Tx , ∂ is the topological boundary operator, and u∆(t)|∂∆ is the restriction
of u∆(t) to ∂∆. A twisted homology group is defined as the quotient

H1(Cu
• , ∂ω) = ker(∂ω : Cu

1 → Cu
0 )/∂ω(C

u
2 ).

On the other hand, we set a single-valued rational 1-form ω on Tx by the logarithmic exterior
derivative of the multi-valued function u(t):

ω = d log(u(t)) = du(t)
u(t) =

m+1∑
j=0

αjdt
t − xj

.

A twisted cohomology group is defined as the quotient

H1(E•,∇ω) = ker(∇ω : E1 → E2)/∇ω(E0)

by a twisted exterior derivative

∇ω : Ek ∋ ψ 7→ (d + ω∧)ψ ∈ Ek+1 (k = 0, 1, 2),

where Ek is the space of smooth k-forms on Tx . These groups are dual to each other by the pairing

⟨ψ, γ⟩ =
∑
i

ai

∫
Ii

uIi (t)ψ,

3
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whereψ is a∇ω-closed 1-form on Tx satisfying∇ωψ = 0 and γ =
∑

i ai Ii⊗uJi (t) is a twisted 1-cycle
satisfying ∂ω(γ) = 0. We show that the dimensions of these groups are equal to −χ(Tx) = m + 1,
where χ(Tx) is the Euler number of Tx .

By using ∂−ω and ∇−ω given by u−1(t) = 1/u(t) instead of u(t), we have H1(Cu−1
• , ∂−ω)

and H1(E•,∇−ω). There are an intersection form between H1(Cu
• , ∂ω) and H1(Cu−1

• , ∂−ω), and that
between H1(E•,∇ω) and H1(E•,∇−ω). We explain how to evaluate intersection numbers for twisted
1-cycles in §6 and those for ∇±ω-closed 1-forms in §8.

It is known that the intersection forms are compatible with the natural pairings between twisted
homology and cohomology groups. This compatibility yields a twisted period relation, which relates
intersection numbers and period integrals regarded as some kinds of hypergeometric functions. In
case of m = 0, we have the simplest example, which is the inversion formula

B(p, q) · B(−p,−q) = 2π
√
−1(p + q)

pq
· 1 − e2π

√
−1(p+q)

(1 − e2π
√
−1p)(1 − e2π

√
−1q)

(2)

for the Beta function

B(p, q) =
∫ 1

0
tp(1 − t)q dt

t(1 − t) (Re(p),Re(q) > 0), (3)

extended to a meromorphic function on C2 by the functional equations

B(p, q) = Γ(p)Γ(q)
Γ(p + q) , pΓ(p) = Γ(p + 1) =

∫ ∞

0
e−t tpdt (Re(p) > −1).

Here B(p, q) and B(−p,−q) are regarded as period integrals, and the right hand side of (2) is the
product of the intersection number of ∇±ω-closed 1-forms and that of twisted 1-cycles.

For case m = 1, we also show that the twisted period relation yields identities among several
values of the hypergeometric series such as

F(a, b, c; x)F(1 − a, 1 − b, 2 − c; x) = F(b − c + 1, a − c + 1, 2 − c; x)F(c − a, c − b, c; x).

For general m, we give identities among several values of the hypergeometric series FD by the
twisted period relation.

In Appendix, we show that Elliott’s identity can be obtained from the twisted period relation.

2. Regularization of open intervals

For the integrals (1) or (3), we need the convergence condition Re(a),Re(c − a) > 0 or
Re(p),Re(q) > 0. Let us change these conditions into a, c − a < Z or p, q < Z.

Let C+ε0 be a circle with center t = 0, radius ε and terminal t = ε, and C−ε
1 be that with center

t = 1, radius ε and terminal t = 1 − ε, where ε is a sufficiently small positive number; see Figure
1.

Proposition 1. If Re(p),Re(q) > 0, p, q < Z then

B(p, q) = 1
e2π

√
−1p − 1

∫
C+ε0

u(t)φ +
∫ 1−ε

ε
u(t)φ − 1

e2π
√
−1q − 1

∫
C−ε

1

u(t)φ, (4)

4



P
o
S
(
M
A
2
0
1
9
)
0
0
7

Introduction to Intersection Theory Keiji Matsumoto

1

e2π
√
−1p − 1

ε 1− ε

C+ε
0 C−ε

1

0 1

−1

e2π
√
−1q − 1

Figure 1: Regularization of the open interval (0, 1)

where φ =
dt

t(1 − t) , u(t) = tp(1− t)q, its branch on [ε, 1− ε] is assigned by arg(t) = arg(1− t) = 0,

and those on C+ε0 and C−ε
1 are assigned by the arg(t) = arg(1 − t) = 0 at their start points.

Proof. We show that the right hand side of (4) is independent of ε. This property yields the identity,
since

lim
ε→0

∫
C+ε0

u(t)φ = lim
ε→0

∫
C−ε

1

u(t)φ = 0

and

lim
ε→0

∫ 1−ε

ε
u(t)φ = B(p, q)

under Re(p),Re(q) > 0. Take a circle C+δ0 for 0 < δ < ε, and consider the difference

1
e2π

√
−1p − 1

[∫
C+ε0

u(t)φ −
∫
C+δ0

u(t)φ
]
−

∫ ε

δ
u(t)φ.

It is equal to
1

e2π
√
−1p − 1

∫
C

tp(1 − t)q dt
t(1 − t),

which vanishes by Cauchy’s integral theorem, where the path C is in Figure 2. We can similarly

0

C

C+ε
0

−C+δ
0

Figure 2: Path C

show that the right hand side of (4) is independent of ε for the circle C−ε
1 . □

5
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Definition 1 ([AK, Example 2.1]). We define the regularization of the open interval (0, 1) with
respect to u(t) = tp(1 − t)q by the formal sum

1
e2π

√
−1p − 1

C+ε0 + [ε, 1 − ε] − 1
e2π

√
−1q − 1

C−ε
1

with assignments of branches of u(t) on C+ε0 , [ε, 1 − ε], C−ε
1 as in Proposition 1.

Note that each path integral of (4) in Proposition 1 reduces to an integral of a continuous
function over a bounded closed interval. Since it is well defined under the condition p, q < Z, we
remove the convergence condition Re(p),Re(q) > 0 for implicit integrals for B(p, q).

We can apply this cycle to the Euler type integral (1) for hypergeometric series. We change
the convergence condition Re(a),Re(c − a) > 0 into a, c − a < Z by using this cycle. To prove (1)
integrated along this cycle, we use the Taylor expansion

(1 − t x)−b =
∞∑
n=0

(b)n
n!

tnxn

and change the order of the infinite series and the integral. This order change is permitted under
the uniform convergence of the series for the fixed variable x ∈ D. Note that we need much more
strong conditions for changing the order of an infinite series and an implicit integral.

Moreover, we will see an advantage to be able to define the intersection form by introducing
the regularization of open intervals.

3. Lauricella’s hypergeometric system FD

In this section, we generalize the Euler type integral (1) of F(a, b, c; x) or (3) for B(p, q) by
referring to [Y1, §6]. By the variable change s = 1/t, (1) and (3) are transformed into∫ ∞

1
sb−c(s − x)−b(s − 1)c−a ds

s − 1
,

∫ ∞

1
s−p−q(s − 1)q ds

s − 1
.

Here we generalize u(t) to

u(t) = u(t, x) =
m+2∏
j=0

(t − xj)αj = tα0
[ m∏
j=1

(t − xj)αj
]
(t − 1)αm+1, (5)

where x0 = 0, x1, . . . , xm, xm+1 = 1, xm+2 = ∞ are mutually different complex variables, and αj are
complex parameters satisfying

α0, α1, . . . , αm, αm+1, αm+2 < Z,
m+2∑
j=0

αj = 0. (6)

We set
α = (α0, α1, . . . , αm, αm+1, αm+2)

and assume (6) throughout this article unless otherwise specified. We consider the integral∫ ∞

1
u(t)φ, φ =

dt
t − 1

, (7)

6



P
o
S
(
M
A
2
0
1
9
)
0
0
7

Introduction to Intersection Theory Keiji Matsumoto

which converges under our assumption (6) if we use the regularization of (1,∞) with respect to u(t).
Introduce parameters a, b = (b1, . . . , bm), c from α as

a = αm+2, b = (−α1, . . . ,−αm), c = αm+1 + αm+2.

In case of m = 0, the integral (7) is equal to B(α1, α2) = B(a, c − a); in case of m = 1, it is equal to

B(α2, α3)F(α3,−α1, α2 + α3; x1) = B(a, c − a)F(a, b, c; x1)

for c = α2 + α3 , 0,−1,−2, . . . and x1 ∈ D. For general m, if c = αm+1 + αm+2 is different from
0,−1. − 2, . . . and x = (x1, . . . , xm) belongs to

Dm = {x ∈ Cm | max
1≤ j≤m

|xj | < 1}

then the integral (7) can be expressed as

B(αm+1, αm+2)FD(αm+2,−α1, . . . ,−αm, αm+1 + αm+2; x) = B(c − a, a)FD(a, b, c; x),

where FD(a, b, c; x) is Lauricella’s hypergeometric series defined by

FD(a, b, c; x) =
∑
n∈Nm

0

(a)n1+· · ·+nm
∏m

j=1(bj)n j

(c)n1+· · ·+nm
∏m

j=1 nj!

m∏
j=1

xn j

j . (8)

The differential operators

xj(1−xj)∂2
j + (1−xj)

k,j∑
1≤k≤m

xk∂j∂k + [c −(a+bj+1)xj]∂j − bj

k,j∑
1≤k≤m

xk∂k − abj, (1 ≤ j ≤ m)

(xj − xk)∂j∂k − bk∂j + bj∂k, (1 ≤ j < k ≤ m)

annihilate the series FD(a, b, c; x), where ∂j =
∂

∂xj
(1 ≤ j ≤ m). The partial differential equations

given by their actions generate Lauricella’s hypergeometric system FD(a, b, c), which is a holonomic
system of rank m + 1 with regular locus

X =
{

x ∈ Cm
�� m∏
j=1

[xj(1 − xj)]
∏

1≤ j<k≤m
(xj − xk) , 0

}
.

This means that the vector space of solutions to FD(a, b, c) on a small neighborhood of any x ∈ X
is m + 1 dimensional.

4. Twisted Stokes’ Theorem

We consider the treatment of a multi-valued 1-form u(t)φ(t) in (7) by referring to [AK, §2.1].
Let ψ be a smooth k-form on Tx = P

1 − {x0, x1, . . . , xm+2} = C − {0, x1, . . . , xm, 1}, and let ∆ be a
k-simplex in Tx . To define an integral ∫

∆

u(t)ψ, (9)

7
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we need to assign a branch u∆(t) of u(t). Though u(t) is multi valued on Tx , the restriction of any
branch of u(t) to ∆ is single valued since ∆ is simply connected. Thus we separate the multi-valued
function u(t) and ψ from u(t)ψ, and regard the integral (9) with assignment of a branch u∆(t) of u(t)
on ∆ as a pairing ⟨ψ,∆ ⊗ u∆(t)⟩ between ψ and the pair ∆ ⊗ u∆(t) of ∆ and u∆(t).

We rewrite Stokes’ theorem ∫
D

d(uD(t)ψ) =
∫
∂D

uD(t)ψ (10)

under this policy, where ψ is a smooth k-form, D is a (k + 1)-simplex, uD(t) is a branch of u(t) and
∂ is the boundary operator. The left hand side of (10) is

d(uD(t)ψ) = uD(t)dψ + duD(t) ∧ ψ = uD(t)(dψ + ω ∧ ψ) = uD(t)∇ωψ,

where we set

ω = d log(uD(t)) =
duD(t)
uD(t)

=

m+1∑
j=0

αjdt
t − xj

,

and introduce a twisted exterior derivative

∇ω = d + ω ∧ .

Here note that ω = d log uD(t) = d log u(t) is a single-valued smooth 1-form on Tx though u(t) is
multi valued on Tx .

On the other hand, the right hand side of (10) is ⟨ψ, (∂D) ⊗ uD(t)|∂D⟩ under this policy, where
uD(t)|∂D is the restriction of uD(t) to ∂D. Thus we define a twisted boundary operator ∂ω by

∂ω(D ⊗ uD(t)) = (∂D) ⊗ uD(t)|∂D .

We summarize these results as follows.

Theorem 1 (Twisted Stokes’ Theorem ([AK, §2.1.2,2.1.3])).

⟨∇ωψ,D ⊗ uD(t)⟩ = ⟨ψ, ∂ω(D ⊗ uD(t))⟩.

Let ψ be a smooth k-form ψ on Tx . If ∇ωψ = 0 then ψ is said to be ∇ω-closed, and if there
exists a smooth (k − 1)-form f on Tx such that ∇ω f = ψ, then ψ is said to be ∇ω-exact. Since
∇ω ◦∇ω = 0, if ψ is ∇ω-exact then ψ is ∇ω-closed. Any holomorphic 1-form φ on Tx is ∇ω-closed
since ∇ω(φ) = dφ + ω ∧ φ = 0 by dt ∧ dt = 0. The 1-form ω is ∇ω-exact since ω = ∇ω1.

A finite linear combination
γ =

∑
j

aj∆j ⊗ u∆ j (t)

is said to be a twisted k-chain, where aj ∈ C, each ∆j ⊗ u∆ j (t) is a pair of a k-simplex ∆j in Tx and
a branch u∆ j (t) of u(t) on ∆j . If ∂ω(γ) = 0 then γ is said to be a twisted k-cycle, where the twisted
boundary operator ∂ω is extended linearly. Since ∂ω ◦ ∂ω = 0, ∂ω(γ) is a twisted (k − 1)-cycle for
any twisted k-chain γ.

In case of m = 0, we define a twisted 1-chain as

γ0 =
1

e2π
√
−1p − 1

C+ε0 ⊗ u0(t) + [ε, 1 − ε] ⊗ uI (t) −
1

e2π
√
−1q − 1

C−ε
1 ⊗ u1(t) (11)

8
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by I = [ε, 1 − ε], C+ε0 , C−ε
1 and the branches uI (t), u0(t), u1(t) of u(t) = tp(1 − t)q on them as in

§2. (Strictly speaking, we should divide C+ε0 and C−ε
1 into upper and lower semi-circles, since C+ε0

and C−ε
1 are not isomorphic to a 1-simplex in Tx .) It is a twisted 1-cycle since

∂ω(γ0) =
[
t
]
t=ε

⊗ e2π
√
−1pu0(ε) −

[
t
]
t=ε

⊗ u0(ε)
e2π

√
−1p − 1

+
( [

t
]
t=1−ε ⊗ uI (1 − ε) −

[
t
]
t=ε

⊗ uI (ε)
)

−
[
t
]
t=1−ε ⊗ e2π

√
−1qu1(1 − ε) −

[
t
]
t=1−ε ⊗ u1(1 − ε)

e2π
√
−1q − 1

=0,

where u0(ε) and u1(1 − ε) denote the values of u0(t) and u1(t) at the start points of C+ε0 and C−ε
1 ,

respectively. Here note that the values of u0(t) and u1(t) at the end points of C+ε0 and C−ε
1 are equal

to e2π
√
−1pu0(ε) and e2π

√
−1qu1(1 − ε), respectively, and that

u0(ε) = uI (ε), u1(1 − ε) = uI (1 − ε).

We can regard the integral (1) or (3) as a pairing between a ∇ω-closed 1-form and a twisted
1-cycle.

Remark 1. Since the open interval (0, 1) in Tx = C − {0, 1} cannot be expressed by a finite sum of
1-simplexes in Tx , we cannot regard the pair (0, 1) ⊗ u(0,1)(t) of (0, 1) and a branch u(0,1)(t) of u(t)
as a twisted 1-chain for this definition. To regard (0, 1) ⊗ u(0,1)(t) as a twisted 1-chain, we need to
extend “finite sums” to “infinite sums with local finiteness”, which are not treated in this article.

5. Twisted homology groups

The vector space of twisted k-chains in Tx is denoted by Cu
k

. Let φ be a ∇ω-closed 1-form on
Tx , and γ be a twisted 1-cycle in Tx . Since

⟨φ, ∂ω(G)⟩ = ⟨∇ωφ,G⟩ = ⟨0,G⟩ = 0,

for any G ∈ Cu
k

by Twisted Stocks’ theorem, we have

⟨φ, γ + ∂ω(G)⟩ = ⟨φ, γ⟩.

This means that ∂ω(Cu
2 ) has no effect on the pairing ⟨φ, γ⟩ between a ∇ω-closed 1-form φ and a

twisted 1-cycle γ in Tx .

Definition 2 (Twisted homology group). The k-th twisted homology group Hk(Cu
• , ∂ω) is defined

by
Hk(Cu

• , ∂ω) = ker(∂ω : Cu
k → Cu

k−1)/∂ω(C
u
k+1) (k = 0, 1, 2).

Proposition 2 (Dimension formula [AK, Lemma 2.14]). Under our assumption (6) on α, we have

dim H1(Cu
• , ∂ω) = m + 1.

9
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Proof. Since Cu
−1 and Cu

3 are isomorphic to the zero vector space, we have

H0(Cu
• , ∂ω) = Cu

0 /∂ω(C
u
1 ), H2(Cu

• , ∂ω) = ker(∂ω : Cu
2 → Cu

1 ).

Let p be any point in Tx and C be a loop in Tx with terminal p turning around x0 once positively.
Then

∂w(C ⊗ uC(t)) = (e2π
√
−1α0 − 1) · [t]t=p ⊗ uC(p),

where uC(p) is the value of a branch uC(t) of u(t) at the start point. Thus we have Cu
0 = ∂ω(C

u
1 )

which means H0(Cu
• , ∂ω) = 0 under the condition α0 < Z. Since any twisted 2-chain consists of

finite sum of cj∆j ⊗ u(t) for cj ∈ C and 2-simplexes ∆j , we cannot eliminate their boundaries. Thus
we have ker(∂ω : Cu

2 → Cu
1 ) = 0, which means H2(Cu

• , ∂ω) = 0.
We use the fact

χ(Tx) = dim H0(Cu
• , ∂ω) − dim H1(Cu

• , ∂ω) + dim H2(Cu
• , ∂ω),

where χ(Tx) is the Euler number of Tx . Since

χ(Tx) = χ(P1) − #{x0, . . . , xm+2} = 2 − (m + 3) = −m − 1,

we have dim H1(Cu
• , ∂ω) = m + 1. □

Remark 2. This dimension formula is valid under the condition α < Zm+3. If αj ∈ Z then we
cannot use the regularization of cycles for paths with terminal xj . For example, we give some cases
(p, q,−p − q) < Z3 for B(p, q): Tx = P

1 − {0, 1,∞}, u(t) = tp(1 − t)q and dim H1(Cu
• , ∂ω) = 1.

If p ∈ Z and q, p+q < Z, then the regularization of (0, 1) with respect to u(t) cannot be defined.
In this case, Cε

0 ⊗ u0(t) becomes a twisted 1-cycle, and it spans H1(Cu
• , ∂ω). Note that this twisted

1-cycle can be regarded as ∂ω(∆0 ⊗ u∆0(t)) if we permit infinite sums with locally finiteness, where
∆0 = {t ∈ C | 0 < |t | ≤ ε} and u∆0(t) is the continuation of u0(t) to ∆0.

If p, q < Z and p+q ∈ Z then we have the regularization of (0, 1)with respect to u(t), and it gives
a non-zero element of H1(Cu

• , ∂ω). In this case, if we permit infinite sums with locally finiteness
then (0, 1) ⊗ u(0,1)(t) can be regarded as a twisted 1-cycle and it coincides with ∂ω(∆I ⊗ u∆I (t))
up to a non-zero constant, where ∆I = Tx − (0, 1) and a branch u∆I (t) of u(t) is assigned by
arg(t), arg(1 − t) ∈ (0, 2π) on ∆I .

6. Intersection form between twisted homology groups

By using 1/u(t) = u−1(t) instead of u(t), we define the spaces Cu−1

k
of twisted k-chains, the

twisted boundary operator ∂−ω and the twisted homology groups Hk(Cu−1
• , ∂−ω) (k = 0, 1, 2).

Definition 3 (Intersection number of twisted 1-cycles). Let γ =
∑

i ai Ii ⊗ uIi (t) and δ =
∑

j bj Jj ⊗
u−1
Jj
(t) be twisted cycles, where ai, bj ∈ C, Ii and Jj are 1-simplexes in Tx . Suppose that any Ii and

Jj intersect transversally at every intersection point p of them. The intersection number of γ and δ
is defined by

⟨γ, δ⟩ =
∑
i, j

aibj

∑
p∈Ii∩Jj

⟨Ii, Jj⟩p · [uIi (p)] · [u−1
Jj
(p)], (12)

where ⟨Ii, Jj⟩p denotes the topological intersection number of Ii and Ji at p.

10
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As in [KY1, §1], we have the following theorems.

Theorem 2. The intersection number (12) induces a bi-linear form between the spaces of twisted
cycles ker(∂ω : Cu

1 → Cu
0 ) and ker(∂−ω : Cu−1

1 → Cu−1

0 ), which descends to that between H1(Cu
• , ∂ω)

and H1(Cu−1
• , ∂−ω). It is non-degenerate.

Theorem 3 ([AK, §2.3.3], [KY1, Theorem 2.1] and [Y2, §4.7]). Suppose that x1, . . . , xm ∈ R,
0 = x0 < x1 < · · · < xm < xm+1 = 1, xm+2 = ∞. Let γj be the twisted cycle given by the
regularization of Ij = (xj, xj+1) with respect to u(t), and let δk be that of Ik = (xk, xk+1) with respect
to u−1(t). Then we have

⟨γj, δk⟩ =



−θ j
1 − θ j

if k = j − 1,

1 − θ jθ j+1

(1 − θ j)(1 − θ j+1)
if k = j,

−1
1 − θ j+1

if k = j + 1,

0 otherwise,

where θ j = exp(2π
√
−1αj).

Proof. Let us compute ⟨γj, δj⟩. We can regard the branches of u(t) and u−1(t) on any components
of γj and δj as the analytic continuations of branches uH(t) and u−1

H (t) defined on the upper half
space of Tx satisfying uH(t) · u−1

H (t) = 1. These continuations are denoted by uγj (t) and u−1
δ j
(t). We

can see by Figure 3 that the topological intersection number of the 1-simplexes of γj and δj at p1

is −1, that at p2 is +1, and

uγj (p1) · u−1
δ j
(p1) = uH(p1) · u−1

H (p1) = 1, uγj (p2) · u−1
δ j
(p2) = θ j+1uH(p2) · u−1

H (p2) = θ j+1.

Here note that the value of uγj (t) at p2 is multiplied θ j+1 to uH(t) since the variable t turns once
around xj+1 positively along the circle. Thus the intersection number ⟨γj, δj⟩ is

xj xj+1
Ij

p1 p2

u(t)

u−1(t)

1
θj−1

−1
θj+1−1

Figure 3: Intersection of twisted cycles

(−1) 1
θ j − 1

+ θ j+1
−1

θ j+1 − 1
=

1 − θ jθ j+1

(1 − θ j)(1 − θ j+1)
.

11
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We can similarly compute other ⟨γj, δk⟩.
We can show that the intersection form between H1(Cu

• , ∂ω) and H1(Cu−1
• , ∂−ω) is non-

degenerate by the regularity of the intersection matrix

Hh =
(
⟨γj, δk⟩

)
0≤ j,k≤m =

©­­­­­­­­­«

1−θ0θ1
(1−θ0)(1−θ1)

−1
1−θ1

0 · · · 0
−θ1
1−θ1

1−θ1θ2
(1−θ1)(1−θ2)

−1
1−θ2

. . .

0 −θ2
1−θ2

1−θ2θ3
(1−θ2)(1−θ3)

. . .
...

...
. . .

. . .
. . .

0 · · · 1−θmθm+1
(1−θm)(1−θm+1)

ª®®®®®®®®®¬
.

Under our assumption (6), det(Hh) =
1 − θ−1

m+2
(1 − θ0)(1 − θ1) · · · (1 − θm+1)

does not vanish. □

By Theorem 3, the intersection number between twisted cycles defining B(p, q) and B(−p,−q)
is

1 − e2π
√
−1(p+q)

(1 − e2π
√
−1p)(1 − e2π

√
−1q)

.

7. Twisted cohomology groups

Recall that Twisted Stokes’ Theorem

⟨∇ωψ,D ⊗ u(t)⟩ = ⟨ψ, ∂ω(D ⊗ u(t))⟩,

where ω = d log u(t), ∇ω = d + ω∧, ψ is a smooth k-form, D is a (k + 1)-chain in Tx . Let φ be a
∇ω-closed 1-form on Tx , and γ be a twisted 1-cycle in Tx . Since

⟨∇ω f , γ⟩ = ⟨ f , ∂ωγ⟩ = ⟨ f , 0⟩ = 0

for any smooth function f on Tx by Twisted Stocks’ theorem, we have

⟨φ + ∇ω f , γ⟩ = ⟨φ, γ⟩.

It means that ∇ω(E0) has no effect on the pairing ⟨φ, γ⟩ between a ∇ω-closed 1-form φ and a twisted
1-cycle γ in Tx , where E0 is the space of smooth functions on Tx .

Let Ek and Ek
c be the space of smooth k-forms on Tx and that with compact support. Note that

Ek
c ⊂ Ek,

dt
t(1 − t),

dt
t − 1

∈ E1 − E1
c,

and that ψ ∈ Ek belongs to Ek
c if and only if ψ ≡ 0 on a small neighborhood Uj of xj ( j =

0, 1, . . . ,m + 2).

Definition 4 (Twisted cohomology groups). A twisted cohomology group and that with compact
support are defined as

Hk(E•,∇ω) = ker(∇ω : Ek → Ek+1)/∇ω(Ek−1),
Hk(E•

c,∇ω) = ker(∇ω : Ek
c → Ek+1

c )/∇ω(Ek−1
c ),

for k = 0, 1, 2.

12
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By regarding ψ ∈ E1
c as an element of E1, we have a natural map

H1(E•
c,∇ω) → H1(E•,∇ω). (13)

Proposition 3 (Dimension formula [KN, Main Theorem, Remark 2]). Under our assumption (6)
on α, we have

dim H1(E•,∇ω) = dim H1(E•
c,∇ω) = m + 1,

and the natural map (13) is an isomorphism.

Proof. To obtain the claim for the dimension, we show that the spaces

H0(E•,∇ω) = ker(∇ω : E0 → E1), H2(E•,∇ω) = E2/∇ω(E1),
H0
c (E•,∇ω) = ker(∇ω : E0

c → E1
c), H2

c (E•,∇ω) = E2
c/∇ω(E1

c),
vanish, and use the fact

χ(Tx) = dim H0(E•,∇ω) − dim H1(E•,∇ω) + dim H2(E•,∇ω)
= dim H0(E•

c,∇ω) − dim H1(E•
c,∇ω) + dim H2(E•

c,∇ω).

Let us show H0(E•,∇ω) = H0
c (E•,∇ω) = 0. Regard ∇ω f = 0 as a first order linear differential

equation for unknown function f . Its solution is c/u(t) (c ∈ C) in a neighborhood of any t ∈ Tx . In
fact,

∇ω
1

u(t) = d
1

u(t) + ω ∧ 1
u(t) = −du(t)

u(t)2
+

du(t)
u(t)2

= 0.

Since 1/u(t) is not single valued on Tx under α ∈ (C − Z)m+3, its global solution is only 0. Thus
the spaces vanish.

Let us show H2(E•,∇ω) = 0. For any η ∈ E2, we find ψ ∈ E1 such that ∇ωψ = η. Note that η
is (1, 1)-form and ∂η = 0. By the ∂-Poincaré lemma, there exists a (1, 0)-form ψ such that ∂ψ = η.
It takes the form ψ = g(t)dt and satisfies

∇ωψ = (∂ + ∂) · (g(t)dt) + ω ∧ (g(t)dt) = ∂(g(t)dt) = η.

Thus any element of E2 is a ∇ω-image of E1, and H2(E•,∇ω) = 0. Hence we have

dim H1(E•,∇ω) = −χ(Tx) = m + 1.

To obtain H2(E•
c,∇ω) = 0, we show the natural map H1(E•

c,∇ω) → H1(E•,∇ω) is surjective.
For any ψ ∈ E1 satisfying ∇ωψ = 0, we find ψ ′ ∈ E1

c such that ψ − ψ ′ ∈ ∇ω(E0). Set

fj(t) =
1

(e2π
√
−1αj − 1)u(t)

∫
C(t)

u(t)ψ, (14)

where C(t) is a loop with terminal t turning once around xj positively. It is independent of the
choice of loops by ∇ωψ = 0 and Twisted Stocks’ theorem. Thus fj is single valued around xj and
satisfies

∇ω( fj) =
−du(t)

(e2π
√
−1αj − 1)u(t)2

∫
C(t)

u(t)ψ + e2π
√
−1αj u(t)ψ − u(t)ψ

(e2π
√
−1αj − 1)u(t)

+
du(t)
u(t) ∧ 1

(e2π
√
−1αj − 1)u(t)

∫
C(t)

u(t)ψ

= ψ.

13
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Let hj be a smooth function on P1 satisfying

hj(t) =
{

1 if t ∈ Uj,

0 if t ∈ Vc
j ,

(15)

where Uj and Vj are neighborhoods of xj satisfying Uj ⊂ Vj . Though fj are defined only around
xj , the function

∑m+2
j=0 hj(t) fj(t) can be regarded as a function on Tx .

Vj

Uj

xj

Since fj satisfies ∇ω fj = ψ around xj , and hj fj identically vanishes around xk ( j , k), we have

ψ ′ = ψ − ∇ω

( m+2∑
j=0

hj(t) fj(t)
)
∈ E1

c,

which shows that the natural map (13) is surjective.
Let us show H2(E•

c,∇ω) = 0. For any η ∈ E2
c, there exists a (1, 0)-form ψ such that ∇ωψ = η.

We have seen the existence of ψ as an element of E1, ψ may not belong to E1
c. However ∇ωψ(= η)

vanishes identically around xj ( j = 0, . . . ,m + 2), there exists a smooth function fj around xj such
that ∇ω fj = ψ as in (14). Though fj is defined only around xj , hj(t) fj(t) can be regarded as defined
on Tx . Thus we have

ψ − ∇ω

( m+2∑
j=0

hj(t) fj(t)
)
∈ E1

c, ∇ω

(
ψ − ∇ω

( m+2∑
j=0

hj(t) fj(t)
) )
= η,

which mean that H2(E•
c,∇ω) = 0. Hence we have

dim H1(E•
c,∇ω) = −χ(Tx) = m + 1.

We have seen that the natural map H1(E•
c,∇ω) → H1(E•,∇ω) is surjective. Because of

dim H1(E•,∇ω) = dim H1(E•
c,∇ω), this map is isomorphic. □

Definition 5. We define
ıω : H1(E•,∇ω) → H1(E•

c,∇ω)

by the inverse of the natural map H1(E•
c,∇ω) → H1(E•,∇ω).

14
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Here we mention about the natural map H1(E•
c,∇ω) → H1(E•,∇ω) in case of α < Zm+3 and

αj ∈ Z. We may assume αm+2 < Z otherwise use a projective transformation sending xk with
αk < Z to ∞. In this case, fj in (14) cannot be defined. Instead of the circle C(t) in (14), we take a
path C∞(t) starting from t, approaching to xm+2 = ∞ turning this point once around positively, and
tracing back to t. Then the function

gj(t) =
1

(e2π
√
−1αm+2 − 1)u(t)

∫
C∞(t)

u(t)ψ

is single valued on a small neighborhood of t, and satisfies ∇ωgj(t) = ψ. However, if u(t)ψ includes

the term
cdt

t − xj
then c log(t − xj) appears and gj(t) cannot be single valued on Uj . Thus the natural

map H1(E•
c,∇ω) → H1(E•,∇ω) is not surjective in this case.

In the proof of H2(E•
c,∇ω) = 0, we can kill this term

cdt
t − xj

by adding a 1-form
−cdt

(t − xj)αj+1

to ψ. Since ∇ω(
−dt

(t − xj)αj+1 ) = 0, the property ∇ωψ = η is kept by this addition. Hence we obtain

H2(E•
c,∇ω) = 0 in this case. Thus we have the following proposition.

Proposition 4. If α < Zm+3 then

H0(E•,∇ω) = 0, H2(E•,∇ω) = 0, H0(E•
c,∇ω) = 0, H2(E•

c,∇ω) = 0,

dim H1(E•,∇ω) = dim H1(E•
c,∇ω) = m + 1.

In the above observation, we see that if α < Zm+3 and αj ∈ Z then the natural map
H1(E•

c,∇ω) → H1(E•,∇ω) is not surjective though dim H1(E•,∇ω) = dim H1(E•
c,∇ω). We

given an element of the kernel of the natural map in this case. Note that

dhj(t)
u(t) ∈ E1

c,
hj(t)
u(t) ∈ E0 − E0

c,

where hj(t) is given in (15). Since

∇ω

(
dhj(t)
u(t)

)
=

d ◦ d(hj(t))
u(t) − dhj(t) ∧ d

(
1

u(t)

)
+ ω ∧

dhj(t)
u(t)

= −dhj(t) ∧ ∇ω

(
1

u(t)

)
= 0,

∇ω

(
hj(t)
u(t)

)
=

d(hj(t))
u(t) + hj(t) · d

(
1

u(t)

)
+ ω ∧

hj(t)
u(t)

=
dhj(t)
u(t) + hj(t) · ∇ω

(
1

u(t)

)
=

dhj(t)
u(t) ,

dhj(t)
u(t) is ∇ω-closed and belongs to ∇ω(E0). Thus

dhj(t)
u(t) is zero as elements of H1(E•,∇ω). Recall

that ker(∇ω : E0 → E1) is spanned by 1/u(t), which is not single valued on Tx under α < Zm+3.

Thus the global solution to ∇ω( f ) =
dhj(t)
u(t) on Tx is unique. Since

hj(t)
u(t) < E

0
c,

dhj(t)
u(t) is different

from 0 as elements of H1(E•
c,∇ω). Hence this is a non-zero element in the kernel of the natural

map.

15
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Remark 3. Since there exists ψ ∈ E1 such that ∇ωψ = η for any η ∈ E2, and 1/u(t) does not have
a compact support,

H2(E•,∇ω) = 0, H0(E•
c,∇ω) = 0

without any conditions on α.

8. Intersection form between twisted cohomology groups

By using ∇−ω = d − ω∧ instead of ∇ω, we have twisted cohomology groups Hk(E•,∇−ω)
(k = 0, 1, 2), which satisfy

H0(E•,∇−ω) = 0, H2(E•,∇−ω) = 0, dim H1(E•,∇−ω) = m + 1.

Definition 6 (Intersection number of∇±ω-closed 1-forms). The intersection number of φ ∈ ker(∇ω :
E1
c → E2

c) and ψ ∈ ker(∇−ω : E1 → E2) is defined by

⟨φ, ψ⟩ =
∬

Tx

φ ∧ ψ. (16)

It induces a bi-linear form between the space of ∇ω-closed 1-forms and that of ∇−ω-closed 1-forms.

Since φ ∈ E1
c has a compact support, the support of φ ∧ ψ is also compact, and the integral in

(16) converges.

Theorem 4. The intersection form between ker(∇ω : E1
c → E2

c) and ker(∇−ω : E1 → E2) descends
to that between H1(E•

c,∇ω) and H1(E•,∇−ω). The isomorphism ıω : H1(E•,∇ω) → H1(E•
c,∇ω)

given in Definition 5 induces the intersection form between H1(E•,∇ω) and H1(E•,∇−ω) by

⟨φ, ψ⟩ =
∬

Tx

ıω(φ) ∧ ψ.

Proof. For a ∇−ω-closed 1-form ψ ∈ E1, f ∈ E0
c, we have∬

Tx

(∇ω f ) ∧ ψ =
∬

Tx

(df + ω ∧ f ) ∧ ψ =
∬

Tx

(df ) ∧ ψ + f · ω ∧ ψ

=

∬
Tx

(
d( f · ψ) − f · dψ

)
+ f · ω ∧ ψ =

∬
Tx

d( f · ψ) − f · ∇−ωψ

=

∫
∂Tx

f · ψ −
∬

Tx

f · 0 = 0,

since f · ψ ∈ E1
c. Similarly, we can show

∬
Tx

φ ∧ (∇−ωg) = 0 for a ∇ω-closed 1-form φ ∈ E1
c,

g ∈ E0. Thus ⟨ , ⟩ descends to the intersection form between H1(E•
c,∇ω) and H1(E•,∇−ω).

Though
∬

Tx

φ ∧ ψ is not well defined for a ∇ω-closed 1-form φ ∈ E1 and a ∇−ω-closed 1-form

ψ ∈ E1, ⟨ , ⟩ is a well-defined form between H1(E•
c,∇ω) and H1(E•,∇−ω) and ıω is isomorphic.

Thus ⟨ , ⟩ can be extended to the intersection form between H1(E•,∇ω) and H1(E•,∇−ω). □

16
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Theorem 5 ([CM, Theorem 1],[M1, §4]). The intersection form is non-degenerate. For

φj = d log
t − xj

t − xj+1
, ψk = d log

t − xk
t − xk+1

,

we have

⟨φj, ψk⟩ = 2π
√
−1



−1
αj

if k = j − 1,

αj + αj+1

αjαj+1
if k = j,

−1
αj+1

if k = j + 1,

0 otherwise.

Proof. We consider ıω : H1(E•,∇ω) → H1(E•
c,∇ω). Note that φj is a rational 1-form admitting

poles only on xj ,xj+1 with residues 1,−1 on P1. Recall that we have expressed a solution to
∇ω( f ) = ψ by the integral in (14). In this time, we express a solution fℓ to ∇ω fℓ = φj in Vℓ as a
power series.

Put fℓ(t) =
∑∞

n=0 an(t − xℓ)n with unknowns an’s in Vℓ . Then we can determine uniquely an by
comparing coefficients of the both sides of ∇ω fℓ = φj . Since the Laurent expansion of ω around
t = xℓ is

ω =

[
αℓ

t − xℓ
+ b0 + b1(t − xℓ) + · · ·

]
dt,

the starting term a0 of fℓ(t) is

a0 =



0 if ℓ , j, j + 1,
1
αℓ

if ℓ = j,

−1
αℓ+1

if ℓ = j + 1.

(17)

By the existence of a solution, each series has a positive radius of convergence.
We can regard

f =
m+2∑
ℓ=0

hℓ fℓ

as a function on Tx , where hℓ is given in (15). Note that φj − ∇ω f vanishes identically on Uℓ , and
φj −∇ω f ∈ E1

c. Hence ıω(φj) is represented by φj −∇ω f , and φj −∇ω f = φj on the complement

17
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of ∪m+2
ℓ=0 Vℓ . Thus we have

⟨φj, ψk⟩ =
∬

Tx

(φj − ∇ω f ) ∧ ψk =

m+2∑
ℓ=0

∬
Vℓ−Uℓ

(φj − ∇ωhℓ fℓ) ∧ ψk

= −
m+2∑
ℓ=0

∬
Vℓ−Uℓ

(∇ωhℓ fℓ) ∧ ψk = −
m+2∑
ℓ=0

∬
Vℓ−Uℓ

( fℓdhℓ + hℓ(∇ω fℓ)) ∧ ψk

= −
m+2∑
ℓ=0

∬
Vℓ−Uℓ

fℓdhℓ ∧ ψk = −
m+2∑
ℓ=0

∫
∂(Vℓ−Uℓ )

hℓ fℓψk =

m+2∑
ℓ=0

∫
∂Uℓ

fℓψk

=2π
√
−1

m+2∑
ℓ=0

Rest=xℓ ( fℓψk).

Here we use Stokes’ Theorem and Residue Theorem. Note that hℓ vanishes identically on ∂Vℓ ,
and becomes identically 1 on ∂Uℓ . Residue calculuses together with (17) yield the expression of
⟨φj, ψk⟩ in this proposition.　

We have the intersection matrix

Hc =
(
⟨φj, ψk⟩

)
0≤ j,k≤m = 2π

√
−1

©­­­­­­­­­«

α0+α1
α0α1

−1
α1

0 · · · 0
−1
α1

α1+α2
α1α2

−1
α2

. . .

0 −1
α2

α2+α3
α2α3

. . .
...

...
. . .

. . .
. . .

0 · · · αm+αm+1
αmαm+1

ª®®®®®®®®®¬
with det(Hc) =

−(2π
√
−1)m+1αm+2

α0α1 · · · αm+1
, 0. Therefore the intersection form is non-degenerate. □

9. Twisted period relation

There is a natural pairing between the twisted cohomology group H1(E•,∇ω) and the twisted
homology group H1(Cu

• , ∂ω) defined by

⟨φ, γ⟩ =
∑
i

ai

∫
Ii

uIi (t)φ, (18)

where φ ∈ H1(E•,∇ω) and γ =
∑

i ai Ii ⊗ uIi (t) ∈ H1(Cu
• , ∂ω). It is known that this pairing is

perfect, and yields solutions to Lauricella’s hypergeometric system FD(a, b, c). Similarly, we have
a natural perfect pairing

⟨ψ, δ⟩ =
∑
j

bj

∫
Jj

u−1
Jj
(t)ψ, (19)

between ψ ∈ H1(E•,∇−ω) and δ =
∑

j bj Jj ⊗ u−1
Jj
(t) ∈ H1(Cu−1

• , ∂−ω).
We can regard H1(E•,∇ω) and H1(Cu−1

• , ∂−ω) as dual spaces of H1(E•,∇−ω) with respect to
the intersection form between twisted cohomology groups, and to (19), respectively. Thus we have
an isomorphism isoc : H1(E•,∇ω) → H1(Cu−1

• , ∂−ω) such that

⟨φ, ψ⟩ = ⟨ψ, isoc(φ)⟩

18
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for any ψ ∈ H1(E•,∇−ω). On the other hand, it is also possible to regard them as dual spaces of
H1(Cu

• , ∂ω) with respect to (18), and to the intersection form between twisted homology groups,
respectively. There is an isomorphism isoh : H1(E•,∇ω) → H1(Cu−1

• , ∂−ω) such that

⟨φ, γ⟩ = ⟨γ, isoh(φ)⟩

for any γ ∈ H1(Cu
• , ∂ω). See the diagram below.

dual

dual

dual dual
isoh

isoc

H1(E•,∇ω) H1(E•,∇−ω)

H1(Cu−1

• , ∂−ω)H1(Cu
• , ∂ω)

As shown in [KY1, §1] and [CM, §3], the following theorem holds.

Theorem 6 (Compatibility of intersection forms). The isomorphisms isoc and isoh coincide.

Remark 4. Definition 3 does not directly yield a bilinear form between the spaces of twisted 1-
cycles. Note that there is a case that simplexes Ii and Jj do not intersect transversally, where Ii and
Jj are 1-simplexes of twisted 1-cycles γ =

∑
i ai Ii ⊗ u(t) and δ =

∑
j bj Jj ⊗ u−1(t), respectively. By

using isoc, we can define the intersection form between twisted homology groups H1(Cu
• , ∂ω) and

H1(Cu−1
• , ∂−ω) by

⟨γ, δ⟩ = ⟨iso−1
c (δ), γ⟩ =

∑
i

ai

∫
Ii

u(t)iso−1
c (γ). (20)

Though there is no ambiguity in this definition, we cannot directly evaluate ⟨γ, δ⟩ by this definition.
We can show that (20) is equal to the value given in Definition 3, refer to [M3, §7].

Corollary 1 ([CM, Theorem 2]). For bases t (φ0, . . . , φm), (ψ0, . . . , ψm), (γ0, . . . , γm), t (δ0, . . . , δm)
of H1(E•,∇ω), H1(E•,∇−ω), H1(Cu

• , ∂ω), H1(Cu−1
• , ∂−ω), construct four (m + 1) × (m + 1) matrices

Πω =
(
⟨φj, γk⟩

)
, Π−ω =

(
⟨ψj, δk⟩

)
, Hc =

(
⟨φj, ψk⟩

)
, Hh =

(
⟨γj, δk⟩

)
.

Then they satisfy a twisted period relation

Πω
tH−1

h
tΠ−ω = Hc, i.e. tΠ−ωH−1

c Πω =
tHh . (21)

Proof. By Theorem 6, we show this corollary. Let M be the representation matrix of isoc(= isoh)
with respect to bases t (φ0, . . . , φm) and t (δ0, . . . , δm), i.e.,

t (isoh(φ0), . . . , isoh(φm)) = M t (δ0, . . . , δm).

19
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We have

Hc =(⟨φj, ψk⟩)j,k = t (φ0, . . . , φm) · (ψ0, . . . , ψm) = t (isoc(φ0), . . . , isoc(φm)) · (ψ0, . . . , ψm)
=M t (δ0, . . . , δm) · (ψ0, . . . , ψm) = M tΠ−ω,

where · denotes the pairing with matrix arrangement. Similarly, we have

Πω =(⟨φj, γk⟩)j,k = t (φ0, . . . , φm) · (γ0, . . . , γm) = t (isoh(φ0), . . . , isoh(φm)) · (γ0, . . . , γm)
=M t (δ0, . . . , δm) · (γ0, . . . , γm) = M tHh .

By eliminating M from two identities Hc = M tΠ−ω and Πω = M tHh, we have Hc =

Πω
tH−1

h
tΠ−ω. □

We explain several examples in [CM, §4]. In case of m = 0, the twisted (co)homology
groups in Corollary 1 are one dimensional, where Tx = P

1 − {0, 1,∞} and u(t) = tp(1 − t)q,
1/u(t) = t−p(1 − t)−q. Take bases of H1(E•,∇ω), H1(E•,∇−ω), H1(Cu

• , ∂ω), H1(Cu−1
• , ∂−ω) as

φ0 =
dt

t(1 − t) , ψ0 =
dt

t(1 − t) , γ0 given in (11), δ0 replaced p, q into −p,−q for γ0, respectively. Note
that

⟨φ0, γ0⟩ = B(p, q), ⟨ψ0, δ0⟩ = B(−p,−q)

by (18), (19) and Proposition 1, and that they are well defined under p, q < Z. By Theorems 3 and
5, we have

⟨φ0, ψ0⟩ =
2π

√
−1(p + q)

pq
, ⟨γ0, δ0⟩ =

1 − e2π
√
−1(p+q)

(1 − e2π
√
−1p)(1 − e2π

√
−1q)

.

In this case, the twisted period relation (21) is equivalent to ⟨φ0, γ0⟩⟨ψ0, δ0⟩ = ⟨φ0, ψ0⟩⟨γ0, δ0⟩,
which yields the inversion formula (2) for the Beta function.

In case of m = 1, we derive identities for hypergeometric functions from the twisted period
relation. Recall our setting

x0 = 0, x = x1 (0 < x1 < 1), x2 = 1, x3 = ∞,

α0 = b − c, α1 = −b, α2 = c − a, α3 = a,

u(t) = tb−c(t − x)−b(t − 1)c−a, ω = d log u(t).

To simplify the twisted period relation, we assume α2 + α3 = c < Z. We select ∇ω-closed forms

φ2 = d log
t − x2

t − x3
=

dt
t − 1

, φ0 = d log
t − x0

t − x1
=

−xdt
t(t − x),

and they are ∇−ω-closed. Let γ2, γ0 and δ2, δ0 be bases of H1(Cu
• , ∂ω) and H1(Cu−1

• , ∂−ω). Here
recall that the twisted cycles γj and δj are given by the path Ij from xj to xj+1 and branches of u(t)
and 1/u(t) on them, respectively. We have four matrices:

Πω =

(
⟨φ2, γ2⟩ ⟨φ2, γ0⟩
⟨φ0, γ2⟩ ⟨φ0, γ0⟩

)
, Π−ω =

(
⟨φ2, δ2⟩ ⟨φ2, δ0⟩
⟨φ0, δ2⟩ ⟨φ0, δ0⟩

)
,

20
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Hc = 2π
√
−1

(
α2+α3
α2α3

0
0 α0+α1

α0α1

)
, Hh =

(
1−θ2θ3

(1−θ2)(1−θ3) 0
0 1−θ0θ1

(1−θ0)(1−θ1)

)
.

Any entry of Π±ω can be expressed by the hypergeometric function. For example,

⟨φ2, γ2⟩ = B(a, c − a)F(a, b, c; x)
⟨φ2, γ0⟩ = −eπ

√
−1(c−a−b)x1−cB(b − c + 1,−b + 1)F(b − c + 1, a − c + 1, 2 − c; x).

Here note that the second is given by the variable change t = x/s. By the (1, 2)-entry of the first
identity of (21) in Corollary 1, we have

F(a, b, c; x)F(1 − a, 1 − b, 2 − c; x) = F(b − c + 1, a − c + 1, 2 − c; x)F(c − a, c − b, c; x).

By its (1, 1)-entry, we have

F(a, b, c; x)F(−a,−b,−c; x) − 1

=
ab(c − a)(c − b)
c2(c + 1)(c − 1)

x2F(b − c + 1, a − c + 1, 2 − c; x)F(c − b + 1, c − a + 1, 2 + c; x).

In case of general m, the twisted period relation yields identities among some values of
Lauricella’s hypergeometric series FD with several parameters. Recall our setting

x0 = 0, x = (x1, . . . , xm) ∈ Dm, xm+1 = 1, xm+2 = ∞,

α0 = −c +
m∑
j=1

bj, αj = −bj (1 ≤ j ≤ m), αm+1 = c − a, αm+2 = a,

u = u(t) = tb1+· · ·+bm−c(t − x1)−b1 · · · (t − xm)−bm (t − 1)c−a .

φ0 =
dt

t − 1
, φj =

dt
t − xj

,

ψ0 =
dt

t(t − 1), ψj =
1
xj

(
dt

t − xj
− dt

t − x0

)
=

dt
t(t − xj)

,

where 1 ≤ j ≤ m and the index start from 0 for bases of twisted (co)homology groups. We assume
that αm+1 + αm+2 = c < Z.

We set twisted cycles γ0 and δ0 by the regularization of the open interval (1,∞) with respect to
u(t) and that to 1/u(t), respectively. For any bases of H1(Cu

• , ∂ω) and H1(Cu−1
• , ∂−ω) including γ0

and δ0, the identity for the (0, 0)-entry of tΠ−ωH−1
c Πω =

tHh is

(
∫ ∞

1
u−1ψ0, . . . ,

∫ ∞

1
u−1ψm)H−1

c
t (
∫ ∞

1
uφ0, . . . ,

∫ ∞

1
uφm)

= (0, 0)-entry of Hh =
1 − e2π

√
−1c

(1 − e2π
√
−1(c−a))(1 − e2π

√
−1a)

.

The intersection matrix Hc is diagonal and

H−1
c =

−1
2π

√
−1

diag(a − c, b1x1, . . . , bmxm).
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The integrals are expressed as

©­­­­­«

∫ ∞
1 uφ0∫ ∞
1 uφ1
...∫ ∞

1 uφm

ª®®®®®¬
=

©­­­­­«
B(a, c − a)FD(a, b, c; x)

B(a, c + 1 − a)FD(a, b + e1, c + 1; x)
...

B(a, c + 1 − a)FD(a, b + e1, c + 1; x)

ª®®®®®¬
,

©­­­­­«

∫ ∞
1 u−1ψ0∫ ∞
1 u−1ψ1

...∫ ∞
1 u−1ψm

ª®®®®®¬
=

©­­­­­«
B(1 − a, a − c)FD(1 − a,−b, 1 − c; x)

B(1 − a, a − c + 1)FD(1 − a, e1 − b, 2 − c; x)
...

B(1 − a, a − c + 1)FD(1 − a, em − b, 2 − c; x)

ª®®®®®¬
,

where ej is the j-th unit vector of size m. By using the inversion formula for the Beta function

B(a, c − a)B(1 − a, a − c) =B(a, c − a) ·
(−a
−c

)
B(−a, a − c)

=2π
√
−1

1
c − a

· 1 − e2π
√
−1c

(1 − e2π
√
−1(c−a))(1 − e2π

√
−1a)

,

B(a, c − a + 1)B(1 − a, a − c + 1) =
( c − a

c
· B(a, c − a)

)
·
(
−a(a − c)
−c(1 − c) B(−a, a − c)

)
=2π

√
−1

a − c
c(1 − c) ·

1 − e2π
√
−1c

(1 − e2π
√
−1(c−a))(1 − e2π

√
−1a)

,

we have an identity

FD(a, b, c; x)FD(1 − a,−b, 1 − c; x) − 1

=
c − a

c(c − 1)

m∑
j=1

bj xjFD(a, ej + b, c + 1; x)FD(1 − a, ej − b, 2 − c; x).

A. Elliott’s identity as the twisted period relation

In Appendix, we show that Elliott’s identity among hypergeometric series can be obtained from
the twisted period relation (21) in Corollary 1 with detailed calculations.

A.1 Integral representations

Elliott’s identity is given in [BNPV] as

F(1
2
+ λ,−1

2
− ν, 1 + λ + µ; r)F(1

2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r)

+F(1
2
+ λ,

1
2
− ν, 1 + λ + µ; r)F(−1

2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r)

−F(1
2
+ λ,

1
2
− ν, 1 + λ + µ; r)F(1

2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r)

=
Γ(1 + λ + µ)Γ(1 + µ + ν)
Γ(λ + µ + ν + 3

2 )Γ(µ +
1
2 )
, (22)

22
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where λ, µ, ν are complex parameters with

1 + λ + µ, 1 + µ + ν , 0,−1,−2, . . . , (23)

and the main variable r satisfies inequalities |r | < 1 and |1 − r | < 1. We have

F(1
2
+ λ,−1

2
− ν, 1 + λ + µ; r) = Γ(λ + µ + 1)

Γ(λ + 1
2 )Γ(µ +

1
2 )

∫ 1

0
tλ−1/2(1 − t)µ−1/2(1 − rt)ν+1/2dt,

F(1
2
+ λ,

1
2
− ν, 1 + λ + µ; r) = Γ(λ + µ + 1)

Γ(λ + 1
2 )Γ(µ +

1
2 )

∫ 1

0
tλ−1/2(1 − t)µ−1/2(1 − rt)ν−1/2dt,

F(1
2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r)

=
Γ(µ+ν+1)

Γ(−λ+ 1
2 )Γ(λ+µ+ν+

1
2 )

∫ 1

0
s−λ−1/2(1−s)λ+µ+ν−1/2(1−(1−r)s)−ν−1/2ds

=
Γ(µ+ν+1)

Γ(−λ+ 1
2 )Γ(λ+µ+ν+

1
2 )

∫ 0

−∞
(−t)−λ−1/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

F(−1
2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r)

=
Γ(µ+ν+1)

Γ(−λ− 1
2 )Γ(λ+µ+ν+

3
2 )

∫ 1

0
s−λ−3/2(1−s)λ+µ+ν+1/2(1−(1−r)s)−ν−1/2ds

=
Γ(µ + ν + 1)

Γ(−λ− 1
2 )Γ(λ+µ+ν+

3
2 )

∫ 0

−∞
(−t)−λ−3/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

under the condition
λ, µ, ν, λ + µ + ν <

{1
2
+ n

�� n ∈ Z
}
, (24)

where we use the regularization of (0, 1) or (−∞, 0) with respect to the integrand if necessary. Here
note that a variable change s = t/(t − 1) is used.

A.2 Setting of a local system

Hereafter we assume the conditions (23) and (24), and we set

u(t) = t1/2+λ(1 − t)−1/2+µ(1 − rt)1/2+ν,

φ1 =
dt
t
, φ2 =

dt
t(1 − rt) =

(1
t
− 1

t − 1/r

)
dt,

ψ1 =
dt

1 − t
=

−dt
t − 1

, ψ2 =
dt

t(1 − t) =
(1

t
− 1

t − 1

)
dt .

Then we have
1/u(t) = t−1/2−λ(1 − t)1/2−µ(1 − rt)−1/2−ν,

and

F(1
2
+ λ,−1

2
− ν, 1 + λ + µ; r) = Γ(λ + µ + 1)

Γ(λ + 1
2 )Γ(µ +

1
2 )

∫ 1

0
u(t)φ1,

F(1
2
+ λ,

1
2
− ν, 1 + λ + µ; r) = Γ(λ + µ + 1)

Γ(λ + 1
2 )Γ(µ +

1
2 )

∫ 1

0
u(t)φ2;

23
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F(1
2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r) = Γ(µ + ν + 1)eπ

√
−1(λ+1/2)

Γ(−λ + 1
2 )Γ(λ + µ + ν +

1
2 )

∫ 0

−∞
u(t)−1ψ1,

=

√
−1Γ(µ + ν + 1)eπ

√
−1λ

Γ(−λ + 1
2 )Γ(λ + µ + ν +

3
2 )
(λ + µ + ν + 1

2
)
∫ 0

−∞
u(t)−1ψ1,

F(−1
2
− λ, 1

2
+ ν, 1 + µ + ν; 1 − r) = Γ(µ + ν + 1)eπ

√
−1(λ+3/2)

Γ(−λ − 1
2 )Γ(λ + µ + ν +

3
2 )

∫ 0

−∞
u(t)−1ψ2

=
−
√
−1Γ(µ + ν + 1)eπ

√
−1λ

Γ(−λ + 1
2 )Γ(λ + µ + ν +

3
2 )
(−λ − 1

2
)
∫ 0

−∞
u(t)−1ψ2.

Thus integrals are expressed as( ∫ 1

0
u(t)φ1,

∫ 1

0
u(t)φ2

)
=

Γ(λ + 1
2 )Γ(µ +

1
2 )

Γ(λ + µ + 1)
(
F(1

2
+ λ,−1

2
− ν, 1 + λ + µ; r), F(1

2
+ λ,

1
2
− ν, 1 + λ + µ; r)

)
; (25)(∫ 0

−∞ u(t)−1ψ1∫ 0
−∞ u(t)−1ψ2

)
=

Γ(−λ + 1
2 )Γ(λ + µ + ν +

3
2 )√

−1eπ
√
−1λΓ(µ + ν + 1)

(
1

λ+µ+ν+1/2 0
0 1

λ+1/2

) (
F( 1

2 − λ, 1
2 + ν, 1 + µ + ν; 1 − r)

F(− 1
2 − λ, 1

2 + ν, 1 + µ + ν; 1 − r)

)
. (26)

A.3 Transform of a twisted period relation into Elliott’s identity

The intersection matrix Hc of φ1, φ2 and ψ1, ψ2 is

Hc = 2π
√
−1

©­­«
1

1/2 + λ + µ + ν
1

1/2 + λ
0

1
1/2 + λ

ª®®¬
by Theorem 5. We take a basis of the twisted homology group for u(t) and that for 1/u(t) by
extending γ and δ, respectively, where γ and δ are the twisted cycles given by the regularization
of (0, 1) with respect to u(t) and that of (−∞, 0) with respect to u−1(t). The intersection number of

these twisted cycles is
1

−e2π
√
−1λ − 1

by Theorem 3. Consider the (1, 1)-entry of

tΠω
tH−1

c Π−ω = Hh

which is the transpose of the second identity of (21) in Corollary 1. Then it yields

( ∫ 1

0
u(t)φ1,

∫ 1

0
u(t)φ2

)
tH−1

c

©­­«
∫ 0
−∞

1
u(t)ψ1∫ 0

−∞
1

u(t)ψ2

ª®®¬ =
−1

e2π
√
−1λ + 1

. (27)
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Rewrite the integrals in the equality (27) in terms of hypergeometric series by (25) and (26).
Then its exp and Gamma factors reduce to

Γ(λ + 1
2 )Γ(µ +

1
2 )

Γ(λ + µ + 1) ·
Γ(−λ + 1

2 )Γ(λ + µ + ν +
3
2 )√

−1eπ
√
−1λΓ(µ + ν + 1)

=
Γ(λ + 1

2 )Γ(1 − (λ + 1
2 ))√

−1eπ
√
−1λ

·
Γ(λ + µ + ν + 3

2 )Γ(µ +
1
2 )

Γ(λ + µ + 1)Γ(µ + ν + 1)

=
π

sin(π(λ + 1
2 ))

· 1
√
−1eπ

√
−1λ

·
Γ(λ + µ + ν + 3

2 )Γ(µ +
1
2 )

Γ(λ + µ + 1)Γ(µ + ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ(λ + µ + ν + 3

2 )Γ(µ +
1
2 )

Γ(λ + µ + 1)Γ(µ + ν + 1) ,

and the product of tH−1
c and the 2 × 2-matrix in (26) reduces to

1
2π

√
−1

(
1
2+λ+µ+ν 0

−(1
2+λ+µ+ν)

1
2+λ

) (
1

1/2+λ+µ+ν 0
0 1

1/2+λ

)
=

1
2π

√
−1

(
1 0
−1 1

)
.

Hence the equality (27) is transformed into(
F(1

2
+ λ,−1

2
− ν, 1 + λ + µ; r), F(1

2
+ λ,

1
2
− ν, 1 + λ + µ; r)

)
·
(

1 0
−1 1

)
·
(

F(1
2 − λ, 1

2 + ν, 1 + µ + ν; 1 − r)
F(−1

2 − λ, 1
2 + ν, 1 + µ + ν; 1 − r)

)
=

Γ(λ + µ + 1)Γ(µ + ν + 1)
Γ(λ + µ + ν + 3

2 )Γ(µ +
1
2 )
,

which is equivalent to Elliott’s identity (22).
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