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Product of Hessians of critical points of level function for hypergeometric integrals K.Aomoto, M. Ito

1. Introductory explanation (Divergent integral and twisted cycle)

We begin to explain in an elementary way the notion of “twisted cycle” and how it justifies
“finite part of divergent integral” appearing in Mathematical Physics.

The function xλ+ on R for Reλ > −1 is an ordinary function but for λ ∈ C − Z, λ ≤ −1 is a
generalized function defined as follows:

Suppose f (x) is an arbitrary holomorphic function near the origin. Fix a point a > 0 near the
origin. Consider the integral

〈xλ+, f 〉 =
∫ a

0
xλ f (x)dx = lim

ε↓0

∫ a

ε
xλ f (x)dx. (1.1)

Case 1. Suppose first −n − 1 < Reλ < −n (n = 1,2,3, . . .). Then (1.1) is divergent. f (x) has a
Taylor expansion at the origin

f (x) =
n−1∑
m=0

f m(0)
m!

xm + xng(x),

where g(x) is holomorphic on [0,a]. The finite part of (1.1) in the sense of J. Hadamard is given as
follows :

J(λ) = f.p.
∫ a

0
xλ f (x)dx =

n−1∑
m=0

f (m)(0)
m!

aλ+m+1

λ + m + 1
+

∫ a

0
xλ+ng(x)dx. (1.2)

This is the generalized function xλ+ which has been defined by I. M. Gelfand and G. E. Shilov in the
mid 20th century (see [9]), i.e.,

〈xλ+, f 〉 = f.p.
∫ a

0
xλ f (x)dx.

In a neighborhood of the origin we take a path σ0 starting from and ending in a going around
the origin counter-clockwise (“loop based on the point a going around the origin”)

1
e2πiλ − 1

σ0 = [ε,a] +
1

e2πiλ − 1
δε (ε > 0),

where δε is a scalar multiple of a loop with base point ε in a neighborhood of 0. Then the integral

1
e2πiλ − 1

∫
σ0

xλ f (x)dx

equals (1.2). This is called “detoured cycle at the origin”. (This idea already can be found in the
work of J. Leray in the middle of 20th century).

Case 2. When λ = −n (n = 1,2,3, . . .) the finite part is defined as

f.p.
∫ a

0
x−n f (x)dx =

n−2∑
m=0

f (m)(0)
m!

a−n+m+1

−n + m + 1
+

f (n−1)(0)
n!

log a +
∫ a

0
g(x)dx.

The generalized function x−n+ is then defined by the finite part

〈x−n+ , f 〉 = f.p.
∫ a

0
x−n f (x)dx.
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J(λ) has Laurent expansion at λ = −n

J(λ) =
c−1
λ + n

+ c0 + c1(λ + n) + · · · ,

so that the finite part coincides with c0 , i.e.,

f.p.
∫ a

0
x−n f (x)dx = c0 = lim

λ→−n

d
dλ
(λ + n)J(λ) =

1
2πi

∫
σ0

x−n(log x − πi) f (x)dx.

Example 1.1.

(1) f.p.
∫ ∞

a

(x − a)λdx = 0 for all λ ∈ R.

(2) f.p.
∫ b

a

f (x)
x

dx = p.v.
∫ b

a

f (x)
x

dx =
∫ b

a

f (x) − f (0)
x

dx + f (0) log
b
−a

(a < 0 < b),

where the symbol p.v. denotes the principal value.

(3) f.p.
∫ ∞

0

e−x

x
dx =

∫ ∞

0

( e−x

x
−

x
ex − 1

)
dx = Γ′(1) = −C,

where C denotes the Euler constant.

Example 1.2. (Beta function) For α, β < Z

J(α, β) = f.p.
∫ 1

0
xα(1 − x)βdx

is equal to Beta function B(α, β). Take σ0, σ1 the loops with the base point x = 1
2 going around 0,1

in a positive direction respectively. Then

J(α, β) =
1

e2πiα − 1

∫
σ0

xα(1 − x)βdx −
1

e2πiβ − 1

∫
σ1

xα(1 − x)βdx.

The monodromyM associated with the function Φ(x) = xα(1 − x)β

σ0 −→ M(σ0) = e2πiα ∈ C∗, σ1 −→ M(σ1) = e2πiβ ∈ C∗

defines the local system L and its dual L∗ on the space X = C − {0,1}. The boundary operator ∂
acts on the linear space of chains c = c0σ0 + c1σ1 (c0, c1 ∈ C) with values in L∗ as follows:

∂(c0σ0 + c1σ1) =
(
c0(e2πiα − 1) + c1(e2πiβ − 1)

)
{
1
2
}.

It is closed (twisted cycle) if and only if

c0(e2πiα − 1) + c1(e2πiβ − 1) = 0.

Hence the one dimensional homology H1(X,L∗) is just one dimensional with the basis

c =
1

e2πiα − 1
σ0 −

1
e2πiβ − 1

σ1.
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We have
J(α, β) = 〈c, dx〉. (1.3)

On the other hand if α = −n − 1 (n = 0,1,2,3, . . .), then

J(−n − 1, β) = f.p.
∫ 1

0
x−n−1(1 − x)βdx (β > −1)

=
1

2πi

∫
σ0

x−n−1(1 − x)β(log x − πi)dx −
1

e2πiβ − 1

∫
σ1

x−n−1(1 − x)βdx. (1.4)

The vector function of two components T
(
(1 − x)β, (1 − x)β log x

)
(T denotes the transposition)

defines the monodromy and the associated local system L of rank two and its dual L∗. The
fundamental 2 × 2 matrix function Φ is defined by the lower triangular matrix

Φ(x) =

(
(1 − x)β

(1 − x)β log x (1 − x)β

)
,

and its monodromy is given by

M −→ M(σ0) =

(
1

2πi 1

)
, M(σ1) =

(
e2πiα

e2πiβ

)
.

The space of chains with coefficients in L∗ is the linear space consisting of two components

c = (c11, c12)σ0 + (c21, c22)σ1 (cjk ∈ C).

The pairing of integral between the chain c and two component vector function T(ϕ1(x), ϕ2(x)) is
given by

〈c,T(ϕ1, ϕ2)〉 =

∫
σ0

(c11, c12)Φ(x) T(ϕ1, ϕ2) dx +
∫
σ1

(c21, c22)Φ(x) T(ϕ1, ϕ2) dx.

The boundary operator is given by

∂(c) =
{
(c11, c12)(M(σ0) − I) + (c21, c22)(M(σ1) − I)

}{1
2
}
,

and c is closed if and only if

2πic12 + (e2πiβ − 1)c21 = 0, (e2πiβ − 1)c22 = 0,

i.e.,
c22 = 0, c21 = −

2πi
e2πiβ − 1

c12.

Hence we have two linearly independent twisted cycles

c1 = (1,0)σ0, c2 =
(
0,

1
2πi

)
σ0 +

(
−

1
e2πiβ − 1

,0
)
σ1.

The integral (1.3) is nothing else than the pairing 〈c2,
T(x−n−1dx,−πix−n−1dx)〉, namely

J(−n − 1, β) = 〈c2,
T(x−n−1dx,−πix−n−1dx)〉.

4



P
o
S
(
M
A
2
0
1
9
)
0
0
9

Product of Hessians of critical points of level function for hypergeometric integrals K.Aomoto, M. Ito

Finally we consider the integral

J(−n − 1,−m − 1) = f.p.
∫ 1

0
x−n−1(1 − x)−m−1dx (n,m = 0,1,2, . . .)

=
1

2πi

( ∫
σ0

x−n−1(1 − x)−m−1(log x − πi)dx −
∫
σ1

x−n−1(1 − x)−m−1(log(1 − x) − πi)dx
)
. (1.5)

The vector function of three components 1, log x, log(1− x) defines the 3× 3 fundamental function
matrix

Φ(x) =
©­­«

1
log x 1

log(1 − x) 0 1

ª®®¬
and the corresponding monodromy is given by

M(σ0) =
©­­«

1
2πi 1
0 0 1

ª®®¬ , M(σ1) =
©­­«

1
0 1

2πi 0 1

ª®®¬ .
The local system has rank three and the twisted cycle is represented by

c = (c11, c12, c13)σ0 + (c21, c22, c23)σ1

such that
(c11, c12, c13)M(σ0) + (c21, c22, c23)M(σ1) = 0,

i.e.,
c12 + c23 = 0.

The above integral (1.5) gives the pairing between the cycle

c3 =
(
−

1
2
,

1
2πi

,0
)
σ0 +

(1
2
,0,−

1
2πi

)
σ1

and the three component vector one-form T(x−n−1(1 − x)−m−1dx,0,0):

J(−n − 1,−m − 1) = 〈c3,
T(x−n−1(1 − x)−m−1dx,0,0)〉.

Let Ll f be the same local system on X which is locally finite at the singularity 0,1,∞ and L∗
l f
be its

dual. There is a canonical morphism “reg” often called the “regularization” or “renormalization”

reg : H1(X,L∗l f ) → H1(X,L∗)
l

H1(X,Ll f )

such that reg[0,1] = c in (1.3) and reg[0,1] = c2 in (1.4) or c3 in (1.5).
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2. Asymptotics for large exponents and critical points

Let us begin with a simplest example.

Example 2.1. For different aj ∈ C (1 ≤ j ≤ m) and λ =
∑m

j=1 λjεj ∈ R
m ({εj}1≤ j≤m means the

standard basis of Rm) we take

Φ(w) =

m∏
j=1
(w − aj)

λ j

and the integral over a twisted cycle z in the space X = C −
⋃m

j=1{aj}

Jλ(ϕ) =
∫
z
Φ(w)ϕ(w)dw,

where ϕ(w)dw is a rational differential one-form which is holomorphic on X . Denote by H1
∇
(X,Ω·)

the one dimensional twisted de Rham cohomology with respect to the covariant derivation

∇ : ψ −→ ∇ψ = dψ +
m∑
j=1

λjd log(w − aj) ∧ ψ (2.1)

for ψ ∈ Ω0 (scalar valued) (see [3]). Denote the logarithmic one forms ϕj(w)dw = d log(w − aj)

(1 ≤ j ≤ m). One can take ϕj(w)dw (1 ≤ j ≤ m− 1) as the representative of the basis of H1
∇
(X,Ω·)

(Orlik–Solomon basis [12]). The shift operator Tε j associated with the shift : λ → λ + εj acts on
H1
∇
(X,Ω·):

Tε j (ϕk dw) ∼
m−1∑
l=1

ϕldw aj;lk(λ) (homologically).

The (m − 1) × (m − 1) matrices Aj(λ) =
(
aj;lk(λ)

)
1≤k ,l≤m−1 are rational functions of λ which have

the asymptotic expansions

Aj(λ) = A(0)j +O
( 1

N

)
(λ = Nν + λ′),

where A(0)j commute with each other under the generic condition (C):

(C) : aj , ak ( j , k).

Put λ = Nν + λ′ with ν =
∑m

j=1 νjεj ∈ Z
m − {0}, where λ′ =

∑m
j=1 λ

′
jεj is fixed. We are interested

in the asymptotic behavior of Jλ(ϕ) when N ∈ Z>0 tends to the infinity in the direction ν. Take

F =
m∑
j=1

νj log(w − aj).

For the real valued level functionRe(F) the associated critical points ζj ∈ C (1 ≤ j ≤ m−1) satisfy
the equality

dF
dw
=

m∑
j=1

νj

w − aj
= 0. (2.2)

6
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Generally there arem−1 different critical points ζj . To each point ζj there exists the one dimensional
stable cycle zj which is Lagrangian. This is locally described at ζj by

ImF(w) = ImF(ζj).

There also exists the one dimensional unstable cycle z−j at ζj . Each of the systems zj (1 ≤ j ≤ m−1)
and z−j (1 ≤ j ≤ m − 1) makes a basis of H1(X,L∗). They give the asymtotics of integral in the
direction ν and −ν respectively.

Now for simplicity we consider the case m = 3 where ν = ε1 + ε2 + ε3 i.e., ν1 = ν2 = ν3 = 1.
Then we have

A1(λ) =

(
λ1

1+λ∞ (a3 − a1)
λ1

1+λ∞ (a3 − a1)

λ2
1+λ∞ (a3 − a2)

λ2
1+λ∞ (a3 − a2) + (a2 − a1)

)
and

A(0)1 =

(
a3−a1

3
a3−a1

3
a3−a2

3
a3+2a2−3a1

3

)
,

where λ∞ = λ1 + λ2 + λ3. The multiplication by the variable w : Tw = A1 + a1I corresponds to the
matrix

A(0)w = A(0)1 + a1I =

(
a3+2a1

3
a3−a1

3
a3−a2

3
a3+2a2

3

)
.

This has the eigenvalues ζ1, ζ2. One can easily show that ζ1, ζ2 both lie in the inside of the triangle
with vertices a1,a2,a3. The discriminant of (2.2) is given by the determinant of Hankel matrixH1

of A(0)w (see [8]):

H1 =

(
Tr(I) Tr(A(0)w )

Tr(A(0)w ) Tr({A(0)w }2)

)
and

detH1 = (ζ1 − ζ2)
2 = a2

1 + a2
2 + a2

3 − a1a2 − a1a3 − a2a3.

Under the condition (C) one can obtain the product formula[ d2F
dw2

]
w=ζ1
·

[ d2F
dw2

]
w=ζ2

=
(ζ1 − ζ2)

2

3(a1 − a2)2(a1 − a3)2(a2 − a3)2
.

The two critical points meet each other if and only if
∏2

j=1
[
d2F
dw2

]
w=ζj

vanishes. This occurs if and
only if a1,a2,a3 are the vertices of a regular triangle and ζ1 = ζ2 is the center of gravity.

3. Problems, Methods and Main Results

For large exponents the behavior of critical points of a level function gives an influence for
asymptotics of corresponding hypergeometric integral. In this article we want to show in an explicit
way how the product of Hessians of the level function at all critical points is involved in the behavior
of its critical points.

7
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Let fj = fj(x) (1 ≤ j ≤ m) be real polynomials in x = (x1, . . . , xn) in the affine space Cn. Let
X be the affine manifold which is the complement of the union of the hypersurfaces Sj : fj = 0, i.e.,

X = Cn −
m⋃
j=1

Sj .

The hypergeometric integral with respect to the multiplicative function

Φ(x) =
m∏
j=1

f λ j

j

with exponents λ =
∑m

j=1 λjεj ∈ R
m (εj denotes the standard basis of Rm) is defined by

J(ϕ) =
∫
Φ(x)ϕ(x)dx1 ∧ · · · ∧ dxn (ϕ ∈ Ω·).

Hn
∇
(X,Ω·) denotes the n dimensional twisted cohomology on X with respect to the covariant

differentiation:

∇ϕ = dϕ +
m∑
j=1

λjd log fj ∧ ϕ.

Its dual is isomorphic to the n dimensional twisted homology Hn(X,L∗)where L∗ denotes the dual
local system associated with the function Φ. The perfect pairing between them can be described by
the above integral.

Let λ′ ∈ Rm and ν =
∑m

j=1 νjεj ∈ Z
m − {0} be fixed. Put λ = Nν + λ′ for a positive integer

N . Denote |ν | =
∑m

j=1 |νj |. We consider the asymptotic behavior of the integral J(ϕ) for a large N .
One can define the real valued level function ReF from the logarithm

F(x) =
m∑
j=1

νj log fj .

The singularity of the gradient flow of v = gradReF in X coincides with its critical points ck of F
satisfying the equation:

0 = dF =
m∑
j=1

νjd log fj . (3.1)

A system of linearly independent representatives of Hn(X,L∗) is obtained by stable cycles zk
(1 ≤ k ≤ κ) which are Lagrangian.

Suppose the critical point ck is non-degenerate. Then there exists a system of local coordinates
ξ = (ξ1, . . . , ξn) such that the origin corresponds to ck and ξ is real on the stable cycle zk (see [3,
Theorem 4.6]). The Hessian of F at ck is defined by

[Hess(F)]ck =

[
det

(
∂2F

∂ξj∂ξk

)
1≤ j ,k≤n{

det( ∂x j∂ξk
)1≤ j ,k≤n

}2

]
ξ=0

.

If ϕ does not depend on λ, we have the following for large N by saddle point method:

〈ϕ, zk〉 =

∫
zk

Φϕ ≈ Φ(ck)ϕ(ck)
(2π) n2√

Nn(−1)n[Hess(F)]ck
.

8
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Under a suitable “non-resonance” condition, κ equals the dimension of the twisted cohomology
Hn
∇
(X,Ω·).
Denote by ϕjdx1 ∧ · · · ∧ dxn (1 ≤ j ≤ κ) the representative of a basis of Hn

∇
(X,Ω·). The

Wronskian W is defined by the determinant detY of the fundamental κ × κ matrix Y = (〈ϕj, zk〉j ,k).
We have the following asymptotic expansion for large N:

W ≈
κ∏

k=1

{
exp[NF(ck)]

m∏
j=1

f
λ′j
j (ck)ϕj(ck)

}
· N−

nκ
2 (2π)

nκ
2

(
w0 +

w1
N
+

w2

N2 + · · ·
)
,

where

w0 =

κ∏
k=1

1√
(−1)n[Hess(F)]ck

.

We can now pose several questions as follows.

Question 1. Evaluate N( fj) :=
∏κ

k=1 fj(ck).

Question 2. Evaluate N(Hess(F)) :=
∏κ

k=1[Hess(F)]ck .

Question 3. When N(Hess(F)) vanishes?

Question 4. Under which condition all the critical points are real?

There is an interesting analogy between fj and the quantity [Hess(F)]ck on the one hand and the
notion of “norm”, “unit” and “differente” in algebraic number theory on the other (see [1, 2, 11, 14]).
In the moduli space for the polynomials { fk}1≤k≤m, f −1

j is also regular in X because fj(ck) never
vanishes. In this sense fj is regarded as “unit”. However Hess(F) may vanish sometimes at ck . In
the sequel for a rational function ϕ on X the product

∏
1≤ j≤κ[ϕ]c j will be called “norm” of ϕ and

be denoted by N(ϕ). ϕ is called a unit if and only if N(ϕ) never vanishes anywhere. One may
conjecture the following:

Ansatz. The product
κ∏

k=1
[Hess(F)]ck = N(Hess(F))

is expressed as
N(Hess(F)) = N(unit) · Discr,

where Discr means the “discriminant” associated with the set of critical points cj (1 ≤ j ≤ κ) and
N(unit) never vanishes. It vanishes if and only if a pair of the critical points ck coincides with each
other.

Remark. Ageneral definition of “discriminant” for a finite dimensional algebra has been introduced
by S. S. Abhyanker (see [1, 2]).

In this article we want to give two examples showing that N(Hess(F)) has an intimate con-
nection with the “discriminant”. It may play the similar role of “discriminants” as in algebraic
number theory (see [11, 14]). First we find a rational curve x = ω(τ) (τ ∈ C) in X such that this
curve passes through all the critical points cj such that cj = ω(τj) (1 ≤ j ≤ κ). Then we show that

9
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“Discr” can be expressed by using the product
∏

1≤ j<k≤κ(τj − τk)
2. See Theorems 4.4, 4.7 (in the

case of hyperplane arrangement) and Propositions 5.7, 5.11, Theorems 5.19, 6.5, 7.14, 7.15 (in the
case of circle arrangement). It is expected that these Theorems and Propositions could be extended
to more general hypergeometric integrals.

4. Hyperplane Arrangements

Let fj (1 ≤ j ≤ n + 2) be the following linear functions with real coefficients:

fj := xj (1 ≤ j ≤ n), fn+1 := 1 −
n∑

k=1
xk, fn+2 := 1 −

n∑
k=1

uk xk

for the parameter u = (u1, . . . ,un) ∈ Rn under the condition (C1):

(C1) : u j , uk ( j , k), u j < {0,1} (1 ≤ j ≤ n).

This gives the moduli space of the arrangement of n + 2 real hyperplanes in general position.
Under (C1) it is known that for generic λ such that all λj > 0 one has κ = n+1 , and that one can

choose as the representative of a basis of Hn(X,L∗) the regularization of the compact chambers of
the associated real hyperplane arrangements corresponding to the components of the complement
of

⋃m
j=1 Sj (refer to [3, 12, 15]):

ReX = Rn ∩ X .

Suppose now that all νj (1 ≤ j ≤ n + 2) and ν∞ =
∑n+2

k=1 νk are different from 0:

ν∞

n+2∏
j=1

νj , 0.

(3.1) is equivalent to the system of equations

0 = G j :=
νj

xj
−
νn+1
fn+1
−
νn+2u j

fn+2
(1 ≤ j ≤ n). (4.1)

This system generally gives n + 1 solutions, namely n + 1 critical points (real or complex) of ReF
(and so of F) in X . We denote them by cj (1 ≤ j ≤ n + 1). Denote

G̃ j =
G j

νn+1 fn+2 + νn+2u j fn+1
(1 ≤ j ≤ n).

It follows from (4.1)

xj = νj
fn+1 fn+2

νn+1 fn+2 + νn+2u j fn+1
− fj fn+1 fn+2G̃ j (1 ≤ j ≤ n), (4.2)

1 − fn+1 =

n∑
k=1

νk
fn+1 fn+2

νn+1 fn+2 + νn+2u j fn+1
−

n∑
k=1

fn+1 fn+2 fjG̃k, (4.3)

1 − fn+2 =

n∑
k=1

νkuk
fn+1 fn+2

νn+1 fn+2 + νn+2uk fn+1
−

n∑
k=1

fn+1 fn+2uk fkG̃k . (4.4)

10
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For two rational functions ϕ1, ϕ2 on X we call “congruent” and denote by ϕ1 ≡ ϕ2 if they have equal
values at all cj . Hence

xj ≡ νj
fn+1 fn+2

νn+1 fn+2 + νn+2u j fn+1
(1 ≤ j ≤ n), (4.5)

1 − fn+1 ≡

n∑
k=1

νk
fn+1 fn+2

νn+1 fn+2 + νn+2u j fn+1
,

1 − fn+2 ≡

n∑
k=1

νkuk
fn+1 fn+2

νn+1 fn+2 + νn+2uk fn+1
.

Introduce the new parameter t = fn+2/ fn+1 as basic parameter. We want to find out the system of
rational functions ω(t) = (ω1(t1), . . . ,ωn(t)) such that

xj ≡ ωj(t),

i.e., x = ω(t) represents a rational curve in X interpolating the set of critical points {cj | 1 ≤ j ≤
n + 1}.

Lemma 4.1. At all critical points cj , t satisfies the algebraic equation of (n + 1)th degree:

ψ(t) := 1 −
1
t
−

n∑
j=1

νj(1 − u j)

νn+1t + νn+2u j
= 0. (4.6)

In particular if νj
νn+1
(1 − u j) are all positive then all the roots are real and different. Hence cj are

all real and different.

Proof. In fact from (2.1), (2.2) we have

1
fn+1
≡ 1 +

n∑
j=1

νj t
νn+1t + νn+2u j

, (4.7)

1
fn+2
≡ 1 +

n∑
j=1

νju j

νn+1t + νn+2u j
. (4.8)

These two equations imply Lemma 4.1. �

Furthermore

Lemma 4.2. The following identities hold:

fj = xj ≡
νj(νn+1t + νn+2)

ν∞(νn+1t + νn+2u j)
(1 ≤ j ≤ n), (4.9)

fn+1 ≡
νn+1t + νn+2

ν∞t
, (4.10)

fn+2 ≡
νn+1t + νn+2

ν∞
. (4.11)

11
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Proof. (4.7) and (4.8) show that

νn+2
fn+2
−

n∑
k=1

νk ≡ νn+2 −

n∑
k=1

νn+1νk t
νn+1t + νn+2uk

≡ νn+2 − νn+1

( 1
fn+1
− 1

)
≡ νn+1 + νn+2 −

ν + 1
fn+1

,

i.e.,
νn+1
fn+1
+
νn+2
fn+2
≡ ν∞.

Hence we have
1

fn+1

(
νn+1 +

νn+2
t

)
= ν∞,

which implies (4.10) and so (4.11). On the other hand (4.5) shows

xj ≡
νj fn+2

νn+1t + νn+2u j
,

which is nothing else than (4.9) because of (4.10). �

Put

ωj(t) :=
νj(νn+1t + νn+2)

ν∞(νn+1t + νn+2u j)
(1 ≤ j ≤ n),

then the rational curve xj = ωj(t) (t ∈ C) interpolates the set of critical points cj (1 ≤ j ≤ n + 1)
in X such that t(cj) correspond to the roots of the equation ψ(t) = 0. Denote by ψ(t) the monic
polynomial of (n + 1)th degree which t has the same roots as (4.6)

νnn+1 ψ(t) = t
n∏
j=1
(νn+1t + νn+2u j)ψ(t) = νnn+1 (t − ζ1) · · · (t − ζn+1),

where ζj denote the zeros of ψ(t). ψ(t) is the characteristic polynomial attached to t such that
ζj = t(cj).

Definition 4.3. For a rational function ϕ on X we define the “norm” associated with the system of
critical points cj (1 ≤ j ≤ n + 1) as follows:

N(ϕ) :=
n+1∏
j=1
[ϕ]c j .

We say that ϕ is the “unit” if N(ϕ) , 0.

The first main theorem can be stated as follows:

12
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Theorem 4.4. The following formulae hold:

(1) N(t) = (−1)n
νn
n+2

∏n
k=1 uk

νn
n+1

,

(2) N(νn+1t + νn+2u j) = −ν
n
n+2ν ju j(1 − u j)

∏
1≤k≤n
k,j

(u j − uk) (1 ≤ j ≤ n),

(3) N(νn+1t + νn+2) = ν∞ν
n
n+2

n∏
k=1
(1 − uk),

(4) N( fj) =
νnj

νn∞u j

∏
k,j(1 − uk)∏
k,j(u j − uk)

(1 ≤ j ≤ n),

(5) N( fn+1) = (−1)n
νn
n+1
νn∞

n∏
k=1

1 − uk
uk

,

(6) N( fn+2) =
νn
n+2
νn∞

n∏
k=1
(1 − uk).

In particular fj (1 ≤ j ≤ n + 2) are all units in the above sense.

Proof. By definition ψ(t) has the following expression:

νnn+1ψ(t) = (t − 1)
n∏

k=1
(νn+1t + νn+2uk) −

n∑
l=1

νl(1 − ul)t
∏

1≤k≤n
k,j

(νn+1t + νn+2uk).

Hence we have

N(t) = (−1)n+1ψ(0) = (−1)n
n∏

k=1

νn+2uk
νn+1

.

This proves (1). In the same way we have

N(νn+1t + νn+2u j) = (−1)n+1νn+1
n+1 ψ

(
−
νn+2u j

νn+1

)
= νnn+2νj(1 − u j)u j

∏
1≤k≤n
k,j

(u j − uk),

which proves (2), and have

νnn+1ψ
(
−
νn+2
νn+1

)
= −

( νn+2
νn+1

+ 1
)
νnn+2

n∏
k=1
(−1 + uk) −

n∑
l=1

νl(1 − ul)
(
−
νn
n+2
νn+1

) ∏
1≤k≤n
k,j

(−1 + uk)

= −
νn
n+2ν∞

νn+1

n∏
l=1
(−1 + uk),

and
N(νn+1t + νn+2) = (−1)n+1νn+1

n+1ψ
(
−
νn+2
νn+1

)
.

This proves (3). (4) follows from (4.9) in view of (2) and (3). (5) follows from (4.10) and (3). (6)
follows from (4.11) and (3). �

13
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Now we want to evaluate N(Hess(F)) in terms of discriminant. One has the obvious identity

ψ
′
(ζj) =

[
t

n∏
j=1

(
t +

νn+2
νn+1

u j

)]
ζj
[ψ ′(t)]ζj .

Put further

G∗1 := − fn+1

n∑
k=1
(1 − uk) fkGk,

G∗2 := fn+1 fn+2

n∑
k=1

fkGk,

G∗j := − fj fn+1 fn+2G j (3 ≤ j ≤ n),

then (4.2), (4.3) and (4.4) are expressed in terms of the coordinates x∗1 = t1, x∗2 = fn+1, x∗j = xj
(3 ≤ j ≤ n) as follows:

G∗1 = − fn+1x∗1ψ(x
∗
1), (4.12)

G∗2 = 1 − x∗2
(
1 +

n∑
k=1

νk x∗1
νn+1x∗1 + νn+2uk

)
, (4.13)

G∗j = x∗j −
νj(νn+1x∗1 + νn+2)

ν∞(νn+1x∗1 + νn+2u j)
(3 ≤ j ≤ n). (4.14)

Under the condition (C1) the system of equations (4.1) in X is equivalent to the following:

G∗j = 0 (1 ≤ j ≤ n).

As a consequence of (4.12) – (4.14)

∂(x∗1,G
∗
2, . . . ,G

∗
n)

∂(x∗1, x
∗
2, . . . , x

∗
n)
≡ −

1
x∗2
= −

1
fn+1

, (4.15)

∂(x∗1, x
∗
2, . . . , x

∗
n)

∂(x1, x2, . . . , xn)
=

u1 − u2
x∗2

=
u1 − u2

fn+1
.

By definition we have

dG̃1 ∧ · · · ∧ dG̃n ≡
1

(νn+1 fn+2 + νn+2u j fn+1)n
dG1 ∧ · · · ∧ dGn

=
1

f n
n+1(νn+1t + νn+2u j)

n
dG1 ∧ · · · ∧ dGn,

dx∗1 ∧ · · · ∧ dx∗n =
u1 − u2

x∗2
dx1 ∧ · · · ∧ dxn.

Hence

14
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Lemma 4.5. We have the Jacobian identities

(1)
∂(G∗1, . . . ,G

∗
n)

∂(x1, . . . , xn)
≡ (−1)n−1 ∂(G1, . . . ,Gn)

∂(x1, . . . , xn)
(u1 − u2)( fn+1)

n( fn+2)
n−1

n∏
j=1

fj ,

(2)
∂(t,G∗2, . . . ,G

∗
n)

∂(x1, x2, . . . , xn)
≡ −

u1 − u2

f 2
n+1

,

(3) ψ ′(t)
∂(t,G∗2, . . . ,G

∗
n)

∂(x1, x2, . . . , xn)
≡
∂(G∗1, . . . ,G

∗
n)

∂(x1, . . . , xn)
.

Definition 4.6. Define the discriminant associated with the system of critical points cj by

Discr :=
∏

1≤ j<k≤n+1
(ζj − ζk)

2 = (−1)
n(n+1)

2 N(ψ
′
(t)).

On the other hand the Hessian of F is defined by the Jacobian

Hess(F) :=
∂(G1, . . . ,Gn)

∂(x1, . . . , xn)
.

We have the following equality as the second main theorem.

Theorem 4.7.

Discr = N(Hess(F)) {N( fn+1)}
n+2 {N( fn+2)}

n−1
n∏
j=1
N( fj).

Hence a pair of critical points meet each other if and only if N(Hess(F)) vanishes.

5. Circle Arrangements (i), Product Formulae for Norms

Let n + 1 quadratic polynomials of real coefficients in x = (x1, . . . , xn) be given:

fj(x) := Q(x) + 2
n∑

k=1
αjk xk + αj0 (1 ≤ j ≤ n + 1),

where Q(x) denotes the quadratic form
∑n

j=1 x2
j . They define the arrangement of hyperspheres A

consisting of the hyperspheres Sj : fj = 0. The center O j and the radius rj (rj > 0) of Sj satisfy

O j = −(αj1, . . . , αjn), r2
j = −αj0 +

n∑
k=1

α2
jk .

We denote the distance between O j , Ok ( j , k) by ρjk (ρjk > 0) such that ρ2
jk
=

∑n
l=1(αjl − αkl)

2.
For the multiplicative function

Φ(x) =
n+1∏
j=1

f λ j

j (x)

15
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we consider the integral J(ϕ) in §3. For generic exponents λ one can prove that the dimension of
Hn
∇
(X,Ω·) is equal to 2n+1 − 1. As the representatives of a basis of Hn

∇
(X,Ω·) one can choose the

following nth degree forms

ϕJdx1 ∧ · · · ∧ dxn, ϕJ :=
1∏
j∈J fj

,

where J ranges over the family of arbitrary (unordered) subsets of indices in {1,2, . . . ,n + 1}. (See
[4–7] for hypergeometric integrals associated with hypersphere arrangements.)

Cayley–Menger determinants are defined in the following way and play an important role in
the sequel. Denote by ρ?j = ρj? the radius rj for j ∈ {1,2, . . . ,n + 1} or 0 for j = ?.

Definition 5.1. The determinant

B
(

0 J
0 K

)
= B

(
0 j1 · · · jp
0 k1 · · · kp

)
:=

����������
0 1 . . . 1
1 ρ2

j1k1
· · · ρj1kp

...
...

. . .
...

1 ρ2
jpk1

. . . ρ2
jpkp

����������
is called the “Cayley–Menger determinant” associated with A, where J = { j1, . . . , jp} and K =
{k1, . . . , kp} denote two subsets of the indices in {?,1, . . . ,n + 1}. In case when J = K we simply

write B(0 J) instead of B
(
0 J
0 K

)
. Notice that

B(0 j k) = 2ρ2
jk > 0, B(0? j) = 2r2

j > 0.

For simplicity we restrict ourselves to the case n = 2, so that A is the arrangement of three
circles S1,S2,S3 in R2. We further assume that rj equals the same simply denoted by r and that
νj = 1 for all j. One sees that

B
(
0 j l
0 k l

)
= ρ2

jl + ρ
2
kl − ρ

2
jk, B(0? j k) = ρ2

jk(ρ
2
jk − 4r2),

B(0123) = ρ4
12 + ρ

4
13 + ρ

4
23 − 2ρ2

12ρ
2
13 − 2ρ2

12ρ
2
23 − 2ρ2

13ρ
2
23

= −(ρ13 + ρ23 − ρ12)(ρ12 + ρ23 − ρ13)(ρ12 + ρ13 − ρ23)(ρ12 + ρ13 + ρ23),

B(0?123) = −2r2B(0123) − 2ρ2
12ρ

2
13ρ

2
23.

In this case F can be simply written

F = log f1 + log f2 + log f3.

We further assume the following condition of non-degeneracy of A:

(C2) B(0123) < 0, B(0?123) , 0, B(0? j k) , 0 (1 ≤ j < k ≤ 3),

which means the triangle 4O1O2O3 is non-degenerate, i.e., any two circles have no contact point
and three circles S1, S2, S3 have no common point. By taking a suitable choice of coordinates we
may assume that

α31 = α32 = α22 = 0, α21 > 0, α12 > 0.

16
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so that we have

r2 = −α30 = −α20 + α
2
21 = −α10 + α

2
11 + α

2
12,

α2
21 = ρ

2
23, α2

11 + α
2
12 = ρ

2
13, (α11 − α21)

2 + α2
12 = ρ

2
12,

4α2
21α

2
12 = −B(0123).

Hence αjk are completely determined by ρ2
jk
,r2.

Under the condition (C2) the system of equations (3.1) are equivalent to

G1 :=
x1 + α11

f1
+

x1 + α21
f2

+
x1
f3
= 0,

G2 :=
x2 + α12

f1
+

x2
f2
+

x2
f3
= 0.

(5.1)

Generally there exist 7 (real or complex) points in X satisfying (5.1) denoted by cj (1 ≤ j ≤ 7).
Let Dj (1 ≤ j ≤ 3) be the open disc surrounded by the circumference ReSj . We notice that, if we
consider the condition

B(0?123) > 0, B(0? j k) < 0 (1 ≤ j < k ≤ 3), (5.2)

then the intersection D1 ∩ D2 ∩ D3 is not empty, and the critical points are all real and contained
one by one in each compact chamber.

D2 D3

D1

Figure 1: Critical points in compact chambers under the condition (5.2)

We introduce the new polynomials in x

g1 := f3(L12 − L23) − L23 ( f1 − f3),

g2 := f3(L12 − L13) − L13 ( f2 − f3),

g3 := −(L12 − L13)L23( f1 − f3) + (L12 − L23)L13( f2 − f3),

where Ljk denote linear functions of x

L12 : L12(x) = α12x1 + (−α11 + α21)x2 + α21α12,

L13 : L13(x) = −α12x1 + α11x2,

L23 : L23(x) = −α21x2.

17
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O3O2

O1

L   (x) = 023

L   (x) = 013L   (x) = 012

x1

x2

Figure 2: Points O1, O2, O3 and Lines L12(x), L13(x), L23(x) = 0

Among g1, g2, g3 there is the following identity

g3 = (L12 − L13)g1 − (L12 − L23)g2. (5.3)

Ljk(x) = 0 defines the straight line going through O j , Ok and the triangle 4O1O2O3 is defined by
Ljk ≥ 0.

Lemma 5.2. Under the condition (C2) the system of equations (5.1) are equivalent to the system

g1 = g2 = g3 = 0. (5.4)

Suppose moreover that ρ12 , ρ13 (or ρ12 , ρ23). Then (5.4) is equivalent to the following system

g2 = g3 = 0 ( or g1 = g3 = 0). (5.5)

Case 1. Introduce the new parameters t1 = f3/ f1, t2 = f3/ f2 and denote t∞ = 1+t1+t2. We call t1, t2
“admissible coordinates” and t1 “basic parameter”. We want to find a rational curve t2 = ω(t1) ⊂ X
passing through all critical points cj and a monic polynomial ψ(t1) of degree 7 such that (t1,ω(t1))c j
coincides with all (t1, t2)-coordinates of cj for any root of ψ(t1). In the sequel we shall call ψ(t1)
“characteristic polynomial”.

To find out the characteristic polynomial we use Sylvester’s elimination method and find the
corresponding resultant R = R(t1). Namely we find two polynomials U,V in t1 such that Ut2 − V
vanishes at all the critical points cj (1 ≤ j ≤ 7) and put ω(t1) = V/U (see Lemma 5.3 in more
details. Refer to [10, 13]). (5.4) gives the following congruences

x1 ≡ −
α11t1 + α21t2

t∞
, x2 ≡ −

α12t1
t∞

, (5.6)

and conversely
t1 ≡

L23
L12

, t2 ≡
L13
L12

, t∞ =
α21α12

L12
. (5.7)

Then (5.4) can be rewritten using the parameters t1, t2 as

g̃1 = g̃2 = g̃3 = 0, (5.8)

18
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respectively where

g̃1 := g1
t3
∞

α21α12
, g̃2 := g2

t3
∞

α21α12
, g̃3 := g3

t3
∞

α2
21α

2
12
. (5.9)

It holds the following relation equivalent to (5.3):

t∞g̃3 = (1 − t2)g̃1 − (1 − t1)g̃2.

g̃1, g̃2, g̃3 are polynomials of third degree in t1, t2 as follows

g̃1 = a0t2
2 + a1t2 + a2, g̃2 = b0t3

2 + b1t2
2 + b2t2 + b3, g̃3 = c0t2

2 + c1t2 + c2, (5.10)

where aj , bk , cl are given by polynomials in t1:

a0 = (r2 − ρ2
12)t1 + ρ

2
23 − r2,

a1 = 2{r2t2
1 + (ρ

2
23 − ρ

2
12)t1 − r2},

a2 = (t1 − 1){r2t2
1 + (ρ

2
13 + 2r2)t1 + r2},

b0 = r2,

b1 = 2r2t1 + ρ2
23 + r2,

b2 = (r2 − ρ2
12)t

2
1 + 2(ρ2

13 − ρ
2
12)t1 − (r

2 + ρ2
23),

b3 = (ρ
2
13 − r2)t2

1 − 2r2t1 − r2,

c0 = ρ
2
12t1 − ρ2

23,

c1 = −ρ
2
12t2

1 + ρ
2
23,

c2 = ρ
2
13t1(t1 − 1).

(5.11)

Notice that g̃j = g̃j(t1, t2) (1 ≤ j ≤ 3) satisfy

g̃1(t1,1) = a0 + a1 + a2 = r2t3
1 + (ρ

2
13 + 3r2)t2

1 + (2ρ
2
23 − 3ρ2

12 − ρ
2
13)t1 + ρ

2
23 − 4r2,

g̃2(t1,1) = b0 + b1 + b2 + b3 = (ρ
2
13 − ρ

2
12)t1(t1 + 2),

g̃3(t1,1) = c0 + c1 + c2 = (ρ
2
13 − ρ

2
12)t1(t1 − 1).

(5.12)

As an immediate consequence we have

Lemma 5.3.

g̃1(0,1) = ρ2
23 − 4r2, g̃2(0,1) = g̃3(0,1) = 0,

g̃2(1,0) = ρ2
13 − 4r2, g̃1(1,0) = g̃3(1,0) = 0,

g̃1(0,−1) = ρ2
23, g̃2(0,−1) = 2ρ2

23, g̃3(0,−1) = −2ρ2
23

g̃1(−1,0) = 2ρ2
13, g̃2(−1,0) = ρ2

13, g̃3(−1,0) = 2ρ2
13.

The followingLemma is a simple application of Sylvester’s eliminationmethod (see [8, 10, 13]).
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Lemma 5.4. Put

U : U(t1) = b0(c2
1 − c0c2) − b1c0c1 + b2c2

0,

V : V(t1) = −b0c1c2 + b1c0c2 − b3c2
0 .

Then the following identity holds:

g̃23 := c2
0 g̃2 − (b0c0t2 + b1c0 − b0c1) g̃3 = Ut2 − V for arbitrary t1, t2. (5.13)

If g̃2 = g̃3 = 0, then g̃23 = 0. This implies

t2 ≡ ω(t1), ω(t1) :=
V
U
.

The resultant R of g̃2(t1, t2) and g̃3(t1, t2) relative to t2 is a polynomial in t1 of degree 8 written by
Sylvester determinant

R : R(t1) =

�����������
b0 b1 b2 b3

b0 b1 b2 b3

c0 c1 c2

c0 c1 c2

c0 c1 c2

�����������
,

which is related to U,V and can be described as follows:

c2
0 R = U2ψ(t1) = c0V2 + c1VU + c2U2, (5.14)

where U, V are polynomials of degree 4 which can be written as

U =
4∑
j=0

u j t
4−j
1 , V =

4∑
j=0

vj t
4−j
1 .

In particular the coefficients u0, u4 and v0, v4 are given by

u0 = −(ρ
2
12 − 4r2)ρ4

12, u4 = r2ρ4
23, v0 = ρ

2
12{r

2(ρ2
12 + 3ρ2

13) − ρ
2
2ρ

2
13}, v4 = r2ρ4

23.

From (5.10) and (5.14), ψ(t1) is expressed as

ψ(t1) = c0

(V
U

)2
+ c1

V
U
+ c2 = g̃3(t1,ω(t1)).

Moreover U − V can be evaluated explicitly from (5.13)

U − V = c2
0 g̃2(t1,1) − (b0c0 + b1c0 − b0c1)g̃3(t1,1) = (ρ2

13 − ρ
2
12)W

∗, (5.15)
W∗ = t1(w0t3

1 + w1t2
1 + w2t1 + w3)

such that

w0 = ρ
2
12(ρ

2
12 − 3r2), w1 = −ρ

2
12(3ρ

2
23 − 2ρ2

12) + (2ρ
2
23 + ρ

2
12)r

2,

w2 = ρ
2
23(2ρ

2
23 − 3ρ2

12) + (2ρ
2
12 + ρ

2
23)r

2, w3 = ρ
2
23(ρ

2
23 − 3r2).

R is a polynomial in t1 of degree 8 and a polynomial in ρ2
jk
,r2 of degree 10.
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Lemma 5.5. (1) If ρ2
12 = ρ

2
13, then R(t1) vanishes.

(2) R(0) always vanishes.

Proof. About (1). If ρ2
12 = ρ

2
13, U coincides with V , so that

c2
0 R(t1) = (c0 + c1 + c2)U2 = 0.

(5.11) shows that c0 does not vanish for ρ2
13 = ρ

2
12. This implies R(t1) = 0.

About (2). From Lemma 5.3 the identity U(0) = V(0) holds true. Hence

−ρ2
23R(0) =

(
c0(0) + c1(0) + c2(0)

)
U(0) = 0

because of (5.12). �

Owing to Lemma 5.5 R(t1) has the factor (ρ2
12 − ρ

2
13)t1. On the other hand since

c0 ≈ ρ
2
12t1, c1 ≈ −ρ

2
12t2

1, c2 ≈ ρ
2
13t2

1 (|t1 | ↑ ∞)

in view of the formulae above for u0, v0, we have

R(t1) ≈ r2ρ4
12(ρ

2
12 − 4r2)(ρ2

12 − ρ
2
13)t

8
1 (|t1 | ↑ ∞).

As a result

Lemma 5.6. R(t1) is a polynomial in t1 of degree 8 and a polynomial in ρ2
jk
,r2 of degree 5 with the

factor (ρ2
12 − ρ

2
13)t1 such that

R(t1) = r2ρ4
12(ρ

2
12 − 4r2)(ρ2

12 − ρ
2
13)t1ψ(t1),

R(t1) ≈ −r2ρ4
23(ρ

2
23 − 4r2)(ρ2

12 − ρ
2
13)t1 (t1 ↓ 0),

where ψ(t1) =
∏7

j=1(t1 − ζj) is a monic polynomial with 7 roots ζj (1 ≤ j ≤ 7) such that

−ψ(0) =
7∏
j=1

ζj =
ρ4

23(ρ
2
23 − 4r2)

ρ4
12(ρ

2
12 − 4r2)

=
ρ2

23B(0?23)
ρ2

12B(0?12)
.

ψ(t1) is the characteristic polynomial relative to the basic parameter t1 of the critical points cj such
that t1(cj) = ζj .

Furthermore since

U(1) = (ρ2
23 − ρ

2
13)

2(4r2 + 2ρ2
13 − 3ρ2

12),

V(1) = −(ρ2
23 − ρ

2
12)

2(ρ2
13 − 4r2),

U(1) − V(1) = 3(ρ2
23 − ρ

2
12)

2(ρ2
13 − ρ

2
12),

we have the formula
R(1) = −3(ρ2

23 − ρ
2
12)

3(ρ2
13 − ρ

2
12)(ρ

2
13 − 4r2).

Hence

ψ(1) =
7∏
j=1
(1 − ζj) = −3

(ρ2
12 − ρ

2
23)

3(ρ2
13 − 4r2)

ρ4
12r2(ρ2

12 − 4r2)
.

Seeing that ( f1 − f3)/ f1 = 1 − t1, ( f2 − f3)/ f2 = 1 − t2 we can conclude
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Proposition 5.7. (1)

N(t1) = N
( f3

f1

)
=
ρ2

23B(0?23)
ρ2

12B(0?12)
.

N(t2) = N
( f3

f2

)
=
ρ2

13B(0?13)
ρ2

12B(0?12)
.

(2)

N(1 − t1) = N
( f1 − f3

f1

)
= −3

(ρ2
12 − ρ

2
23)

3B(0?13)
ρ2

12ρ
2
13r2B(0?12)

,

N(1 − t2) = N
( f2 − f3

f2

)
= −3

(ρ2
12 − ρ

2
13)

3B(0?23)
ρ2

12ρ
2
23r2B(0?12)

.

Case 2. Instead of (t1, t2) we now take the new coordinates (t∞, t1), where t∞ being the basic
parameter. By the substitution t2 = t∞ − t1 − 1, g̃2, g̃3 and 2g̃2 − g̃3 can be rewritten in terms of t∞, t1
as

g̃
]
2(t∞, t1) := g̃2(t1, t∞ − t1 − 1) = b′0t3

1 + b′1t2
1 + b′2t1 + b′3,

g̃
]
3(t∞, t1) := g̃3(t1, t∞ − t1 − 1),

g̃
]
23(t∞, t1) := 2g̃]2(t∞, t1) − g̃

]
3(t∞, t1) = c′0t2

1 + c′1t1 + c′2,

where b′0, b′1, b
′
2, b′3; c′0, c′1, c′2 denote polynomials in t∞ as follows:

b′0 = ρ
2
12,

b′1 = −ρ
2
12t∞ + ρ2

23 − ρ
2
13 + 3ρ2

12,

b′2 = −r2t2
∞ + 2(−ρ2

12 + ρ
2
13 − ρ

2
23)t∞ + (2ρ

2
12 − 2ρ2

13 + 3ρ2
23),

b′3 = (t∞ − 2){r2t2
∞ + ρ

2
23(t∞ − 1)},

c′0 = c′00t∞ + c′01, c′1 = c′10t2
∞ + c′11t∞ + c′12, c′2 = c′20t3

∞ + c′21t2
∞ + c′22t∞ + c′23

such that

c′00 = ρ
2
12, c′01 = 3(ρ2

23 − ρ
2
13 + ρ

2
12),

c′10 = −(2r2 + ρ2
12), c′11 = 4ρ2

13 − 2ρ2
12 − 6ρ2

23, c′12 = 3(ρ2
12 − ρ

2
13 + 3ρ2

23),

c′20 = 2r2, c′21 = 3ρ2
23 − 4r2, c′22 = −9ρ2

23, c′23 = 6ρ2
23.

Then like Lemma 5.4 the following holds.

Lemma 5.8. Put

U] : U](t∞) = b′0(c
′
1

2
− c′0c′2) − b′1c′0c′1 + b′2c′0

2,

V] : V](t∞) = −b′0c′1c′2 + b′1c′0c′2 − b′3c′0
2.

Then
0 ≡ c′0

2g̃
]
2 − (b

′
0c′0t1 + b′1c′0 − b′0c′1)g̃

]
23 = U]t1 − V], (5.16)
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i.e., the rational curve t1 = V](t∞)/U](t∞) gives the interpolating curve relative to the admissible
coordinates (t∞, t1). We have

U] =

4∑
j=0

u′j t
4−j
∞ , V] =

5∑
j=0

v′j t
5−j
∞

with
u′0 = v′0 = r2ρ2

12(4r2 − ρ2
12), u′1 − v

′
1 = 2r2ρ2

12(4r2 − ρ2
13),

so that
V]

U]
≈ t∞ +

v′1 − u′1
u′0

+O
( 1
t∞

)
(|t∞ | ↑ ∞).

For t∞ being fixed, the resultant R] = R](t∞) of g̃]2 and g̃
]
23 relative to t1 is given by

R] :=

�����������
b′0 b′1 b′2 b′3

b′0 b′1 b′2 b′3
c′0 c′1 c′2

c′0 c′1 c′2
c′0 c′1 c′2

�����������
,

which satisfies the identity
c′0

2R] = c′0V]2
+ c′1U]V] + c′2U]2

. (5.17)

As a result of Lemma 5.8, we have

c′0
2R] ≈ u′0{u

′
0(c
′
01 + c′11 + c′21) + (v

′
1 − u′1)(2c′00 + c′10)}t

8
∞ (|t∞ | ↑ ∞).

Seeing that

c′0
2
≈ ρ4

12t2
∞ (|t∞ | ↑ ∞), c′01 + c′11 + c′21 = −4r2 + ρ2

12 + ρ
2
13, 2c′00 + c′10 = ρ

2
12 − 2r2,

a direct calculation using Lemma 5.8 shows

u′0(c
′
01 + c′11 + c′21) + (v

′
1 − u′1)(2c′00 + c′10) = r2ρ4

12(ρ
2
13 − ρ

2
12),

hence
R] = −r4ρ2

12(ρ
2
12 − 4r2)(ρ2

13 − ρ
2
12)t

8
∞

(
1 +O

( 1
t∞

))
.

On the other hand (4.15) shows the equality

g̃
]
2(2,1) = g̃

]
3(2,1) = 0,

i.e., the two polynomials g̃]2(2, t1), g̃
]
3(2, t1) have a common zero at t1 = 1, which means R](2) = 0.

Hence R] can be described more precisely as

R](t∞) = −r4ρ2
12(ρ

2
12 − 4r2)(ρ2

13 − ρ
2
12)(t∞ − 2)

7∏
j=1
(t∞ − ζ ′j ), (5.18)

where ζ ′j denotes the value t∞(cj). We notice that ψ(t∞) =
∏7

j=1(t∞ − ζ
′
j ) is the characteristic

polynomial relative to the parameter t∞.
We now want to evaluate the value of R](t∞) at t∞ = 0. Before that one first sees the following

identities hold.
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Lemma 5.9.

U](0) + V](0) = −9ρ2
13(ρ

2
23 + ρ

2
12 − ρ

2
13)

2 = −ρ2
13c′0(0)

2,

V](0) = −18ρ2
12ρ

2
23(ρ

2
13 + ρ

2
23 − ρ

2
12).

Proof. Notice first that

g̃
]
2(0,−1) = g̃2(−1,0) = ρ2

13, g̃
]
3(0,−1) = g̃3(−1,0) = 2ρ2

13,

g̃
]
23(0,−1) = 2g̃]2(0,−1) − g̃]3(0,−1) = 0, c′0(0) = 3(ρ2

23 + ρ
2
12 − ρ

2
13).

One may put t∞ = 0, t1 = −1 in (5.16). Then one has

−U](0) − V](0) = c′0(0)
2g̃
]
2(0,−1) = 9ρ2

13(ρ
2
23 + ρ

2
12 − ρ

2
13)

2.

On the other hand since g̃
]
2(0,0) = g̃2(0,−1) = 2ρ2

23, g̃
]
3(0,0) = g̃3(0,−1) = −2ρ2

23, one has
g̃
]
23(0,0) = 6ρ2

23. Furthermore

b′1(0)c
′
0(0) − b′0(0)c

′
1(0) = 3(ρ2

23 − ρ
2
13 + ρ

2
12)(ρ

2
23 − ρ

2
13 + 3ρ2

12) − 3ρ2
12(ρ

2
12 − ρ

2
13 + 3ρ2

23).

Hence

−V](0) = c′0(0)
2g̃
]
2(0,0) − {b

′
1(0)c

′
0(0) − b′0(0)c

′
1(0)}g̃

]
3(0,0) = 18ρ2

12ρ
2
23(ρ

2
23 + ρ

2
13 − ρ

2
12).

Lemma 5.9 has thus been proved. �

Due to Lemmas 5.8 and 5.9 we have

Lemma 5.10. The following identity holds:

R](0) = −2r4ρ2
12(ρ

2
12 − 4r2)(ρ2

13 − ρ
2
12)

7∏
j=1

ζ ′j (5.19)

= 54ρ2
13ρ

2
23(ρ

2
13 − ρ

2
12)B(0123). (5.20)

Proof. (5.19) is a direct consequence of (5.18). Since c′0(0) − c′1(0)+ c′2(0) = 0, the formula (5.17)
of R](t∞) at t∞ = 0 in Lemma 5.8 becomes

R](0) =
U](0) + V](0)

c′0(0)2
{
c′2(0)

(
U](0) + V](0)

)
+

(
c′1(0) − 2c′2(0)

)
V](0)

}
.

Using Lemma 5.9 and c′1(0) = 3(ρ2
12 − ρ

2
13 + 3ρ2

23), c′2(0) = 6ρ2
23 we have

(
U](0)+V](0)

)
/c′0(0)

2 =

−ρ2
13 and obtain

c′2(0)
(
U](0) + V](0)

)
+

(
c′1(0) − 2c′2(0)

)
V](0)

= −6ρ2
23 · 9ρ

2
13(ρ

2
23 + ρ

2
12 − ρ

2
13)

2 − 3(ρ2
12 − ρ

2
13 − ρ

2
23) · 18ρ2

12ρ
2
23(ρ

2
13 + ρ

2
23 − ρ

2
12)

= −54ρ2
23

{
ρ2

13(ρ
2
23 + ρ

2
12 − ρ

2
13)

2 − ρ2
12(ρ

2
23 + ρ

2
13 − ρ

2
12)

2}
= −54ρ2

23(ρ
2
13 − ρ

2
12)(ρ

4
12 + ρ

4
13 + ρ

4
23 − 2ρ2

12ρ
2
13 − 2ρ2

12ρ
2
23 − 2ρ2

13ρ
2
23)

= −54ρ2
23(ρ

2
13 − ρ

2
12)B(0123),

which implies (5.20). �
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Comparing (5.19) with (5.20) in Lemma 5.10 we can evaluate the norm of t∞ as follows:

Proposition 5.11.

N(t∞) =
7∏
j=1

ζ ′j = −27
ρ2

13ρ
2
23B(0123)

r4B(0?12)
.

From Propositions 5.7 and 5.11, the identity (5.7) derives the formula forN(L12). In the same
way by symmetry of isometry the followings also hold:

Corollary 5.12.

N(L12) =
1

2733
r4B(0?12)
ρ2

13ρ
2
23
{−B(0123)}

5
2 ,

N(L13) =
1

2733
r4B(0?13)
ρ2

12ρ
2
23
{−B(0123)}

5
2 ,

N(L23) =
1

2733
r4B(0?23)
ρ2

12ρ
2
13
{−B(0123)}

5
2 .

Put ψ(t1) = g̃3(t1,ω(t1)) such that R = U2ψ(t1)/c2
0 .

Case 3. We take the admissible coordinates (s, t1) and the basic parameter s = −Tt1 − t2 for
T = (ρ2

13 − ρ
2
12)/ρ

2
23. (5.5) implies

f2 − f3 = 2α21x1 + α
2
21 ≡

ρ2
23 (s + 1)

t∞
. (5.21)

By the substitution t2 = −Tt1 − s, g̃1 and g̃3 can be rewritten in terms of s, t1 as

g̃[1 := g̃1(t1,−Tt1 − s) = â0t3
1 + â1t2

1 + â2t1 + â3,

g̃[3 := g̃3(t1,−Tt1 − s) = ĉ0t3
1 + ĉ1t2

1 + ĉ2t1 + ĉ3,

g̃[13 := ĉ0g̃
[
1 − â0g̃

[
3 = ĉ′0t2

1 + ĉ′1t1 + ĉ′2,

where â0, â1, â2, â3, ĉ0, ĉ1, ĉ2, ĉ3, ĉ′0, ĉ′1, ĉ′2 denote polynomials in s as follows:

â0 = r2(T − 1)2 − ρ2
12T2,

â1 = 2{r2(T − 1) − ρ2
12T}s + T2(ρ2

23 − r2) − 2(ρ2
23 − ρ

2
12)T + r2 + ρ2

13,

â2 = (r2 − ρ2
12)s

2 + 2{(ρ2
23 − r2)T − (ρ2

23 − ρ
2
12)}s + 2r2T − r2 − ρ2

13,

â3 = ρ
2
23s2 − r2(s − 1)2,

ĉ0 = ρ
2
12T(T + 1), ĉ1 = ρ

2
12(2T + 1)s + ρ2

13 − ρ
2
23T2,

ĉ2 = ρ
2
12s2 − 2ρ2

23Ts − (ρ2
23T + ρ2

13), ĉ3 = −ρ
2
23s(s + 1),

and
ĉ′0 = ĉ0â1 − â0ĉ1, ĉ′1 = ĉ0â2 − â0ĉ2, ĉ′2 = ĉ0â3 − â0ĉ3. (5.22)
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For large |s | � 1 we have immediately the following asymptotic formulae from the above:

ĉ0 = ρ
2
12T(T + 1), ĉ1 ≈ ρ

2
12(2T + 1)s, ĉ2 ≈ ρ

2
12s2, ĉ3 ≈ −ρ

2
23s2 (5.23)

and

ĉ′0 ≈ {r
2ρ2

12(T − 1)(3T + 1) − ρ4
12T2}s, ĉ′1 ≈ {r

2ρ2
12(3T − 1) − ρ4

12T}s2,

ĉ′2 ≈ {(ρ
2
23 − r2)ρ2

12T(T + 1) + r2ρ2
23(T − 1)2 − T2ρ2

23ρ
2
12}s

2.
(5.24)

The resultant of g̃[3 and g̃[1 relative to t1 is given by the Sylvester determinant as follows:

R[(s) :=

�������������

ĉ0 ĉ1 ĉ2 ĉ3

ĉ0 ĉ1 ĉ2 ĉ3

ĉ0 ĉ1 ĉ2 ĉ3

â0 â1 â2 â3

â0 â1 â2 â3

â0 â1 â2 â3

�������������
,

which is a polynomial in s of degree 8. We notice that, from (5.22), the resultant of g̃[3 and g̃[13
relative to t1 coincides with R[(s) up to a constant, which is explicitly written as�����������

ĉ0 ĉ1 ĉ2 ĉ3

ĉ0 ĉ1 ĉ2 ĉ3

ĉ′0 ĉ′1 ĉ′2
ĉ′0 ĉ′1 ĉ′2

ĉ′0 ĉ′1 ĉ′2

�����������
≡ ĉ2

0 R[(s). (5.25)

Owing to Lemma 5.2 we have

g̃[1(−T,1) = g̃1(1,0) = 0, g̃[3(−T,1) = g̃3(1,0) = 0.

Hence we have the equality R[(−T) = 0. Namely R[(s) can be represented by the product

R[(s) = γ(s + T)
7∏
j=1
(s − ζ ′′j ),

where ζ ′′j = s(cj) (1 ≤ j ≤ 7) and γ denotes a constant independent of s.
In the same way as Lemma 5.8 we have the following.

Lemma 5.13. Both

U[ = ĉ0(ĉ′1
2 − ĉ′0ĉ′2) − ĉ1ĉ′0ĉ′1 + ĉ2ĉ′0

2 and V[ = −ĉ0ĉ′1ĉ′2 + ĉ1ĉ′0ĉ′2 − ĉ3ĉ′0
2

are polynomials in s of degree four, which satisfy the equation

U[t1 − V[ = ĉ′0
2g̃[3 − (ĉ0ĉ′0t1 + ĉ1ĉ′0 − ĉ0ĉ′1)g̃

[
13 ≡ 0,

so that, from (5.25), the following equality holds true

ĉ′0
2{ĉ2

0 R[(s)} = ĉ′0{V
[}2 + ĉ′1V[U[ + ĉ′2{U

[}2. (5.26)
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The rational curve defined by

t1 = ω(s), ω(s) =
V[(s)
U[(s)

is an interpolating curve of the set {cj} relative to the admissible coordinates s, t1.

Seeing that U[(s) ≈ O(s4) for large |s | � 1 we have from Lemma 5.13

ĉ2
0 ĉ′0

2R[ ≈ (ĉ′1V[ + ĉ′2U[)U[ ≈ (−ĉ3ĉ′1 + ĉ2ĉ′2)ĉ
′
0

2U[,

i.e.,
ĉ2

0 R[ ≈ (−ĉ3ĉ′1 + ĉ2ĉ′2)U
[. (5.27)

Furthermore (5.23) and (5.24) show the asymptotic formulae for large |s | � 1

ĉ0 = ρ
2
12T(T + 1), (5.28)

−ĉ3ĉ′1 + ĉ2ĉ′2 ≈ r2ρ2
12(ρ

2
23 − ρ

2
12)T(T + 1)s4, (5.29)

U[ ≈ −r2ρ6
12(ρ

2
12 − 4r2)T(T + 1)s4. (5.30)

(5.26) – (5.30) derive the following lemma.

Lemma 5.14. R[ has the following expression

R[(s) = γ(s + T)
7∏
j=1
(s − ζ ′′j ),

where γ denotes the constant given by

γ = −r4ρ4
12(ρ

2
23 − ρ

2
12)(ρ

2
12 − 4r2) = −r4ρ2

12(ρ
2
23 − ρ

2
12)B(0?12).

Let us now evaluate the value R[(s) at s = −1. First notice that

â0(−1) =
r2(ρ2

13 − ρ
2
12 − ρ

2
23)

2 − (ρ2
13 − ρ

2
12)

2ρ2
12

ρ4
23

,

â1(−1) =
−r2(ρ2

13 − ρ
2
12 + 3ρ2

23)(ρ
2
13 − ρ

2
12 − ρ

2
23)

ρ4
23

+
(2ρ2

12 − ρ
2
13)ρ

2
23 + (ρ

2
13 − ρ

2
12)(3ρ

2
12 + ρ

2
13)

ρ2
23

,

â2(−1) = 4r2 ρ
2
13 − ρ

2
12

ρ2
23

− 3ρ2
13 − ρ

2
12 + 2ρ2

23,

â3(−1) = ρ2
23 − 4r2,

(5.31)

and

ĉ0(−1) =
ρ2

12(ρ
2
13 − ρ

2
12)(ρ

2
13 − ρ

2
12 + ρ

2
23)

ρ4
23

, ĉ1(−1) =
(ρ2

13 − ρ
2
12)(ρ

2
23 − ρ

2
12 − ρ

2
13)

ρ2
23

,

ĉ2(−1) = ĉ3(−1) = 0.
(5.32)
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In view of (5.31) and (5.32) by definition of R[ we have

R[(−1) = {â3(−1)}2{ĉ0(−1)}3g̃[1(−1, t1) (5.33)

for

t1 = −
ĉ1(−1)
ĉ0(−1)

=
ρ2

23(ρ
2
12 + ρ

2
13 − ρ

2
23)

ρ2
12(ρ

2
13 + ρ

2
23 − ρ

2
12)

. (5.34)

The corresponding value of t2 satisfies

t2 =
ρ2

13(ρ
2
12 + ρ

2
23 − ρ

2
13)

ρ2
12(ρ

2
13 + ρ

2
23 − ρ

2
12)

(5.35)

such that −1 = −Tt1 − t2. Hence
g̃[1(−1, t1) = g̃1(t1, t2)

with t1 and t2 given by (5.34) and (5.35), respectively.
Seeing that

B
(
0 j l
0 k l

)
= ρ2

jl + ρ
2
kl − ρ

2
jk,

one can prove the following lemma by a direct calculation:

Lemma 5.15. For t1, t2 being given by (5.34) and (5.35) the following identity holds:

g̃1(t1, t2) =

(ρ2
23 − ρ

2
12)B

(
0 1 2
0 3 2

)
B(0123) B(0?123)

2ρ6
12

{
B
(
0 1 3
0 2 3

)}3 . (5.36)

Proof. From (5.10) g̃1 can be written as g̃1(t1, t2) = r2β0 + β1 + β2,where

β0 = (t1 − 1)t∞, β1 = (−ρ
2
2t1 + ρ2

23)t
2
2, β2 = 2(−ρ2

12 + ρ
2
23)t1t2 + ρ2

13t1(t1 − 1).

One sees that

t∞ =
1

ρ2
12B

(
0 1 3
0 2 3

) {
ρ2

12B
(
0 1 3
0 2 3

)
+ ρ2

23B
(
0 2 1
0 3 1

)
+ ρ2

13B
(
0 1 2
0 3 2

)}
= −

B(0123)

ρ2
12B

(
0 1 3
0 2 3

) .
Hence

β0 = −

(ρ2
23 − ρ

2
12)

{
B(0123)

}2 B
(
0 1 2
0 3 2

)
ρ6

12

{
B
(
0 1 3
0 2 3

)}3 .
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On the other hand we have

β1 =

2ρ2
2ρ

2
23ρ

4
13(ρ

2
23 − ρ

2
12)

{
B
(
0 1 2
0 3 2

)}2

ρ6
12

{
B
(
0 1 3
0 2 3

)}3 ,

β2 =

ρ2
12ρ

2
13ρ

2
23(ρ

2
23 − ρ

2
12)B

(
0 1 3
0 2 3

)
B
(
0 1 2
0 3 2

)
B
(
0 2 1
0 3 1

)
ρ6

12

{
B
(
0 1 3
0 2 3

)}3 .

In view of B(0?123) = −2r2B(0123) − 2ρ2
12ρ

2
13ρ

2
23, one can derive the formula (5.36). �

(5.33) and (5.35) imply the following lemma:

Lemma 5.16. R[(−1) has the product formula

R[(−1) =
(ρ2

13 − ρ
2
12)

3(ρ2
23 − ρ

2
12){B(0?23)}2B(0123)B(0?123)

2ρ16
23

B
(
0 1 2
0 3 2

)
.

Due to Lemmas 5.14 and 5.16

Corollary 5.17. The norm formula for s + 1 is given by

N(s + 1) = −
7∏
j=1
(−1 − ζ ′′j ) = −

R[(−1)
(T − 1)γ

= −
(ρ2

13 − ρ
2
12)

3{B(0?23)}2B(0123)B(0?123)
2r4ρ2

12ρ
14
23B(0?12)

.

From Proposition 5.11, (5.21) and Corollary 5.17

Lemma 5.18.

N( f2 − f3) =
1

2 × 33

(ρ2
13 − ρ

2
12)

3{B(0?23)}2B(0?123)
ρ2

12ρ
2
13ρ

2
23

.

Finally one can conclude the following.

Theorem 5.19.

N( f1) =
1

2 × 34
r2B(0?12)B(0?13)B(0?123)

ρ2
23

,

N( f2) =
1

2 × 34
r2B(0?12)B(0?23)B(0?123)

ρ2
13

,

N( f3) =
1

2 × 34
r2B(0?13)B(0?23)B(0?123)

ρ2
12

.

Proof. We prove the formula for N( f2). By definition

N( f2) =
N( f2 − f3)
N(1 − t2)

.

One may apply the formulae in Proposition 5.7 and Lemma 5.18, and obtains Theorem 5.19 for
N( f2). The formulae for N( fj) for j = 1,3 are also valid by symmetric argument. �

29



P
o
S
(
M
A
2
0
1
9
)
0
0
9

Product of Hessians of critical points of level function for hypergeometric integrals K.Aomoto, M. Ito

6. Circle Arrangements (ii), Discriminant Formula

In this section we want to discuss a formula related to the norm of “Hessian” of the level
function ReF. Concerning the derivatives relative to t1 of ψ(t1) and R(t1), Lemma 5.4 shows

ψ ′(t1) ≡
c2

0
U2 R′(t1). (6.1)

A direct computation gives the following:

Lemma 6.1.
∂(g̃2, g̃3)

∂(t1, t2)
≡ −r2 B(0?12)ρ2

12(ρ
2
12 − ρ

2
13)

U
t1ψ
′
(t1).

Proof. Partial derivation of (5.13) with respect to t2 gives the identity

U(t1) =
∂g̃23(t1, t2)

∂t2
.

On the other hand, from Lemma 5.4 we have g̃23(t1,ω(t1)) = 0. By derivation relative to t1
∂g̃23(t1,ω(t1))

∂t1
+
∂g̃23(t1,ω(t1))

∂t2
ω′(t1) = 0.

In the same way by derivation of ψ(t1) relative to t1 (see Lemma 5.4)

ψ ′(t1) =
∂g̃3(t1,ω(t1))

∂t1
+
∂g̃3(t1,ω(t1))

∂t2
ω′(t1).

From (5.13)

ψ ′(t1) =
∂(g̃3, g̃23)

∂(t1, t2)
/ ∂g̃23
∂t2
= −

c2
0

U
∂(g̃2, g̃3)

∂(t1, t2)
.

(6.1) implies

R′(t1) ≡ −U(t1)
∂(g̃2, g̃3)

∂(t1, t2)
,

which completes Lemma 6.1. �

Lemma 6.2. The identity holds

dG1 ∧ dG2 ≡ −
t1t2

1 − t2

L4
12

f 4
3 (α21α12)3

dg̃2 ∧ dg̃3.

Proof. Put G13 = x2G1 − (x1 + α21)G2 and G23 = (x2 + α12)G1 − (x1 + α11)G2, then

dG13 ∧ dG23 ≡ L12dG1 ∧ dG2.

Further it holds
g2 = f2 f3G23, g3 = L12 f 2

3

(1 − t2
t1

G13 −
1 − t1

t2
G23

)
,

so that
dg2 ∧ dg3 ≡ −

1 − t2
t1t2

f 4
3 L12dG13 ∧ dG23.

From (5.5) and (5.9) we obtain

dg2 ∧ dg3 ≡
(α21α12)

3

t6
∞

dg̃2 ∧ dg̃3,

where 4α2
21α

2
12 = −B(0123). Summing up these equalities of Jacobian implies Lemma 6.2. �
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By definition we have

Hess(F) =
∂(G1,G2)

∂(x1, x2)
,

∂(x1, x2)

∂(t1, t2)
=

√
−B(0123)

2t3
∞

.

By using these equalities one can prove the following:

Proposition 6.3. Suppose that ρ2
12 , ρ

2
13. Then, at each critical point cj (1 ≤ j ≤ 7) the Hessian

of F at cj is expressed as

[Hess(F)]c j = −
[ t1t2
(1 − t2)t∞U(t1)

R′(t1)
f3(x)4

]
c j
,

such that ζj = [t1]c j and t2 = V(t1)/U(t1).

Proof. Indeed (5.6), (5.7) and Lemma 6.2 mean

Hess(F) =
∂(G1,G2)

∂(x1, x2)
=
∂(G1,G2)

∂(t1, t2)

/ ∂(x1, x2)

∂(t1, t2)
=

t1t2L4
12

(1 − t2) f 4
3 (α21α12)3

t3
∞

α21α12

∂(g̃2, g̃3)

∂(t1, t2)

= −
t1t2

(1 − t2)t∞U(t1)
R′(t1)
f3(x)4

,

which completes the proof. �

We now assume the condition (C3): (i) ρ2
12 , ρ

2
23, and (ii) the set {ζj | 1 ≤ j ≤ 7} consists of

seven different complex numbers and the projection mapping to the t1-coordinate

t1 : cj 7−→ ζj = t1(cj) (1 ≤ j ≤ 7)

is bijective.

Then the following holds.

Lemma 6.4. N(U) , 0.

Proof . Suppose on the contrary N(U) = 0. There exists cj (1 ≤ j ≤ 7) such that U(ζj) = 0 for
ζj = t1(cj). Since by definition R(ζj) = 0, Lemma 5.4 shows

c0(ζj)
2R(ζj) = c0(ζj)V(ζj)2 = 0.

First assume c0(ζj) , 0. Then we also have V(ζj) = 0. Hence from (5.13)

c0(ζj)
2g̃2(ζj, t2) −

(
b0(ζj)c0(ζj)t2 + b1(ζj)c0(ζj) − b1(ζj)c1(ζj)

)
g̃3(ζj, t2) = 0

as a polynomial in t2. This means g̃2(ζj, t2) is divisible by g̃3(ζj, t2). Let ξ1, ξ2 be two different
roots of the equation g̃3(ζj, t2) = 0. Hence there exist two different critical points cj,ck such that
t1(cj) = t1(ck) = ζj and t2(cj) = ξ1, t2(ck) = ξ2. This contradicts the assumption (ii) of (C3).
Assume now c0(ζj) = 0. Then by the definition of U(t1) in Lemma 5.4

U(ζj) = b0(ζj)c1(ζj)
2 = 0.

Hence c1(ζj) = 0. This means ζj must be equal to 1 or 0. The case ζj = 0 is impossible. Suppose
ζj = 1. Then from (5.11) we have −ρ2

12 + ρ
2
23 = c1(1) = 0. This fact contradicts the assumption (i)

of (C3). Lemma 6.4 has been proved. �
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Summing up Propositions 5.7, 5.11, Corollary 5.12, Theorem 5.19 and Proposition 6.3 we have

Theorem 6.5. Under the conditions (C2) and (C3) the following equality holds.

N(Hess(F)) = −C7 N(t2
1 t2)

N(W∗)N(t∞)N( f 4
3 )

Discr

for W∗ = U−V
ρ2

13−ρ
2
12
, where Discr denotes the discriminant of ψ(t1) relative to the basic parameter t1

Discr :=
∏

1≤ j<k≤7
(ζj − ζk)

2 = −

7∏
j=1

[
ψ
′
(t1)

]
ζj

and C denotes the constant given by

C = r2ρ2
12(ρ

2
13 − ρ

2
12)B(0?12).

Proof. From the identity in Lemma 5.6 the derivative of R(t1) with respect to t1 has

R′(t1) ≡ −r2ρ2
12(ρ

2
13 − ρ

2
12)B(0?12)t1ψ

′
(t1).

By Proposition 6.3 we have

Hess(F) ≡
ρ2

12r2B(0?12)t2
1 t2ψ

′
(t1)

W∗t∞ f 4
3

,

which implies Theorem 6.5. �

Remark. It is not certain if N(U) , 0 holds under the weaker conditions (C2) and (i) of (C3).

7. Circle Arrangements (iii), Case of Isosceles Triangle

The case when 4O1O2O3 is an isosceles triangle is an exceptional one. This section is devoted
to its explanation in more detail.

Generally we may put by (5.15) and Lemma 5.6

U − V = (ρ2
13 − ρ

2
12)W

∗ and R = (ρ2
13 − ρ

2
12)R

∗,

respectively. According to (5.11)

c0 = ρ
2
12t1 − ρ2

23, c1 = −ρ
2
12t2

1 + ρ
2
23, c2 = ρ

2
13t1(t1 − 1), (7.1)

so that c0 + c1 + c2 = (ρ
2
13 − ρ

2
12)t1(t1 − 1). Using this, (5.14) is rewritten as the following identity

for the polynomials R∗ and W∗

c2
0 R∗ = (ρ2

13 − ρ
2
12)c2{W∗}2 + V{(t2

1 − t1)V + (c1 + 2c2)W∗}. (7.2)

Throughout this section we suppose that the equality

ρ2
12 = ρ

2
13
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holds. Then c0 + c1 + c2 = 0, and both U − V and R vanish identically since they are divisible by
ρ2

13 − ρ
2
12 (see (5.15) and Lemma 5.6). We have U = V , so that the identity (7.2) is written as

c2
0 R∗ = U{(t2

1 − t1)U + (c1 + 2c2)W∗}. (7.3)

Let g̃∗2 and g̃∗3 be polynomials specified by

g̃2 = (t2 − 1)g̃∗2 and g̃3 = (t2 − 1)g̃∗3,

respectively. By the definition (5.10) of g̃2 and g̃3 with ρ2
12 = ρ2

13, the polynomials g̃∗2 and g̃∗3 are
written as

g̃∗2 = b∗0t2
2 + b∗1t2 + b∗2 and g̃∗3 = c∗0t2 + c∗1,

where (5.11) gives the explicit forms of the coefficients

b∗0 = r2, b∗1 = 2r2t1 + ρ2
23 + 2r2, b∗2 = (r

2 − ρ2
12)t

2
1 + 2r2t1 + r2,

c∗0 = ρ
2
12t1 − ρ2

23, c∗1 = −ρ
2
12t1(t1 − 1).

In particular, using the chain rule ∂g̃3/∂t2 = (t2 − 1)∂g̃∗3/∂t2 + g̃∗3 and c0 + c1 + c2 = 0, we have

c∗0 + c∗1 = g̃∗3(t1,1) =
∂g̃3
∂t2
(t1,1) = 2c0 + c1 = −(c1 + 2c2), (7.4)

namely c1 + 2c2 = −(c∗0 + c∗1) = ρ2
12t1(t1 − 2) + ρ2

23. Since we have U = V , using g̃2 and g̃3 the
identity (5.13) is equivalent to

U = c2
0 g̃
∗
2 − (b0c0t2 + b1c0 − b0c1)g̃

∗
3,

which is independent of t2. On the other hand, from Lemma 5.4 the polynomial U = U(t1) of
degree 4 can be written using the monic polynomial ψ2(t1) such that

U(t1) = u0t4
1 + u2t3

1 + u3t2
1 + u2t1 + u4 = −ρ

4
12(ρ

2
12 − 4r2)ψ2(t1), (7.5)

where

u0 = −ρ
4
12(ρ

2
12 − 4r2), u1 = ρ

2
12ρ

2
23(3ρ

2
12 − 4r2),

u2 = ρ
2
23{−ρ

2
12(2ρ

2
23 + ρ

2
12) + (−4ρ2

12 + ρ
2
23)r

2},

u3 = ρ
4
23(ρ

2
12 + 2r2), u4 = ρ

4
23r2,

and ψ2(t1) has 4 roots denoted by ζ4, ζ5, ζ6, ζ7. The identity stated in Proposition 6.3 is still valid
by taking the limit as ρ2

13 → ρ2
12:

[Hess(F)]c j = lim
ρ2

13→ρ
2
12

[
t1t2R′

(U − V)t∞ f 4
3

]
c j
=

[
t1t2R∗′

t∞ f 4
3 W∗

]
c j
(1 ≤ j ≤ 7). (7.6)

We denote by (ζj, ζ∗j ) the (t1, t2)-coordinates of the critical points cj (1 ≤ j ≤ 7). The critical
points are divided into two parts. Three of them corresponding to t1 = ζ1, ζ2, ζ3 are contained in
the line L13(x) − L12(x) = 0, which is the midline of the triangle 4O1O2O3 defined by t2 = 1, while
the remaining ones corresponds to t1 = ζ4, ζ5, ζ6, ζ7 for t2 , 1 lie outside the midline.
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7.1 The case t2 , 1

Suppose first that t2 , 1. Then (5.8) is equivalent to

g̃∗2 = g̃∗3 = 0.

The equation g̃∗3(t1, t2) = 0 can be uniquely solved:

t2 =
V∗

U∗
, (7.7)

where

U∗ =
∂g̃∗3
∂t2
= c∗0 = c0 = ρ

2
12t1 − ρ2

23, V∗ = −c∗1 = ρ
2
12t1(t1 − 1). (7.8)

Then the equation g̃∗2
(
t1, V

∗

U∗

)
= 0 relative to the unknown t1 is equivalent to

U(t1) = b∗0(V
∗)2 + b∗1V∗U∗ + b∗2(U

∗)2 = 0. (7.9)

As we saw in (7.5) one may put U(t1) = ρ4
12(4r2 − ρ2

12)ψ2(t1) with the monic polynomial ψ2(t1) =∏7
j=4(t1 − ζj). The critical points cj (4 ≤ j ≤ 7) are represented by the (t1, t2)-coordinates (ζj, ζ∗j )

for ζ∗j = V∗(ζj)/U∗(ζj).

Lemma 7.1. We have the following product formulae:

U(1) = ρ4
12(4r2 − ρ2

12)

7∏
j=4
(1 − ζj) = −(ρ2

23 − ρ
2
12)

2(ρ2
12 − 4r2),

U(0) = ρ4
12(4r2 − ρ2

12)

7∏
j=4

ζj = r2ρ4
23,

U
( ρ2

23

ρ2
12

)
= ρ4

12(4r2 − ρ2
12)

7∏
j=4

( ρ2
23

ρ2
12
− ζj

)
= r2 ρ

4
23(ρ

2
23 − ρ

2
12)

2

ρ4
12

, (7.10)

W∗
( ρ2

23

ρ2
12

)
= −

r2ρ2
23(ρ

2
23 − ρ

2
13)

2

ρ4
12

.

Proof . Indeed the first two identities follow from (7.5) for ρ2
13 = ρ2

12. Since U∗
( ρ2

23
ρ2

12

)
= 0, (7.9)

means

U
( ρ2

23

ρ2
12

)
= r2

{
V∗

( ρ2
23

ρ2
12

)}2
,

which implies the third line of Lemma 7.1. The last one derives from a direct calculation. �

Denote by ψ∗2(t2) the monic polynomial in t2 related to the resultant Rt1(g̃
∗
2(t1, t2),−g̃

∗
3(t1, t2)) of

g̃∗2(t1, t2) and −g̃
∗
3(t1, t2) with respect to the variable t1 such that

Rt1(g̃
∗
2(t1, t2),−g̃

∗
3(t1, t2)) = r2(4r2 − ρ2

12)ρ
4
12ψ
∗

2(t2), (7.11)
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where

Rt1(g̃
∗
2(t1, t2),−g̃

∗
3(t1, t2))

=

���������
r2 − ρ2

12 2r2(t2 + 1) r2t2
2 + (ρ

2
23 + 2r2)t2 + r2

r2 − ρ2
12 2r2(t2 + 1) r2t2

2 + (ρ
2
23 + 2r2)t2 + r2

ρ2
12 −ρ2

12(t2 + 1) ρ2
23t2

ρ2
12 −ρ2

12(t2 + 1) ρ2
23t2

��������� . (7.12)

Then ψ∗2(t2) has the roots ζ∗j (4 ≤ j ≤ 7), i.e.,

ψ
∗

2(t2) =
7∏
j=4
(t2 − ζ∗j ), especially ψ

∗

2(1) =
7∏
j=4
(1 − ζ∗j ).

ψ
∗

2(t2) has the symmetry t−2
2 ψ

∗

2(t2) = t2
2ψ
∗

2(t
−1
2 ). Thus, without loss of generality, we may assume

ζ∗4 = ζ
∗
6
−1 and ζ∗5 = ζ

∗
7
−1. (7.13)

By definition (t1, t2) = (ζj, ζ∗j ) of the critical points cj (4 ≤ j ≤ 7) satisfy the simultaneous
equations

U(t1) = u0t4
1 + u2t3

1 + u3t2
1 + u2t1 + u4 = 0 and t2 =

V∗(t1)
U∗(t1)

, (7.14)

where the polynomials U(t1) and V∗(t1), U∗(t1) are given by (7.5) and (7.8), respectively. This
means that, for given t1 = ζj satisfying U(t1) = 0, we can define t2 = ζ∗j by t2 = V∗(t1)/U∗(t1).
Conversely, for given t2 = ζ∗j we can fix t1 = ζj uniquely as follows:

Lemma 7.2. For an arbitrary t2 ∈ C there exists a unique solution t1 ∈ C of the simultaneous
equations (7.14), which is expressed as

t1 ≡ −
û1(t2)
û0(t2)

, (7.15)

where û1(t2) and û0(t2) are the polynomials in t2 of degree 3 given by

ρ6
12û1(t2) =

���������
−u0 ρ2

12 0 0
−u1 −ρ

2
12(1 + t2) ρ2

12 0
−u2 ρ2

23t2 −ρ2
12(1 + t2) ρ2

12
−u4 0 0 ρ2

23t2

��������� , (7.16)

ρ6
12û0(t2) =

���������
−u0 ρ2

12 0 0
−u1 −ρ

2
12(1 + t2) ρ2

12 0
−u2 ρ2

23t2 −ρ2
12(1 + t2) ρ2

12
−u3 0 ρ2

23t2 −ρ2
12(1 + t2)

��������� . (7.17)

Proof . The simultaneous equations (7.14) are equivalent to U(t1) = 0 and V∗(t1) − U∗(t1)t2 = 0.
The latter equation is written as v̂0t2

1 + v̂1t1 + v̂2 = 0, where v̂0 = ρ
2
12, v̂1 = ρ

2
12(1 + t2), v̂2 = ρ

2
23t2.

For given t2 if we can fix ŵ0, ŵ1, ŵ2 and û0, û1 such that

(v̂0t2
1 + v̂1t1 + v̂2)(ŵ0t2

1 + ŵ1t1 + ŵ2) + û0t1 + û1 − (u0t4
1 + u2t3

1 + u3t2
1 + u2t1 + u4) = 0,
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then t1 = −û1/û0 is the solution. Comparing the coefficients of ti1 (0 ≤ i ≤ 4) on both sides, we
immediately have the following relations:

©­­­­«
0
0
0
−û0

ª®®®®¬
=

©­­­­«
−u0 v̂0 0 0
−u1 v̂1 v̂0 0
−u2 v̂2 v̂1 v̂0

−u3 0 v̂2 v̂1

ª®®®®¬
©­­­­«

1
ŵ0

ŵ1

ŵ2

ª®®®®¬
,

©­­­­«
0
0
0
−û1

ª®®®®¬
=

©­­­­«
−u0 v̂0 0 0
−u1 v̂1 v̂0 0
−u2 v̂2 v̂1 v̂0

−u4 0 0 v̂2

ª®®®®¬
©­­­­«

1
ŵ0

ŵ1

ŵ2

ª®®®®¬
.

Using the Laplace expansion for the above relations, we obtain (7.17) and (7.16), respectively. �

For the coordinates (ζj, ζ∗j ) of the critical point cj (4 ≤ j ≤ 7) Lemma 7.2 indicates the
one-to-one correspondence between ζj and ζ∗j under U∗(ζj) , 0 and û0(ζ

∗
j ) , 0. In particular,

Corollary 7.3. For t1 specified by (7.15) as a solution of (7.14), the continuous limit of t1 as t2 → 1
is given by

t1 → −
û1(1)
û0(1)

(t2 → 1),

where û0(1) and û1(1) are explicitly written as

û1(1) = ρ−2
12 ρ

2
23(ρ

2
12 − ρ

2
23)

{
r2(ρ2

23 − 16ρ2
12) + 2ρ2

12(2ρ
2
12 − ρ

2
23)

}
, (7.18)

û0(1) = 2(ρ2
12 − ρ

2
23)

{
4r2(4ρ2

12 − ρ
2
23) − ρ

2
12(4ρ

2
12 − 3ρ2

23)
}
, (7.19)

under û0(1) , 0.

7.2 The case t2 = 1

Suppose second t2 = 1. Then g̃2 = g̃3 = 0 automatically. From (5.8), g̃1(t1,1) = 0. According
to (5.12) with the condition ρ2

13 = ρ
2
12, we may put the monic polynomial ψ1(t1) as

r2ψ1(t1) := g̃1(t1,1) = r2t3
1 + (ρ

2
12 + 3r2)t2

1 + 2(ρ2
23 − 2ρ2

12)t1 + ρ
2
23 − 4r2 (7.20)

and denote the roots of the equation
ψ1(t1) = 0

by ζ1, ζ2, ζ3. For 1 ≤ j ≤ 3 the point cj corresponds to the (t1, t2)-coordinates (ζj,1). One has by
definition and from (7.10) of Lemma 7.1:

r2
3∏
j=1
(1 − ζj) = r2ψ1(1) = 3(ρ2

23 − ρ
2
12), (7.21)

7∏
j=4

c0(ζj) = ρ
8
12ψ2

( ρ2
23

ρ2
12

)
=

ρ8
12

ρ4
12(4r2 − ρ2

12)
U

( ρ2
23

ρ2
12

)
=

r2ρ4
23(ρ

2
23 − ρ

2
12)

2

4r2 − ρ2
12

. (7.22)

We consider the resultant Rt1(g̃1(t1, t2),−g̃∗3(t1, t2)) at t2 = 1. Then one can show by a direct
calculation the following connection between the resultant of g̃1(t1,1), −g̃∗3(t1,1) = c1 + 2c2 and the
value ψ∗2(1):
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Lemma 7.4. The resultant of the two polynomials

g̃1(t1,1) = r2ψ1(t1) and − g̃∗3(t1,1) = ρ
2
12t1(t1 − 2) + ρ2

23

in t1 has the factor ψ
∗

2(1), i.e.,

Rt1(g̃1(t1,1),−g̃∗3(t1,1)) :=

�������������

r2 ρ2
12 + 3r2 2ρ2

23 − 4ρ2
12 ρ2

23 − 4r2

r2 ρ2
12 + 3r2 2ρ2

23 − 4ρ2
12 ρ2

23 − 4r2

ρ2
12 −2ρ2

12 ρ2
23

ρ2
12 −2ρ2

12 ρ2
23

ρ2
12 −2ρ2

12 ρ2
23

�������������
= (ρ2

23 − ρ
2
12)ρ

4
12r2(4r2 − ρ2

12)ψ
∗

2(1). (7.23)

Remark. From (7.11), calculating (7.12) for t2 = 1 directly, (or calculating the above determinant
directly), ψ∗2(1) is evaluated as

ρ4
12r2(4r2 − ρ2

12)ψ
∗

2(1) = (8ρ2
12 + ρ

2
23)

2r4 + 4ρ2
12(ρ

2
23 − ρ

2
12){(4ρ

2
12 − ρ

2
23)r

2 + ρ2
12ρ

2
23}. (7.24)

Let t1 = η1, η2 be the roots of the equation −g̃∗3(t1,1) = 0. Then by definition

Rt1(g̃1(t1,1),−g̃∗3(t1,1)) = r4ρ6
12

3∏
j=1

2∏
k=1
(ζj − ηk) = r4

3∏
j=1

(
c1(ζj) + 2c2(ζj)

)
. (7.25)

On the other hand, from (7.4), (7.8) and (7.10) of Lemma 7.1 we have

ψ
∗

2(1) =
7∏
j=4

(
1 −

V∗(ζj)
U∗(ζj)

)
=

7∏
j=4

U∗(ζj) − V∗(ζj)
U∗(ζj)

=

7∏
j=4

c∗0(ζj) + c∗1(ζj)

ρ2
12ζj − ρ

2
23

=
1
ρ8

12

7∏
j=4

c1(ζj) + 2c2(ζj)

ζj − ρ
2
23/ρ

2
12
=

4r2 − ρ2
12

r2ρ4
23(ρ

2
23 − ρ

2
12)

2

7∏
j=4

(
c1(ζj) + 2c2(ζj)

)
. (7.26)

(7.23), (7.25) and (7.26) imply the following identity

N(c1 + 2c2) :=
7∏
j=1

(
c1(ζj) + 2c2(ζj)

)
= ρ4

23ρ
4
12(ρ

2
23 − ρ

2
12)

3 ψ
∗

2(1)
2
. (7.27)

7.3 Discriminants

In this subsection we define the discriminants, and show their explicit forms.
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Definition 7.5. We denote by Discr j the discriminant of ψ j ( j = 1,2) and by Discr3 the product of
the values (t2 − 1)2 at t2 = ζ∗j (4 ≤ j ≤ 7) as follows.

Discr1 = −

3∏
j=1

ψ
′

1(ζj) =
∏

1≤ j<k≤3
(ζj − ζk)

2,

Discr2 =

7∏
j=4

ψ
′

2(ζj) =
∏

4≤ j<k≤7
(ζj − ζk)

2,

Discr3 = {ψ
∗

2(1)}2 =
7∏
j=4
(ζ∗j − 1)2.

Lemma 7.6. Discr1 is explicitly calculated as

Discr1 = r−8(4ρ2
12 − ρ

2
23)A = −

B(0123)
r8ρ2

23
A, (7.28)

where A is given as the following polynomial in r2, ρ2
12 and ρ

2
23:

A = 324r6 + 9(16ρ2
12 − 13ρ2

23)r
4 + 4(ρ2

12 − ρ
2
23){(23ρ2

12 − 8ρ2
23)r

2 + ρ4
12}. (7.29)

Proof. From (7.20) we have r2ψ1(t1) = g̃1(t1,1) = ã0t3
1 + ã1t2

1 + ã2t1 + ã3,where

ã0 = r2, ã1 = ρ
2
12 + 3r2, ã2 = 2(ρ2

23 − 2ρ2
12), ã3 = ρ

2
23 − 4r2.

The resultant of g̃1(t1,1) and its derivative gives the discriminant of ψ1(t1), i.e.,

R(g̃1(t1,1),
d

dt1
g̃1(t1,1)) =

�����������
ã0 ã1 ã2 ã3

ã0 ã1 ã2 ã3

3ã0 2ã1 ã2

3ã0 2ã1 ã2

3ã0 2ã1 ã2

�����������
= −ã5

0

∏
1≤ j<k≤3

(ζj − ζk)
2

From the direct calculation of the above determinant, we obtain

R(g̃1(t1,1),
d

dt1
g̃1(t1,1))

= r2(ρ2
23 − 4ρ2

12)
{
324r6 + 9(16ρ2

12 − 13ρ2
23)r

4 + 4(ρ2
12 − ρ

2
23)

(
(23ρ2

12 − 8ρ2
23)r

2 + ρ4
12

)}
.

Since we have B(0123) = −ρ2
23(4ρ

2
12 − ρ

2
23) when ρ13 = ρ12, this implies (7.28). �

Lemma 7.7. Discr2 is explicitly calculated as

Discr2 =
ρ12

23(ρ
2
12 − ρ

2
23)

2(ρ2
12 + 12r2)2

ρ16
12(ρ

2
12 − 4r2)6

C =
ρ12

23(ρ
2
12 − ρ

2
23)

2

ρ4
12{B(0?12)}6

B2C, (7.30)

where B and C are given as the following polynomials in r2, ρ2
12 and ρ

2
23:

B = 12r2 + ρ2
12,

C = (8ρ2
12 + ρ

2
23)

2r4 + 4ρ2
12(ρ

2
23 − ρ

2
12){(4ρ

2
12 − ρ

2
23)r

2 + ρ2
12ρ

2
23}.

(7.31)
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Proof . From the expression (7.5) of U(t1) = u0ψ2(t1), the resultant of U(t1) and U ′(t1) gives the
discriminant of ψ2(t1), i.e.,

R(U(t1),U ′(t1)) =

����������������

u0 u1 u2 u3 u4

u0 u1 u2 u3 u4

u0 u1 u2 u3 u4

4u0 3u1 2u2 u3

4u0 3u1 2u2 u3

4u0 3u1 2u2 u3

4u0 3u1 2u2 u3

����������������
= u7

0

∏
4≤ j<k≤7

(ζj − ζk)
2.

Calculating the above determinant directly, we consequently obtain

R(U(t1),U ′(t1)) = −ρ12
12ρ

12
23(ρ

2
12 − 4r2)(12r2 + ρ2

12)
2(ρ2

12 − ρ
2
23)

2

×

{
(8ρ2

12 + ρ
2
23)

2r4 + 4ρ2
12(ρ

2
23 − ρ

2
12)

(
(4ρ2

12 − ρ
2
23)r

2 + ρ2
12ρ

2
23

)}
,

which implies (7.30). �

Remark. From (7.24) in Remark of Lemma 7.4, we have already known that C is written as

C = r2ρ4
12(4r2 − ρ2

12)ψ
∗

2(1) = −r2ρ2
12B(0?12)ψ∗2(1). (7.32)

Lemma 7.8. Suppose that ρ2
12−ρ

2
23 , 0. For the critical points cj (4 ≤ j ≤ 7) under the assumption

(7.13), C = 0 if and only if c4 = c6 or c5 = c7. Then one of the pairs of them lie on the midline
L13(x) − L12(x) = 0 of 4O1O2O3.

Proof. First we supposeC = 0. From (7.32), we haveC = −r2ρ2
12B(0?12)

∏7
j=4(1−ζ

∗
j ) = 0, so that

there exists j ∈ {4,5,6,7} such that ζ∗j = 1. Then under the assumption (7.13) we have ζ∗4 = ζ
∗
6 = 1

or ζ∗5 = ζ
∗
7 = 1. Using Corollary 7.3 we have ζ4 = ζ6 = −û1(1)/û0(1) or ζ5 = ζ7 = −û1(1)/û0(1),

where û1(1) and û0(1) are given by (7.18) and (7.19), respectively, so that we obtain c4 = c6

or c5 = c7. Here we needed to confirm that û0(1) , 0 for the precondition of Corollary 7.3.
Assume that û0(1) = 0. From the explicit form (7.19) of û0(1), under ρ2

12 − ρ
2
23 , 0 we have

4r2(4ρ2
12 − ρ

2
23) − ρ

2
12(4ρ

2
12 − 3ρ2

23) = 0. Since we see 4ρ2
12 − ρ

2
23 = −ρ

−2
23 B(0123) , 0, we have

r2 = ρ2
12(4ρ

2
12−3ρ2

23)/4(4ρ
2
12− ρ

2
23).Applying this to the explicit form (7.31) ofC, we can calculate

C directly as C = ρ4
12ρ

4
23(4ρ

2
12 + 5ρ2

23)
2/16(4ρ2

12 − ρ
2
23)

2, which does not vanish. This contradicts
C = 0, and û0(1) , 0 is now confirmed.

Conversely, we next suppose c4 = c6, namely (ζ4, ζ∗4 ) = (ζ6, ζ
∗
6 ). From (7.13) we have

ζ∗4 = ζ
∗
6 = 1/ζ∗4 , so that ζ

∗
4

2 = 1, i.e., ζ∗4 = ±1. Here we claim ζ∗4 = 1 by contradiction. Assume that
ζ∗4 = −1. Since ζ∗4 is a root of the polynomial ψ∗2(t2), we have ψ

∗

2(−1) = ψ∗2(ζ∗4 ) = 0. The identity
(7.11) for t2 = −1 implies Rt1(g̃

∗
2(t1,−1),−g̃∗3(t1,−1)) = r2(4r2 − ρ2

12)ρ
4
12ψ
∗

2(−1) = 0, which means
the polynomials g̃∗2(t1,−1) = (r2−ρ2

12)t
2
1−ρ

2
23 and g̃

∗
3(t1,−1) = ρ2

12t2
1−ρ

2
23 = (ρ12t1−ρ23)(ρ12t1+ρ23)

have common zero points. Hence we have 0 = g̃∗2(±ρ23/ρ12,−1) = ρ2
23(r

2 − 2ρ2
12)/ρ

2
12, so that

r2 − 2ρ2
12 = 0. From Lemma 7.7, for r2 = 2ρ2

12 the discriminant Discr2 is evaluated as Discr2 =

2254ρ12
23(ρ

2
12 − ρ

2
23)

2(56ρ2
12 + 25ρ2

23)/7
6ρ18

12. Under ρ
2
12 − ρ

2
23 , 0, we have Discr2 , 0, which means

ψ2(t1) =
∏7

j=4(t1 − ζj) has no double roots. This contradicts ζ4 = ζ6. Thus we obtain ζ∗4 = ζ
∗
6 = 1,

so that C = −r2ρ2
12B(0?12)

∏7
j=4(1 − ζ

∗
j ) = 0.

Consequently, one of the pairs of the critical points lie on the line defined by t2 = 1. �
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Remark. When the situation c4 = c6 occurred as Lemma 7.8, these two actually coincide with real
one in {c1,c2,c3} simultaneously. We can confirm this in the following way. From Corollary 7.3
the coordinates of c4 = c6 are given as (t1, t2) = (−û1(1)/û0(1),1), where

−
û1(1)
û0(1)

= −
ρ2

23
{
r2(ρ2

23 − 16ρ2
12) + 2ρ2

12(2ρ
2
12 − ρ

2
23)

}
2ρ2

12
{
4r2(4ρ2

12 − ρ
2
23) − ρ

2
12(4ρ

2
12 − 3ρ2

23)
} .

For our purpose it suffices to see that t1 = −û1(1)/û0(1) indeed satisfy the equation g̃1(t1,1) = 0
given in (7.20), and in fact, g̃1(−û1(1)/û0(1),1) is divisible by C as

g̃1(−û1(1)/û0(1),1) = C D (2ρ2
12)
−3{4r2(4ρ2

12 − ρ
2
23) − ρ

2
12(4ρ

2
12 − 3ρ2

23)
}−3

,

where C is given in (7.31) and D has relatively longer expression as

D = r4(8ρ2
12 − ρ

2
23)

2(32ρ4
12 − 24ρ2

12ρ
2
23 + ρ

4
23)

− 2r2ρ2
12(512ρ8

12 − 768ρ6
12ρ

2
23 + 348ρ4

12ρ
4
23 − 39ρ2

12ρ
6
23 + ρ

8
23)

+ 2(4ρ2
12 − 3ρ2

23)(16ρ4
12 − 20ρ2

12ρ
2
23 + 7ρ4

23).

As we saw in Lemma 7.8, C = 0 if and only if c4 = c6, thus g̃1(−û1(1)/û0(1),1) = 0 is confirmed.

Lemma 7.9. Discr3 is explicitly calculated as

Discr3 =
C2

r4ρ8
12(ρ

2
12 − 4r2)2

=
C2

r4ρ4
12{B(0?12)}2

, (7.33)

where C is the polynomial in r2, ρ2
12 and ρ

2
23 given by (7.31) in Lemma 7.7.

Proof. By definition we immediately have (7.33) from the expression (7.32) of ψ∗2(1). �

7.4 Main Results for Isosceles Triangle Case

Due to (7.3) by taking the limit ρ2
13 → ρ2

12 in Lemma 5.6 we have

Lemma 7.10. R∗ and W∗ are expressed as the following polynomials in t1, respectively.

R∗ = −r2ρ4
12(ρ

2
12 − 4r2)t1ψ1(t1)ψ2(t1), (7.34)

(c1 + 2c2)W∗ = t1{r2(ρ2
12t1 − ρ2

23)
2ψ1(t1) + ρ

4
12(ρ

2
12 − 4r2)(t1 − 1)ψ2(t1)}. (7.35)

Proof . From Lemma 5.6 we have R∗(t1) = −r2ρ4
12(ρ

2
12 − 4r2)t1ψ(t1), where the characteristic

polynomial ψ(t1) =
∏7

j=1(t1 − ζj) is equal to the product of two factors ψ1(t1) and ψ2(t1), i.e.,
ψ(t1) = ψ1(t1)ψ2(t1). This implies (7.34). From (7.3) we obtain

(c1 + 2c2)W∗ = c2
0

R∗

U
− t1(t1 − 1)U = (ρ2

12t1 − ρ2
23)

2 R∗(t1)
U(t1)

− t1(t1 − 1)U(t1) (using (7.1))

= (ρ2
12t1 − ρ2

23)
2 r2t1ψ(t1)

ψ2(t1)
+ t1(t1 − 1)ρ4

12(ρ
2
12 − 4r2)ψ2(t1) (using (7.5)),

which coincides with (7.35). �
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Lemma 7.11. We have

(1)
[ R∗′

W∗

]
ζj
= −r2

[ c1 + 2c2
t1 − 1

ψ
′

1(t1)
]
ζj
(1 ≤ j ≤ 3),

(2)
[ R∗′

W∗

]
ζj
= −ρ4

12(ρ
2
12 − 4r2)

[ c1 + 2c2

c2
0

ψ
′

2(t1)
]
ζj
(4 ≤ j ≤ 7).

Proof. For 1 ≤ j ≤ 3 ψ1(ζj) = 0. Due to (7.34) and (7.35) we have[
(c1 + 2c2)W∗

]
ζj
= ρ4

12(ρ
2
12 − 4r2)

[
t1(t1 − 1)ψ2(t1)

]
ζj
,[

R∗′
]
ζj
= −r2ρ4

12(ρ
2
12 − 4r2)

[
t1ψ
′

1(t1)ψ2(t1)
]
ζj
,

hence (1) follows. Likewise for 4 ≤ j ≤ 7 ψ2(ζj) = 0, so that we have[
(c1 + 2c2)W∗

]
ζj
= r2 [(ρ2

12t1 − ρ2
23)

2t1ψ1(t1)
]
ζj
,[

R∗′
]
ζj
= −r2ρ4

12(ρ
2
12 − 4r2)

[
t1ψ
′

2(t1)ψ1(t1)
]
ζj
,

hence (2) follows. �

If c1 + 2c2 = 0 then t2 defined by (7.7) equals 1. Furthermore

Lemma 7.12. Suppose that ρ2
23 , ρ

2
12 and c1 + 2c2 = 0. Then, ψ1(t1) = 0 if and only if ψ2(t1) = 0.

Proof. Indeed since (t1 − 1)(ρ2
12t1 − ρ2

23) , 0, (7.35) implies Lemma 7.12. �

As a consequence of Lemma 7.11 one sees that if c1 + 2c2 = 0, ψ1(t1) = 0, then ψ2(t1) = 0.
Conversely if c1 + 2c2 = 0, ψ2(t1) = 0, then ψ1(t1) = 0.

Proposition 7.13.

N

( R∗′

W∗

)
:=

7∏
j=1

R∗′(ζj)
W∗(ζj)

=
r4ρ20

12(ρ
2
12 − 4r2)6

3ρ4
23(ρ

2
23 − ρ

2
12)

2
ψ
∗

2(1)
2

3∏
j=1

ψ
′

1(ζj)

7∏
j=4

ψ
′

2(ζj).

Proof. Indeed Lemma 7.11 means
7∏
j=1

R∗′(ζj)
W∗(ζj)

= −r6{ρ4
12(ρ

2
12 − 4r2)}4N(c1 + 2c2)

3∏
j=1

ψ
′

1(ζj)

ζj − 1

7∏
j=4

ψ
′

2(ζj)

c2
0(ζj)

.

Proposition 7.13 follows from (7.21), (7.22) and (7.27). �

The interpolating curve t2 = ω(t1) is thus defined by

t2 = ω(t1) :=


1 if t1 ∈ {ζ1, ζ2, ζ3},

ρ2
12t1(t1 − 1)
ρ2

12t1 − ρ2
23

if t1 ∈ {ζ4, ζ5, ζ6, ζ7}.

Under the condition ρ2
12 = ρ2

13 (isosceles triangle case, so that B(0?12) = B(0?13)), we
eventually obtain the same formulae of N( fj) (1 ≤ j ≤ 3) as in Theorem 5.19 which was proved
under ρ2

12 , ρ
2
13; that is
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Theorem 7.14.

N( f1) =
7∏
j=1
[ f1]c j =

r2

2 · 34
B(0?12) B(0?13) B(0?123)

ρ2
23

,

N( f2) =
7∏
j=1
[ f2]c j =

r2

2 · 34
B(0?23) B(0?12) B(0?123)

ρ2
13

,

N( f3) =
7∏
j=1
[ f3]c j =

r2

2 · 34
B(0?23) B(0?13) B(0?123)

ρ2
12

.

From (7.6) and Proposition 7.13 we finally obtain the following formula in view of the equality
B(0?12) = ρ2

12(ρ
2
12 − 4r2).

Theorem 7.15.

N(Hess(F)) = −
r4ρ8

12{B(0?12)}6

3ρ4
23(ρ

2
23 − ρ

2
12)

2
N

( t1t2
t∞ f 4

3

)
Discr1Discr2Discr3, (7.36)

where N(tj) ( j = 1,2), N(t∞) and N( f3) are given by Propositions 5.7, 5.11 and Theorem 7.14,
respectively.

Remark. Writing the factor N(t1t2/t∞ f34) in (7.36) explicitly, N(Hess(F)) is expressed as

N(Hess(F)) =
24312ρ12

12

ρ4
23(ρ

2
23 − ρ

2
12)

2
{B(0?12)}2

B(0123){B(0?23)}3{B(0?123)}4
Discr1Discr2Discr3.

One may conclude the following:

Corollary 7.16. Suppose that ρ2
13 − ρ

2
12 = 0 and ρ2

23 − ρ
2
12 , 0. Two critical points in the set

{cj | 1 ≤ j ≤ 7} coincide with each other if and only if

N(Hess(F)) = 0.

From Lemmas 7.6, 7.7 and 7.9, N(Hess(F)) is also written in the following form.

Corollary 7.17. Suppose that ρ2
13 − ρ

2
12 = 0 and ρ2

23 − ρ
2
12 , 0. N(Hess(F)) is expressed as

N(Hess(F)) = −
24312ρ4

12ρ
6
23

r12
AB2C3

{B(0?12)}6{B(0?23)}3{B(0?123)}4
,

where A and B, C are the polynomials in r2, ρ2
12, ρ

2
23 given in (7.29) and (7.31), respectively. One

can say more precisely that

(1) A = 0 if and only if two points in {cj | 1 ≤ j ≤ 3} coincide with each other,

(2) B = 0 if and only if two points in {cj | 4 ≤ j ≤ 7} such that t2 , 1 coincide with each other,

(3) C = 0 if and only if two points in {cj | 4 ≤ j ≤ 7} coincide with each other, so that t2 = 1.
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Remark 1. In fact, B = 0 occurs only when r2 = −ρ2
12/12 < 0. Moreover, B = C = 0 occurs only

once when 25ρ2
23 − 16ρ2

12 = 0. Then all the points in {cj | 4 ≤ j ≤ 7} coincide with one of those in
{cj | 1 ≤ j ≤ 3} defined by (t1, t2) = (2/5,1), so that five of the critical points overlap quintuply on
the midline of 4O1O2O3 defined by t2 = 1, while the other two are not real.

Remark 2. Lemma 7.8 gives a detailed explanation of Corollary 7.17 (3).

Remark 3. There exists a unique positive r = rc satisfying the following properties:

(1) If ρ2
12 = ρ

2
13 > ρ2

23, then A > 0 and C = 0.

(2) If ρ2
23 > ρ2

12 = ρ
2
13, then A = 0 and C > 0.

(3) If ρ2
12 = ρ

2
13 = ρ

2
23, i.e., if 4O1O2O3 is a regular triangle, then rc = 0 such that A = C = 0.

In each case for r > rc the conditions A > 0 andC > 0 are satisfied. Therefore, under the conditions
ρ2

13 = ρ
2
12 and ρ

2
23 , ρ

2
12 it is satisfied for r > rc that Discr1 > 0, Discr2 > 0 and Discr3 > 0, which

means that all the 7 critical points are real and different from each other.

Remark 4. From the similarity of triangles, without loss of generality we may fix the hight of the
isosceles triangles to be

√
3. Using the length L = ρ23/2 the Pythagorean theorem says ρ2

12 = L2+3.
In this situation, using variables

X = r2 and Y = L2 ≥ 0,

the conditions (1) ρ2
12 = ρ

2
13 > ρ2

23, (2) ρ
2
23 > ρ2

12 = ρ
2
13 and (3) ρ2

12 = ρ
2
13 = ρ

2
23 in Remark 3 are

equivalent to (1) 0 ≤ Y < 1, (2) Y > 1 and (3) Y = 1, respectively, and the discriminants A, B, C
are written as the polynomials in X , Y

A = A(X,Y ) = 12
[
27X3 − 9(3Y − 4)X2 + (Y − 1){3(3Y − 23)X − (Y + 3)2}

]
,

B = B(X,Y ) = 12X + Y + 3,
C = C(X,Y ) = 48

[
3(Y + 2)2X2 + (Y − 1)(Y + 3){3X + Y (Y + 3)}

]
,

which satisfy Discr1 = 12A(X,Y )/X4 and

Discr2 =
{
(4Y )33(Y − 1)B(X,Y )
(Y + 3){B(0?12)}3

}2
C(X,Y ), Discr3 =

{ C(X,Y )
X(Y + 3)B(0?12)

}2
.

Figure 3 below shows the graphs of A(X,Y ) = 0, B(X,Y ) = 0 and C(X,Y ) = 0 in the X-Y
plane with those of B(0?12) = (Y + 3)(Y − 4X + 3) = 0, B(0?23) = 16Y (Y − X) = 0 and
B(0?123) = 8Y {12X − (Y + 3)2} = 0. The 7 critical points corresponding to (X,Y ) in the shaded
area, where A(X,Y ) > 0 and C(X,Y ) > 0, are all real and different from each other. Thus we
can clearly understand the claims explained in Remark 3 when we see the shaded area in X ≥ 0.
Incidentally, the point (X,Y ) = (3,3) satistying B(0?123) = Discr1 = 0 corresponds to the isosceles
right triangle 4O1O2O3 with the circles of radius

√
3. It is remarkable that, in a neighborhood of

the point (3,3) if B(0?123) > 0, then Discr1 > 0, while there exist infinitely many points such that
B(0?123) < 0 and Discr1 < 0. It would be also an interesting problem to investigate in detail about
the critical points for X = r2 < 0 (in the case of imaginary circles). Even in the part X < 0 we
still have the shaded areas of peculiar shape (Figure 4), and we can find that the line B(X,Y ) = 0
appears only in X < 0.
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(3,3)

A(X,Y) = 0

B(X,Y) = 0

C(X,Y) = 0

B(0★123) = 0

B(0★23) = 0

B(0★12) = 0

(1,1)

0 3/4

1

X

Y

-2

-3

(5/6,-1/2)

Y = 1

Figure 3: Graphs of the discriminants
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X

Y

Figure 4: Quadrant of X = r2 < 0
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