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1. Introduction: Gauge Theory on the Kinematic Space

In the preface to The Analytic S-Matrix the authors wrote that “one of the most remarkable
discoveries in elementary particle physics has been that of the existence of the complex plane” [1].
They were not exaggerating. Indeed, questions about physical properties of scattering processes—
such as unitarity, causality, crossing symmetry, or dispersion relations—are most cleanly addressed
when translated into sharp mathematical statements. While in the context of the original S-matrix
program [1, 2] this mostly meant the use of complex analysis, there is no point in kidding ourselves
that modern questions in physics would not benefit from the apparatus of more contemporary
mathematics. As a matter of fact, already in the 1960’s Fotiadi, Froissart, Lascoux, and Pham [3–5]
realized that algebraic topology plays an important role in the understanding of analytic properties
of scattering amplitudes (for reviews and related work, see, e.g., [6–9]). Broadly speaking, it studies
how global (topological) aspects of Feynman integrals constrain the sheet structure of Riemann
surfaces and their Landau singularities. The point of this article is to summarize a recent set of ideas,
collectively referred to as “intersection theory”, which can be thought of as a modern twist on these
old works.

We do not expect the reader to have any formal training in mathematics. Fortunately, concepts
from topology have to certain extent already permeated to physics, especially in the context of
gauge theories. Therefore, to keep this article accessible, we will attempt to formulate some of the
discussion below in gauge-theoretic terms, hoping that it gives the reader more intuition about the
results.
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To set the stage, let us briefly review the objects we want to study. We first isolate the trivial
contribution to the S-matrix, 𝑆 = 1+ 𝑖𝑇 , and focus on the matrix elements of𝑇 between incoming and
outgoing states with momenta 𝑝𝑖 . They are distributions supported on the momentum conservation
delta function. For the sake of illustration, let us consider an example of the matrix element for a
two-to-two scattering, which can be written as

𝑇12→34 = 𝛿4(𝑝1+𝑝2−𝑝3−𝑝4) T12→34(𝑠, 𝑡, 𝑝2
𝑖 , 𝑚

2, . . .). (1)

This process can in principle depend on the two independent Mandelstam invariants 𝑠 = (𝑝1+𝑝2)2,
𝑡 = (𝑝2−𝑝3)2; masses of external states 𝑝2

𝑖
; and possibly other mass scales, such as 𝑚2, present in

our quantum field theory. Let us treat each of these invariants as a complex variable and refer to the
space of all their allowed values as the kinematic space. A classic question in the S-matrix program
asks about the analytic properties of T12→34 on this space.

We can state the problem of analyticity in the following way, which hopefully makes it suggestive
that the aforementioned questions have something to do with topology. Assume that the amplitude
T12→34 was evaluated at some specific point (𝑠∗, 𝑡∗, 𝑝2

𝑖∗, 𝑚
2
∗, . . .) in the kinematic space and then ask

what happens to it as we continuously vary the kinematic parameters along a path 𝛾, for example
going around 𝑠=4𝑚2, in the complex space and return back to the original point:

s
s∗

4m2

γ
(2)

Knowing how the result looks like would tell us about any possible branch cuts and discontinuities
encountered by 𝛾. Repeating this exercise for all possible loops 𝛾 (not just those confined to the
𝑠-plane, as in the example above) amounts to knowing the full analytic structure of the scattering
amplitude. Unfortunately, we do not yet have means for addressing this question in full generality.

In order to make progress we will make three simplifications: (a) consider scattering amplitudes
in perturbation theory, which allows us to work with Feynman diagrams at a given number of loops,
(b) since Feynman integrals often do not converge, we employ dimensional regularization to define
them in space-time dimension 4−2𝜀 with a small positive parameter 𝜀, and (c) consider families
of scalar Feynman diagrams. The last assumption is made so that we can keep our discussion
completely theory-agnostic, as an arbitrary Feynman integral can be reduced to a sum of scalar ones.
It might be that some of the above assumptions can be lifted for special quantum field theories, but
we wish to study the generic case in order to encompass S-matrices of realistic theories testable at
particle colliders.

While dimensional regularization has been traditionally thought of as a nuisance, more recent
work points to it being rather convenient, for example in understanding transcendentality properties
of Feynman integrals [10]. For our purposes we will see that it allows us to “exponentiate” the action
of loops 𝛾, such as that in (2), when transporting amplitudes on the kinematic space. The use of
dimensional regularization—which was not introduced until 1970’s when the S-matrix program was
already on hiatus—is actually the key difference between our approach and that of [3–5]. Had it not
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have been for the unfortunate history of the subject, we have no doubt the results discussed in this
article would have been discovered much sooner.

It will be useful to keep an explicit example on the back of our heads. Throughout this article
we will focus on the arguably simplest class of four-point one-loop diagrams with no masses:

𝐼𝑛1𝑛2𝑛3𝑛4 (𝑠, 𝑡) =
∫
Γ

𝑑4−2𝜀ℓ

[ℓ2]𝑛1 [(ℓ+𝑝1)2]𝑛2 [(ℓ+𝑝1+𝑝2)2]𝑛3 [(ℓ+𝑝4)2]𝑛4
, (3)

which only depends on 𝑠, 𝑡 and 𝜀. The integration contour Γ is chosen to impose the correct causality
conditions. Here 𝑛𝑎’s are integers that indicate whether a given propagator is present in a specific
diagram or not. For instance, the box, triangle, and bubble diagrams can be written as

p2

p1

p3

p4

= 𝐼1111,

p2

p1

p3+p4
= 𝐼1110, p3+p4

p1+p2
= 𝐼1010. (4)

We also allow for a possibility of integers other than 0 and 1, which arise in many contexts, such as
differential equations studied below.

We can now return to the question of parallel transport on the kinematic space. Starting with
some Feynman integral, say the box 𝐼1111, computed at a given point (𝑠∗, 𝑡∗) in the kinematic space,
let us transport it along 𝛾 and demand that the answer can be written as an exponential 𝑒

∫
𝛾
𝜙
𝐼1111 for

some integrand 𝜙 for all 𝛾’s (for now this requirement might seem ad hoc, but it will become clear
why it was made later in the text). If this is not the case, then we need to enlarge our original ansatz
and consider a vector of two integrals, say (𝐼1111, 𝐼1110)ᵀ, and ask whether for any 𝛾 it can be written
as a path-ordered exponential P𝑒

∫
𝛾
𝝓 (𝐼1111, 𝐼1110)ᵀ with some 2×2 matrix 𝝓. If not then we need to

enlarge the ansatz once again, and so on. It is not terribly obvious that this process should truncate
after a finite number of steps, but one can prove that it does. As a matter of fact, this number turns
out to be a topological invariant of the internal loop momentum space! Let us denote it by 𝜒.

For instance, for the specific case of the family of integrals (3) this process turns out to truncate
after three steps, so 𝜒 = 3 (let us mention that this number will in general be different for other loop
orders). Let us call the vector of integrals at the starting point (𝑠∗, 𝑡∗) by |Φ〉, e.g.,

|Φ〉 =
(
𝐼1111, 𝐼1110, 𝐼1010

)ᵀ (5)

and each element |Φ𝑖〉 for 𝑖 = 1, 2, . . . , 𝜒. Right now the notation with the “ket” vector |Φ〉 might
seem silly, but it will become clear shortly why we decided to use it. Please do not confuse it for a
quantum state. To abstract away from this specific example, let us denote the coordinates on the
kinematic space by 𝑥𝜇 from now on. For instance, here (𝑥1, 𝑥2) = (𝑠, 𝑡).

We may think of the vector |Φ〉 as belonging to some vector space V𝑥 attached to a given point
𝑥 in the kinematic space. Clearly, for any other point 𝑥 ′ we can define an isomorphic vector space

4
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V𝑥′ with its own vectors |Φ′〉. As a cartoon, let us keep in mind the following picture:

x
Vx

Vx′

|Φ〉
|Φ′〉

x
x′

(6)

These spaces can be “glued” together by parallel transport into a structure called vector bundle. A
physicists should think of it as a non-Abelian gauge field on the kinematic space. So far we do not
know much about it, except that its gauge group is GL(𝜒) (the space of 𝜒×𝜒 matrices). We would
like to find out more.

As usual, we approach the problem infinitesimally: consider a point 𝑥 ′ = 𝑥 + 𝛿𝑥 for small
displacement 𝛿𝑥. The vector |Φ′〉 and be written as |Φ′〉 = |Φ〉 + 𝛿 |Φ〉, where

𝛿 |Φ〉 = 𝜕𝜇 |Φ〉 𝛿𝑥𝜇 . (7)

We make use of the summation convention for repeated indices. In the infinitesimal limit 𝛿𝑥𝜇 → 0
we can treat the perturbation 𝜕𝜇 |Φ〉 as living in the same vector space V𝑥 as |Φ〉, which means we
can express the former in terms of the latter. Just as in a linear algebra class, in order to project
vectors onto each other we need a notion of a scalar product. This in turn requires us to introduce
a dual vector space V∨

𝑥 to V𝑥 . It will turn out that V∨
𝑥 is the vector space of Feynman integrals

defined in 4+2𝜀 instead of 4−2𝜀 space-time dimensions, however we will not make use of this fact
until later on in the article. For the time being we can just assume that some dual space V∨

𝑥 exists
and keep the discussion more abstract at first, before moving on to its specific implementation further
down the line.

Let us also assume there exists a scalar product between orthonormal basis vectors 〈Φ∨ | ∈ V∨
𝑥

and |Φ〉 ∈ V𝑥 , i.e.,
〈Φ∨

𝑖 |Φ 𝑗〉 = 𝛿𝑖 𝑗 . (8)

In other words, we have the resolution of identity:

1 = |Φ𝑖〉〈Φ∨
𝑖 |, (9)

which can be confirmed by contracting the above expression from the left by 〈Φ∨
𝑗
|, from the right by

|Φ𝑘〉, and using (8). With these results in place we can go back to the problem of expressing 𝜕𝜇 |Φ〉
in terms of |Φ〉. Inserting a resolution of identity we find

𝜕𝜇 |Φ𝑖〉 = |Φ 𝑗〉〈Φ∨
𝑗 |𝜕𝜇 |Φ𝑖〉. (10)

Hence the transformation between the vectors 𝜕𝜇 |Φ〉 and |Φ〉 of our interest is really given by the scalar
products above. Let us organize them into a matrix 𝛀𝜇 with entries given by (𝛀𝜇)𝑖 𝑗 = 〈Φ∨

𝑗
|𝜕𝜇 |Φ𝑖〉.

This hints that we should define a covariant derivative 𝐷𝜇 = 𝜕𝜇 −𝛀𝜇, which gives the “equation of
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motion” for |Φ〉:
𝐷𝜇 |Φ〉 = 0, (11)

or with indices
𝐷𝜇 |Φ𝑖〉 = 𝜕𝜇 |Φ𝑖〉 − (𝛀𝜇)𝑖 𝑗 |Φ 𝑗〉 = 0. (12)

In the field-theoretic language, what we found is that 𝛀𝜇 is a gauge field valued in GL(𝜒) and vectors
of Feynman integrals transform as minimally-coupled scalars |Φ〉 in the fundamental representation.
Gauge transformations are then

𝛀𝜇 ↦→ g𝛀𝜇 g−1 + 𝜕𝜇g g−1, |Φ〉 ↦→ g |Φ〉, (13)

for any element g ∈ GL(𝜒). It means that the choice of the basis Feynman integrals, such as the one
we made in (5), is just a gauge choice. As usual, there might be good or bad choices of gauge and
we will discuss which are the convenient ones later in the text.

When talking about the curvature of the gauge field, given by F𝜇𝜈 = −[𝐷𝜇, 𝐷𝜈], there are two
equivalent points of view. One way is to excise the singular points (e.g., positions of thresholds)
from the kinematic space, which makes it a topologically non-trivial manifold. In this case the gauge
field 𝛀𝜇 is always flat (integrable), i.e.,

F𝜇𝜈 = 𝜕𝜇𝛀𝜈 − 𝜕𝜈𝛀𝜇 − [𝛀𝜇,𝛀𝜈] = 0, (14)

and hence locally it can be written as a pure gauge 𝛀𝜇 = 𝜕𝜇𝚲𝚲−1 for some matrix 𝚲. Another
point of view is to keep the singular points as a part of the kinematic space, in which case they act as
source currents for the gauge field. In any case, the paths 𝛾 described at the beginning give Wilson
loops

P exp
∫
𝛾

𝛀𝜇𝑑𝑥
𝜇, (15)

which are non-trivial either for topological reasons, or because they enclose a source, in the two
interpretations respectively. Clearly, 𝛀𝜇 knows everything about the analytic structure on the
kinematic space. For example, simple poles of 𝛀𝜇 determine positions of branch points and residues
around these poles compute the discontinuities.

To make the above picture complete we need to be able to find out how to define more concretely:
(a) the vector space V𝑥 , (b) the dual vector space V∨

𝑥 , and crucially (c) how to define and compute
the scalar product between them. These will be addressed in turn in the following sections. The
points (a) and (b) will have a simple solution, which roughly speaking corresponds to a similar
gauge-field structure, but on the internal loop-momentum space instead of the external kinematics
space.

The scalar product between Feynman integrals turns out to be a new class of geometric
invariants, which despite being studied by mathematicians for decades [11–13], appeared in physics
only recently [14, 15]. They are called intersection numbers. If 〈𝜑− | represents a specific diagram
in 4+2𝜀 dimensions, and |𝜑+〉 is one in 4−2𝜀 dimensions, we write their intersection number as
〈𝜑− |𝜑+〉. What is remarkable is that for an arbitrarily complicated Feynman integral, with any
number of loops and legs, massive or massless propagators, planar or non-planar, the result is always

6
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a rational function of kinematic invariants and 𝜀! This fact is in stark contrast with Feynman integrals
themselves, which in principle involve as complicated functions as allowed by algebraic geometry.

Intersection numbers are of both theoretical and practical significance. We have already seen
that they govern the differential equations on the kinematic space through the connection matrix 𝛀𝜇.
They can be also used to project an arbitrary Feynman integral into a basis of integrals in the same
topology. For instance, for a one-loop matrix element T one-loop

12→34 , the expansion in terms of the box,
triangle, and bubble coefficients is given by:

T one-loop
12→34 = 𝐼1111 〈𝐼∨1111 |T

one-loop
12→34 〉 + 𝐼1110 〈𝐼∨1110 |T

one-loop
12→34 〉 + 𝐼1010 〈𝐼∨1010 |T

one-loop
12→34 〉, (16)

where the coefficients are given by intersection numbers. We will also see that this formalism
reveals a surprise about Feynman integrals: even though we are interested in the limit 𝜀 → 0, which
corresponds to four-dimensional physics, under some circumstances it will be possible to extract
exactly the same information from the opposite limit, 𝜀 → ∞ [16]!

This article is meant as an exposition aimed at physicists interested in understanding the
broad-strokes picture behind the above ideas. We will attempt to avoid doing technical computations
or using sophisticated mathematics. Most of the results discussed here are based on the recent papers
[14–19], where one can find more detailed discussion. In the final section and throughout the article
we give a list of open questions, which the reader is invited to consider.

2. Feynman Integrals

We begin by reviewing the definition of Feynman integrals in dimensional regularization. As
with any other function, the way it is written as an integral is not unique. Over the years different
representations have been introduced, each suitable for its own purpose. Most of them take the
general form:

𝐼𝑖 =

∫
Γ

𝑒𝜀𝑊 𝜑𝑖 . (17)

Here 𝑊 is in general a multi-valued function and Γ is an integration domain, both of which are
common to all Feynman diagrams in a given family. Let us assume that causality conditions are
already implemented in the choice of Γ, so we do not have to worry about the 𝑖𝜖 prescription. We
will call 𝑊 a potential for reasons that will become clear later in the text. The point of writing
Feynman integrals as in (17) is to emphasize the separation between the universal objects (𝑊 and Γ)
and the ones associated to a choice of a specific diagram (𝜑𝑖). Throughout this paper we will use the
language of differential forms (for introduction, see, e.g., [20, Ch. 5]), which will greatly simplify
the notation. For example, 𝜑𝑖 is a top (maximal degree) holomorphic form.

Let us review different representations, which differ by the physical meaning of the potential𝑊
and a prescription for choosing 𝜑𝑖 . Since most of the readers should be familiar with them, and this
part is not essential to understanding the ideas of the rest of the paper, we will be brief and partly
schematic.

Loop Momentum Representation. This is the most common way of writing Feynman integrals,
which we already used in (3). Isolating contributions coming from the −2𝜀 dimension is precisely

7
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what gives a non-trivial potential𝑊 , which schematically takes the form

𝑊 = − log(Lorentz invariants of momenta in the −2𝜀 dimensions). (18)

When the number of loops is 𝐿, the total number of integration variables becomes 4𝐿 + 𝐿 (𝐿 + 1)/2
including the extra dimensions. For instance, for the box diagram (3) the integration space is given
by the components of the loop momentum (ℓ0, ℓ1, ℓ2, ℓ3, ℓ⊥), where the final one lives in the −2𝜀
dimensions. The potential in this case is simply

𝑊 = − log((ℓ⊥)2) (19)

and 𝜑’s are proportional to 𝑑ℓ0 ∧ 𝑑ℓ1 ∧ 𝑑ℓ2 ∧ 𝑑ℓ3 ∧ 𝑑ℓ⊥ with appropriate denominators. For details
see, e.g., [21]. In the present context, this representation will most likely be the most useful for
the study of full scattering amplitudes at a given loop order (not just individual families of scalar
integrals). It is also related to the theory of hypersphere arrangements [22, 23].

Baikov Representation. A convenient way of performing loop integration is to first translate the
loop momenta ℓ𝜇

𝑖
into independent Lorentz invariants ℓ𝑖 ·𝑝 𝑗 and ℓ𝑖 ·ℓ 𝑗 . For 𝑛-point scattering this

results in 𝐿min(𝑛−1, 4) + 𝐿 (𝐿+1)/2 integration variables. Jacobian for this change of variables
gives the so-called Baikov polynomial [24], which enters the potential𝑊 :

𝑊 = − log(Baikov polynomial). (20)

We refer to [15, App. A] for details. This representation has a subtlety in that only for diagrams
with min(𝑛−1, 4)+𝐿 odd it takes the specific form (17) (when this combination is even we need to
use 𝑒𝜀𝑊 → 𝑒 (𝜀−

1
2 )𝑊 instead), and hence some of the later discussion would have to be modified to

capture those cases. Nonetheless, it becomes very useful for studying cuts [25]: vanishing of a single
propagator defines a hyperplane in the integration space (as opposed to a quadric in the original loop
momentum variables) and computing a cut corresponds to taking a residue around it. In the box
example (3) the integration variables can be taken to be (ℓ2, ℓ·𝑝1, ℓ·𝑝2, ℓ·𝑝3), which results in

𝑊 = − log
(
ℓ2 −

3∑︁
𝑎,𝑏=1

ℓ·𝑝𝑎 G−1
𝑎𝑏 𝑝𝑏 ·ℓ

)
, (21)

where G is the Gram matrix with entries G𝑎𝑏 = 𝑝𝑎·𝑝𝑏. This is of course just another way of writing
(19), since ℓ2 = (ℓ⊥)2 + (ℓ ‖)2 and the four-dimensional norm (ℓ ‖)2 can be projected onto Lorentz
invariants using the sum above.

Feynman Representation. Here we trade loop variables for Schwinger parameters, which measure
proper time 𝑧𝑎 along the 𝑎-th propagator. The resulting integral is commonly expressed in terms of
the so-called Symanzik polynomials F and U, which are respectively degree 𝐿+1 and 𝐿 polynomials
in 𝑧𝑎’s, see, e.g., [26] for a review. We will consider a version of this parametrization popularized by
[27], which results in

𝑊 = log(F + U) (22)

8
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and the forms 𝜑𝑖 are now labeled by the integers (𝑛1, 𝑛2, . . . , 𝑛𝑚) for each of the 𝑚 propagators,

𝜑𝑛1𝑛2 · · ·𝑛𝑚 =
1

(F +U)2

𝑚∧
𝑎=1

𝑑𝑧𝑎

𝑧
1−𝑛𝑎
𝑎

. (23)

There is a kinematics-dependent overall constant that we ignore for the purposes of our discussion,
see, e.g., [16, Sec 3.1] for the full derivation. We will refer to this form of Feynman integrals as the
Feynman representation (this terminology is not standard). As in the worldline formalism, physically
𝑧𝑎’s are the proper times along a given edge of the Feynman diagram. Each of them ranges from 0
to ∞, and hence the domain of the integration is Γ = R𝑚+ . In the box example (3) we have 𝑚=4 and
find:

F = 𝑠𝑧1𝑧3 + 𝑡𝑧2𝑧4, U = 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4. (24)

The three diagrams in (4) are computed with

𝜑1111 =
1

(F +U)2 𝑑
4𝑧, 𝜑1110 =

1
(F +U)2

𝑑4𝑧

𝑧4
, 𝜑1010 =

1
(F +U)2

𝑑4𝑧

𝑧2𝑧4
, (25)

where 𝑑4𝑧 = 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧3 ∧ 𝑑𝑧4.

We will use the Feynman representation in the examples throughout the article, though it
is important to remember that all the discussion can be repeated for other representations with
essentially no changes, which was the reason for unifying them in the common expression (17) in
the first place.

2.1 Types of Boundaries

In order talk more precisely about the geometry of integrals such as (17), we need to define the
space on which they are computed. Let us call this complex manifold 𝑀 and its complex dimension
𝑚 (the real dimension is 2𝑚).

In the Feynman representation it is convenient to treat each Schwinger parameter 𝑧𝑎 as an
inhomogeneous variable on a Riemann sphere CP1 (this is just a complex plane with a point at
infinity included, CP1 = C ∪ {∞}), even though it is integrated only along the real positive half-line.
To define 𝑀 we have to remove places where the integrand 𝑒𝜀𝑊 𝜑𝑖 can diverge, which are determined
by F+U = 0 and by 𝑧𝑎 = 0,∞ for all 𝑎. We will refer to those places as boundaries. Therefore the
space 𝑀 is given by 𝑚 copies of C∗ = CP1−{0,∞} with the aforementioned hypersurface excised:

𝑀 = (C∗)𝑚 − {F+U = 0}. (26)

Boundaries of 𝑀 are sources of ultraviolet and infrared divergences. Mathematically speaking they
fall into one of the following two categories.

Twisted Boundaries. These are boundaries regulated by 𝜀. They can happen when 𝑒𝜀𝑊 goes to
zero or infinity. If we treat 𝜀 as a generic number or a formal variable, then the integral integrates to
a well-defined expression in the neighborhood of those boundaries. In our case {F+U = 0} defines
a twisted boundary.
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Relative Boundaries. These are the unregulated boundaries. They happen when the form 𝜑𝑖 has
poles that are not affected by 𝑒𝜀𝑊 . The integral can in principle diverge close to them. In our case
relative boundaries are given by {𝑧𝑎 = 0,∞} for any 𝑎.

Note that if we were working without dimensional regularization, in whatever representation
of Feynman integrals, all boundaries would be relative. (In those cases another complication
arises when the integrand contains square roots, as then we need to consider double covers of 𝑀.
The simplest examples are elliptic curves. Avoiding such situations is one motivation for using
dimensional regularization.)

As an example, let us consider Symanzik polynomials (24) and draw a cartoon of the real
cross-section of 𝑀 for some fixed values of (𝑧2, 𝑧4):

0

0

∞

∞

F+U = 0

Re(z1)

Re(z3)

(27)

The twisted boundary is illustrated in orange. The relative boundaries where the 𝑧𝑎 goes to either
zero or infinity (gray) have a combinatorial interpretation as the so-called contraction-deletion
relations, which correspond to propagators being either pinched or removed, see, e.g., [26, Sec. 6].

Although it is not strictly necessary, from now on we will implement an extra simplification,
which translates all relative boundaries into twisted ones. This is achieved by simply deforming our
potential to

𝑊 = log(F +U) +
𝑚∑︁
𝑎=1

𝛿𝑎 log 𝑧𝑎, (28)

which by the above definitions makes {𝑧𝑎 = 0,∞} twisted. Here 𝛿𝑎’s are some additional parameters
(one can set them all equal, 𝛿𝑎=𝛿), which are sent to zero at the end of a computation. One can
think of them as an additional regulator on top of dimensional regularization (see also [28, Ch. 3]).
Equivalent way of thinking is that we deform all integers 𝑛𝑎 into generic non-integer parameters
𝑛𝑎 + 𝜀𝛿𝑎. Let us stress that this is a step which is only taken to simplify our discussion and should
not be thought of as particularly fundamental.

2.2 Connection to Mathematics

After the regularization described above, Feynman integrals take the form of generalized
Aomoto–Gelfand hypergeometric functions [29, 30].1 This fact in itself should not be surprising, as
virtually all functions appearing in quantum field theory are of hypergeometric type. The key idea is

1To be more concrete, when𝑊 is given as in (22), the integral (29) falls into the class of resonant Gelfand–Kapranov–
Zelevinsky hypergeometric functions [31–33]. For a historical summary of treating Feynman integrals as hypergeometric
functions see [33, Intro.].

10



P
o
S
(
M
A
2
0
1
9
)
0
1
6

Status of Intersection Theory and Feynman Integrals Sebastian Mizera

to understand them as pairings of two objects:

〈Γ⊗𝑒𝜀𝑊 |𝜑𝑖〉 =
∫
Γ

𝑒𝜀𝑊 𝜑𝑖 . (29)

Here 〈Γ⊗ 𝑒𝜀𝑊 | is an element of a vector space of all possible integration cycles. This space is called
a twisted homology group. It consists of two pieces of information: the integration domain Γ and the
branch of the multi-valued function 𝑒𝜀𝑊 we choose to integrate on. It is required that boundaries of
Γ lie along the twisted boundaries of 𝑀 discussed before. We will not discuss integration domains
in more detail, since in our application they are always fixed (and the branches are uniquely specified
by requiring that the integrand is real along Γ).

Similarly, 𝜑𝑖 denotes a single-valued differential 𝑚-form which can have poles only on the
twisted boundaries. It is an element of another vector space of all possible integrands called twisted
cohomology group. We can understand it in elementary terms in the following way. In the absence
of boundary terms, integral of any total differential vanishes, and so we have

0 =

∫
Γ

𝑑 (𝑒𝜀𝑊 𝜉) =
∫
Γ

𝑒𝜀𝑊 (𝑑𝜉 + 𝜀𝑑𝑊∧𝜉) (30)

for any (𝑚−1)-form 𝜉 with poles only on the twisted (regulated) boundaries. Since the above
combination will appear many times, let us introduce the notation ∇𝑑𝑊 = 𝑑 + 𝜀𝑑𝑊∧, which is a
covariant derivative.2 The above result means that we can freely add combinations of the form ∇𝑑𝑊𝜉
to 𝜑𝑖 and it does not change the value of the integral (29). The integrand is therefore better thought
of as an equivalence class |𝜑𝑖〉 obtained by identifying

𝜑𝑖 ∼ 𝜑𝑖 + ∇𝑑𝑊𝜉 (31)

for any 𝜉. These classes form a finite-dimensional vector space known as the𝑚-th twisted cohomology
group, denoted by 𝐻𝑚((C∗)𝑚−{F+U=0},∇𝑑𝑊 ) in the mathematics literature, which for short we
will call 𝐻𝑚

𝑑𝑊
from now on. Thus we have

|𝜑𝑖〉 ∈ 𝐻𝑚
𝑑𝑊 . (32)

In mathematics such equivalence classes are called twisted cocycles. In physics we mostly deal with
representatives of these classes, such as the ones given in (23). We will refer to such representatives
as twisted forms, to distinguish them from ordinary differential forms.

This structure naturally parallels the one from Sec. 1. The covariant derivative ∇𝑑𝑊 is that
associated to a flat Abelian gauge field with the gauge potential 𝑑𝑊 valued in GL(1) = C∗. In this
interpretation 𝜑𝑖 can be identified as a 𝑚-form field with gauge equivalence (31), though we do not
suppose this interpretation gives any intuition in our application.

The key point is that for Feynman integrals expressed as the pairing (29) the integration domain
is always fixed. This means that choosing a specific integral 𝐼𝑖 is the same as choosing a twisted

2In the literature the notation 𝜔 is often used instead of 𝑑𝑊 for the same object, but we prefer to use the latter to make
it manifest that 𝑑𝑊 is a closed form. From there we immediately see that the covariant derivative is flat, ∇2

𝑑𝑊
= 𝑑𝑑𝑊 = 0.

11



P
o
S
(
M
A
2
0
1
9
)
0
1
6

Status of Intersection Theory and Feynman Integrals Sebastian Mizera

form 𝜑𝑖 . For example, in the Feynman representation we have

𝐼𝑛1𝑛2 · · ·𝑛𝑚 (𝑥) = 〈R𝑚+ ⊗ 𝑒𝜀𝑊 (𝑥)︸          ︷︷          ︸
fixed

|𝜑𝑛1𝑛2 · · ·𝑛𝑚 (𝑥)〉. (33)

Here we temporarily reinstated the dependence on a point 𝑥 in the kinematic space. This motivates
the identification of the vector space V𝑥 of Feynman integrals as being modeled by the twisted
cohomology group [19]:

V𝑥 � 𝐻𝑚
𝑑𝑊 (𝑥) , (34)

and hence the vectors |Φ𝑖〉 from Sec. 1 are identified as |𝜑𝑖〉. This relationship is valid only up to the
kernel of integration, which in reality is slightly bigger than that implied by (30). This is because
〈R𝑚+ ⊗ 𝑒𝜀𝑊 | might have additional symmetries. For instance, in the case of the box topology it is
invariant under 𝑧1 ↔ 𝑧3 and separately under 𝑧2 ↔ 𝑧4, so for example 𝐼1100 = 𝐼0011 on the level of
the integrated answer, but 𝜑1100 � 𝜑0011 on the level of cohomology. Another example is discussed
in [16, Sec. 3.4] for massive sunrise graph topology. In conclusion, the above construction is blind
to such symmetry relations, though it seems likely that it can be modified to account for it.

The introduction of 𝛿-regulators was necessary to formulate our problem in terms of a twisted
cohomology. In the presence of relative boundaries one needs to consider a richer structure called
relative twisted cohomology, which is the proper way of understanding Feynman integrals in
dimensional regularization, but falls beyond the scope of this review. The simplification of not
having relative boundaries around will allows us to invoke some of the results from mathematics
without further complications, thus streamlining the discussion, but should not be regarded as the
final word.

At this stage let us emphasize that even after employing 𝜀- and 𝛿-regularization, the integrals
(29) are still not convergent in general. By this we mean that one could not simply plug in any
numerical values for kinematic variables and 𝜀 and expect numerical integration on a computer to
converge. This is actually a generic feature of integrals on non-compact spaces, such as 𝑀 (recall
that any manifold with a boundary is non-compact). A formal way of dealing with this problem is to
find a differential form 𝜑𝑐

𝑖
, which is in the same class as the original 𝜑𝑖 ,

𝜑𝑐𝑖 = 𝜑𝑖 + ∇𝑑𝑊Ξ (35)

for some Ξ, in such a way that 𝜑𝑐
𝑖

vanishes in the small neighborhood of every boundary. A form
with this property is said to have compact support. In this way, the integrand is always bounded and
the corresponding integral ∫

Γ

𝑒𝜀𝑊 𝜑𝑐𝑖 (36)

converges. Strictly speaking, in the definition (29) we should have used this version. Even though it
can be proven that 𝜑𝑐

𝑖
exists for the above class of integrals [34, Sec. 2.2], it can be difficult to find it

in practice (a more pragmatic approach to numerical integration is sector decomposition, see, e.g.,
[35]). We will return to this point in Sec. 3 when discussing intersection numbers.

It might not be immediately clear why the above mathematical formulation would help us with
anything, and indeed one can argue that so far it has not. The advantage we gained, however, is that

12
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we can use tools of algebraic topology and geometry to ask physics questions. The first one is: how
many linearly-independent integrals of the above form are there?

2.3 More Connections to Mathematics

The above question formulated in the geometric language asks about the dimension of 𝐻𝑚
𝑑𝑊

.
Actually, one can attempt to construct other twisted cohomology groups 𝐻𝑘

𝑑𝑊
, which are spaces of

𝑘-forms (where 𝑘 is not necessarily equal to 𝑚) up to equivalence relations (31), and ask a similar
question. Here we can refer to an important result of Aomoto [36], who showed that all 𝐻𝑘

𝑑𝑊
are

empty unless 𝑘 = 𝑚 (this result holds under some genericity condition on 𝑑𝑊 , which are satisfied in
our case). In other words, lower- and higher-degree forms with the transformation property (31)
do not exist. This statement becomes very powerful once we realize that dimensions of twisted
cohomology groups defined above are related to the topological Euler characteristic 𝜒(𝑀) via

𝜒(𝑀) =
2𝑚∑︁
𝑘=0

(−1)𝑘 dim𝐻𝑘
𝑑𝑊 . (37)

Using the fact that dim𝐻𝑘≠𝑚
𝑑𝑊

= 0 leaves us with

dim𝐻𝑚
𝑑𝑊 = (−1)𝑘 𝜒(𝑀), (38)

so up to a sign the number of linearly-independent Feynman integrals computed on 𝑀 is given
by 𝜒(𝑀). For a general introduction to Euler characteristics see [20, Sec. 2.4.4]. In the present
formulation this result was given in [15, 16, 19], but can be also derived by other means [37].

This result is particularly interesting, because it translates a physical problem into a geometric
one. At this stage we can exploit the fact that there are multiple different ways of computing Euler
characteristics. Particularly useful for us will be the connection with Morse theory, which, broadly
speaking, allows one to study topology of a manifold using flow equations of a “height function”
defined on it. See [38, Sec. 3] for an introduction.

In our case a natural choice of the height function is Re(𝑊). Taking the real part is quite
important to make it single-valued and also to define the “height” associated to each point on 𝑀,
which is supposed to be a real number. The height diverges to ±∞ at all the boundaries of 𝑀. It
must then have some critical points in between (critical points are places where the first derivative of
Re(𝑊) vanishes). To each of them we associate an index 𝛾, which counts how many downwards
directions extend from this point. Since 𝑀 is a 2𝑚-real-dimensional manifold, the index has to be
between 0 and 2𝑚. Let us call the number of critical points with index 𝛾 by 𝐶𝛾 . Morse theory tells
us that the Euler characteristic can be expressed as

𝜒(𝑀) =
2𝑚∑︁
𝛾=0

(−1)𝛾𝐶𝛾 . (39)

This sum has only one non-vanishing term, since one can show that Re(𝑊) for any holomorphic
function𝑊 has only critical points with indices 𝛾 = 𝑚 (see, e.g., [18, Sec. 2.4.3]). This means that
the height function near all critical points has a shape of saddle (with equal number of upwards and
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downwards directions extending from it). Consequently 𝐶𝛾≠𝑚 = 0 and 𝐶𝑚 counts the total number
of critical points. Then using (39) together with our previous result (38), we find

dim𝐻𝑚
𝑑𝑊 = total number of critical points of Re(𝑊). (40)

In addition, it is not difficult to see that positions of critical points of Re(𝑊) are the same as those of
𝑊 , and hence they can be determined algebraically by solving

𝑑𝑊 =

𝑚∑︁
𝑎=1

𝜕𝑊

𝜕𝑧𝑎
𝑑𝑧𝑎 = 0, (41)

which asks for coefficients of each 𝑑𝑧𝑎 to vanish, giving a system of 𝑚 equations:

𝜕𝑊

𝜕𝑧𝑎
= 0, 𝑎 = 1, 2, . . . , 𝑚. (42)

The number of solutions is equal to |𝜒(𝑀) |, which for short we will call simply 𝜒 in the future.
For example, by plugging (24) and (28) into the above equation, the number of independent

Feynman integrals in the box graph topology is found by solving the system of equations

𝛿1
𝑧1

+ 1 + 𝑠𝑧3
F +U = 0,

𝛿2
𝑧2

+ 1 + 𝑡𝑧4
F +U = 0,

𝛿3
𝑧3

+ 1 + 𝑠𝑧1
F +U = 0,

𝛿4
𝑧4

+ 1 + 𝑡𝑧2
F +U = 0, (43)

which has 𝜒 = 3 solutions, confirming the assertion made in Sec. 1. Note that since we only care
about the number of solutions, but not their explicit form, we can do this computation numerically
for random values of external parameters (𝑠, 𝑡, 𝛿1, 𝛿2, 𝛿3, 𝛿4), which turns it into a very efficient
method of counting Feynman integrals.

Strictly speaking, in the equality (39) there was an assumption that all critical points are isolated
(the are no continuous families) and non-degenerate (second derivatives of𝑊 do not vanish). With
small modifications one can relax these assumptions. For example, (40) still holds if we take into
account multiplicity of each degenerate critical point or alternatively perturb the height function so
that the degenerate point splits into a number of non-degenerate ones infinitesimally far away from
each other. For treating non-isolated critical points see [27, Sec. 5].

Physically, it might seem rather surprising that critical points have something to say about
counting Feynman integrals in dimensional regularization, since they are normally associated tho
the saddle-point approximation in the 𝜀 → ∞ limit, rather than the physical 𝜀 → 0 that gets us to
four dimensions. In Sec. 3.3 we will see an even more striking example of this phenomenon and
understand it in terms of intersection theory.

As mentioned before, there are multiple other ways of computing Euler characteristics, each of
which can serve as a proxy for determining the number of linearly-independent Feynman integrals.
Other than the method mentioned above, one can use the computer package Macaulay2 [39],
which computes Euler characteristics with computational algebraic geometry algorithms (see [40,
App. A] for an example usage). Let us also mention methods using the theory of Chern–Schwartz–
MacPherson classes [41], point counting over finite fields [42, 43], and volumes of Newton polytopes
[33, 37]. Note that these techniques appeared previously only in the context of Feynman integrals
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without dimensional regularization, where 𝑀 is typically given as a complement of {U = 0}
hypersurface instead of {F+U = 0} considered here.

At this stage it is worth to pause for a second and ask the following question.

2.4 What Does Euler Characteristic Really Count?

One convenient way of thinking about the dimension of the twisted cohomology group is as
computing the rank of a matrix of integrals (17) for all possible integration domains (labeled by
rows) and integrands (labeled by columns), i.e.,

𝜒 = rank

©­­­­­­­«

∫
Γ1

𝑒𝜀𝑊 𝜑1

∫
Γ1

𝑒𝜀𝑊 𝜑2 · · ·∫
Γ2

𝑒𝜀𝑊 𝜑1

∫
Γ2

𝑒𝜀𝑊 𝜑2 · · ·

...
...

. . .

ª®®®®®®®¬
. (44)

If we were interested in the number of independent integrals for all possible choices of Γ𝑖 and 𝜑 𝑗

then the answer would be 𝜒2. In our specific problem, however, we care only about the integrals
for a specific contour Γ = R𝑚+ , which corresponds to a single row of the above matrix. Number of
linearly-independent integrals of this type is therefore at most 𝜒, but might in principle be lower.
One reason for this was discussed underneath (34).

It is also important to mention that strictly speaking in the above discussion we were talking
about 𝛿-regulated Feynman integrals obtained by sending 𝑛𝑎 → 𝑛𝑎 + 𝜀𝛿𝑎, whose counting might
conceivably differ from the number of the original dimensionally-regularized Feynman integrals
before this deformation. Of course, the number of independent integrals also jumps discontinuously
as we approach four dimensions in the strict limit 𝜀 = 0.

In the literature of Feynman integrals the term “master integrals” is often used to refer to a
basis of Feynman integrals. Given its ambiguity we prefer not to use this term here. For example,
to define a basis one needs to specify a coefficient field (what coefficients of a basis expansion are
allowed to be). In our setup we work in the rational field of coordinates of the kinematic space and
𝜀, for example Q(𝑠, 𝑡, 𝜀) in the box topology case (to explain this we need to wait until Sec. 3). In
contrast, performing the counting of integrals over Q is likely to give a higher answer, while adding
variables (for example, square roots) to the coefficient field might conceivably make it smaller. As an
additional warning let us also mention that some authors might count Feynman integrals assuming:
permutation symmetries, different treatment of subsectors, exclusion of reducible diagrams, or
counting of only top-level integrals, among others (see also the discussion in [37, Sec. 4.4]). One
motivation for introducing twisted cohomology groups was to systematize the definition of the term
“master integrals”.

Lastly, let us comment on the relation to the work of Lee and Pomeransky [27]. Translated
to our notation they argued that the number of linearly-independent integrals in the top sector (on
the maximal cut) is counted by the number of critical points of Re(𝑊 (𝛿𝑎=0)), i.e., without the
additional regulators. Crucially, the system of equations 𝑑𝑊 = 0 determining critical points is in
principle discontinuous when any 𝛿𝑎 → 0. For example, setting 𝛿𝑎 = 0 in (43) before solving the
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equations yields the system

1 + 𝑠𝑧3
F +U = 0,

1 + 𝑡𝑧4
F +U = 0,

1 + 𝑠𝑧1
F +U = 0,

1 + 𝑡𝑧2
F +U = 0, (45)

which has only 1 solution. This is consistent with the fact that box topology has only one independent
integral on the maximal cut (for example 𝐼1111). In general there should be a way of predicting
number of Feynman integrals at any level between the maximal cut and the full integral by setting
various 𝛿𝑎 to zero and studying the behavior of critical points in such limits. This is an open question
which deserves further work.

3. Intersection Theory

In the previous section we found that the vector space of Feynman integrals V can be modeled
by the cohomology group 𝐻𝑚

𝑑𝑊
. As anticipated in Sec. 1, we will define the dual vector space V∨ by

simply flipping the sign of the dimensional regulators from 4−2𝜀 to 4+2𝜀. Replacing 𝜀 → −𝜀 in the
discussion above allows us to identify V∨ with 𝐻𝑚

−𝑑𝑊 . For example, the “dual” Feynman integrals
are given by

〈𝜑𝑖 |Γ ⊗ 𝑒−𝜀𝑊 〉 =
∫
Γ

𝑒−𝜀𝑊 𝜑𝑖 . (46)

Here we have intentionally used an opposite bra-ket notation to that in (29), to distinguish between
|𝜑𝑖〉, defined in (31), from 〈𝜑𝑖 | ∈ 𝐻𝑚

−𝑑𝑊 , which is the equivalence class

𝜑𝑖 ∼ 𝜑𝑖 + ∇−𝑑𝑊𝜉. (47)

To further distinguish between the two distinct classes we will use the notation 𝜑± for generic
representatives (twisted forms) of 𝐻𝑚

±𝑑𝑊 .
What it means for a vector space to be dual to another one is that there exists a non-degenerate

bilinear pairing between them. Hence we would like to write down a bilinear of 〈𝜑− | and |𝜑+〉 that
respects all cohomology relations. If this was possible, it would define a “scalar product between
Feynman integrals”. The most naive guess for such an object is

〈𝜑− |𝜑+〉
?
=

∫
𝑀

(
𝑒−𝜀𝑊 𝜑−

)
∧
(
𝑒+𝜀𝑊 𝜑+

)
, (48)

which actually turns out to be quite close to the correct answer and needs only a small refinement.

3.1 Scalar Product Between Feynman Integrals

It is instructive to understand what goes right and what goes wrong with the formula (48). First
of all, it is obviously a bilinear, i.e., for constants 𝛼, 𝛽 it satisfies

〈𝜑− |𝛼𝜑+ + 𝛽𝜑+〉 = 𝛼〈𝜑− |𝜑+〉 + 𝛽〈𝜑− |𝜑+〉, (49)

and similarly for the linearity for the other twisted form 𝜑−. Secondly, we would like to show that
it respects the equivalence relations for both twisted forms, which can be checked by confirming
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that 〈∇−𝑑𝑊𝜉 |𝜑+〉 vanishes for every 𝜉 and 𝜑+ (and similarly for 〈𝜑− |∇𝑑𝑊𝜉〉). Naively doing this
computation we obtain

〈∇−𝑑𝑊𝜉 |𝜑+〉 =

∫
𝑀

𝑑

(
𝑒−𝜀𝑊 𝜉

)
∧
(
𝑒+𝜀𝑊 𝜑+

)
=

∫
𝑀

𝑑

[(
𝑒−𝜀𝑊 𝜉

)
∧
(
𝑒+𝜀𝑊 𝜑+

)]
, (50)

where in the second equality we used the fact that 𝑑 (𝑒+𝜀𝑊 𝜑+) = 0 for a top holomorphic form. What
remains to argue is that the integral of a total derivative on the right-hand side vanishes. By Gauss
theorem

∫
𝑀
𝑑 (· · · ) =

∫
𝜕𝑀

(· · · ), but in our case the integrand has singularities on the boundary 𝜕𝑀 ,
so the expression seems ill-defined.

This is actually a symptom of an earlier problem. Notice that in (48) both 𝜑± are top holomorphic
forms, for which 𝜑− ∧ 𝜑+ = 0 identically. On the other hand, the integral seems to diverge close to
the boundaries, which gives rise to a “0/0 problem” near 𝜕𝑀 . The way to regularize it is similar to
what we have already seen around (36), where we introduced a compactly-supported form 𝜑𝑐+ in the
same cohomology class as 𝜑+, but which vanishes in the small neighborhood of each boundary (it
does not really matter if we choose to regularize 𝜑− or 𝜑+). This gives us the proper definition of the
scalar product we were looking for [15]:

〈𝜑− |𝜑+〉𝑑𝑊 =

( −𝜀
2𝜋𝑖

)𝑚 ∫
𝑀

𝜑− ∧ 𝜑𝑐+. (51)

It is called the intersection number of twisted forms 𝜑− and 𝜑+ [11]. Note that compared to (48) we
canceled the factors of 𝑒±𝜀𝑊 . The expression still depends on 𝑑𝑊 because of the compact support
imposed on 𝜑𝑐+. To remember this fact we introduced the subscript 𝑑𝑊 on the left-hand side. We also
normalized the whole expressions for later convenience (recall that 𝑚 is the complex dimension of
𝑀).

The regularization we introduced makes the right-hand side of (50) vanish and hence defines a
bilinear between the cohomology classes 〈𝜑− | and |𝜑+〉. One can show that it is a non-degenerate
pairing, meaning that a 𝜒 × 𝜒 matrix of intersection numbers between basis elements of both
cohomologies has full rank [11].

Even though the intersection number (51) is written as an integral, it is not an integral in the
conventional sense. Since we performed our regularization only near the boundaries, it is still
true that 𝜑− ∧ 𝜑𝑐+ = 0 away from them. This is a sign of localization: the above integral receives
contributions only from small regions of 𝑀 , which are the neighborhoods of each boundary. This
signals that the result of such an integration must be much simpler than that of a full-blown integral.
Indeed, we will see that (51) can be written in different ways as a sum of residues. The result always
turns out to be a rational function of kinematic invariants and 𝜀.3

This is a good point to comment on the nomenclature. The words “intersection number” or
“intersection pairing” are commonly used for all the different types of homology-homology and
cohomology-cohomology bilinears, not necessarily those of twisted cohomology used here. For
example, [6] talks about intersection numbers (or “Kronecker indices”) of relative homology groups,

3Alternatively we could have chosen the dual vector space to be anti-holomorphic such that the scalar product becomes∫
𝑀
𝑒𝜀𝑊 𝜑𝑖 ∧ 𝑒𝜀𝑊 𝜑 𝑗 , which would be a perfectly good definition, but it would lead to much harder computations since

the integral does not localize.
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which are integers counting how many times contours intersect. Another example are intersection
numbers encountered in the study of Feynman integrals in tropical mirror symmetry [44]. These are
not the same as the intersection numbers discussed in this article and should not be confused with
them. In principle, in the context of Feynman integrals one can also talk about intersection theory
for cycles 〈Γ ⊗ 𝑒𝜀𝑊 | (see, e.g., [18, App. A.2]), but we will not review it here.4

Before discussing how to compute intersection numbers, let us recall why we needed them. The
first application comes from expanding an arbitrary Feynman integral in a basis. In order to achieve
this, let us introduce a set of bases orthonormal with respect to the intersection pairing:

〈𝜑∨𝑖 |𝜑 𝑗〉𝑑𝑊 = 𝛿𝑖 𝑗 . (52)

We will use this set to project integrals using the resolution of identity

1 = |𝜑𝑖〉〈𝜑∨𝑖 |. (53)

Recall that we use implicit summation convention for repeated Latin indices 𝑖, 𝑗 = 1, 2, . . . , 𝜒.
Inserting (53) into the definition of any Feynman integral we find∫

Γ

𝑒𝜀𝑊 𝜑+ = 〈Γ ⊗ 𝑒𝜀𝑊 |1|𝜑+〉 = 〈𝜑∨𝑖 |𝜑+〉𝑑𝑊
∫
Γ

𝑒𝜀𝑊 𝜑𝑖 , (54)

and so the coefficients of a basis expansion on the right-hand side are given by intersection numbers
[15]. As mentioned previously, these coefficients are always rational functions of kinematic invariants
and 𝜀.

Differential equations with respect to external kinematics are actually a special case of the
above expansion. To see this, let us expand the action of the differential operator 𝜕𝜇 = 𝜕/𝜕𝑥𝜇 (for
kinematic variables 𝑥𝜇) on a basis of Feynman integrals:

𝜕𝜇

∫
Γ

𝑒𝜀𝑊 𝜑𝑖 =

∫
Γ

𝑒𝜀𝑊 (𝜕𝜇𝜑𝑖 + 𝜀𝜕𝜇𝑊𝜑𝑖). (55)

4As a resource for the reader, let us briefly outline the history of intersection numbers of twisted cohomologies in
mathematics and their applications to scattering amplitudes. The idea of twisted co/homology groups is quite an old
one and dates back at least to Reidemeister [45] and Steenrod [46]. It was later applied to the theory of hypergeometric
functions by Aomoto [29] and independently by Gelfand [30], which included the study of differential equations and
linear relations between integrals. For a comprehensive introduction and a list of references see [34]. In order to study
quadratic relations between hypergeometric integrals, in 1995 Cho and Matsumoto introduced intersection numbers of
twisted cohomology classes [11]. Equivalent definitions can be found even in the earlier literature, most notably in the
work of Deligne and Mostow [12] and Saito [13] in the 1980’s, though the focus of these works was less practical. Later
mathematical literature on computing intersection numbers in various contexts includes [47–52].

In 2017 it was found that intersection numbers have a physical interpretation in terms of scattering amplitudes [14]. In
this context, which parallels the developments described here, intersection numbers on the moduli space of genus-zero
Riemann surfaces with 𝑛 punctures M0,𝑛 compute 𝑛-point tree-level scattering amplitudes of different quantum field
theories in a way alternative to Feynman diagrams. Together with their homological counterpart, they can be used to
understand linear [18, 53, 54] and quadratic [53] relations between such scattering amplitudes, as well as their connections
to color-kinematics duality [55] and string theory [14, 18]. Most likely, these computations can be extended to genus-𝑔
moduli spaces M𝑔,𝑛, where intersection numbers are expected to compute 𝑔-loop integrands for different quantum field
theories.

With Mastrolia we later applied similar techniques to Feynman integrals [15], where intersection numbers turn out
to have another physical interpretation, which is the main focus of this review. We will return to possible connections
between the two types of intersection numbers in Sec. 4.
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The integral on the right-hand side can be treated as the one on the left-hand side of (54) with
𝜑+ = (𝜕𝜇 + 𝜀𝜕𝜇𝑊)𝜑𝑖 . This gives us straightforwardly

𝜕𝜇

∫
Γ

𝑒𝜀𝑊 𝜑𝑖 = 〈𝜑∨𝑗 | (𝜕𝜇+𝜀𝜕𝜇𝑊)𝜑𝑖〉𝑑𝑊
∫
Γ

𝑒𝜀𝑊 𝜑 𝑗 . (56)

As we did around (11), we can read-off entries of the connection matrix 𝛀𝜇 to be

(𝛀𝜇)𝑖 𝑗 = 〈𝜑∨𝑗 | (𝜕𝜇+𝜀𝜕𝜇𝑊)𝜑𝑖〉𝑑𝑊 , (57)

and so parallel transport on the kinematic space is also governed by intersection numbers [15]. If
boundary conditions are known, the differential equations can also be used for the practical purpose
of expanding Feynman integrals perturbatively in 𝜀, see [56].

One can derive higher-order differential equations for a single Feynman integral 𝐼 = 〈Γ⊗𝑒𝜀𝑊 |𝜑+〉
in a completely analogous fashion. For example, let us take 𝑥 to be a specific kinematic variable we
want to differentiate against. Let us assume that all 𝜒 derivatives 𝜕𝑖𝑥 𝐼 are linearly independent, i.e.,
that

𝜑𝑖 = (𝜕𝑥+𝜀𝜕𝑥𝑊)𝑖𝜑+ 𝑖 = 1, 2, . . . , 𝜒 (58)

forms a basis of the cohomology group 𝐻𝑚
𝑑𝑊

. Then the basis expansion formula gives

𝐼 =

𝜒∑︁
𝑖=1

〈((𝜕𝑥+𝜀𝜕𝑥𝑊)𝑖𝜑+)∨ |𝜑+〉𝑑𝑊 𝜕𝑖𝑥 𝐼 . (59)

This is an ordinary differential equation of order 𝜒 for the Feynman integral 𝐼. Based on this
differential equation one can infer how complicated the function 𝐼 is, e.g., distinguish between
multiple polylogarithms and elliptic functions. For a recent discussion on this type of bases see [57].

In the above manipulations we assumed that one knows how to construct a basis 〈𝜑∨
𝑖
| orthonormal

to |𝜑 𝑗〉. In case that such basis is not known up front, it might be easily constructed from an arbitrary
non-orthonormal basis 〈𝜑𝑖 |, which can be always related via a rotation by some matrix C−1,

〈𝜑∨𝑖 | = C−1
𝑖 𝑗 〈𝜑 𝑗 |. (60)

Contracting both sides with |𝜑 𝑗〉 we find that C𝑖 𝑗 = 〈𝜑 𝑗 |𝜑𝑖〉𝑑𝑊 . Hence the price for not knowing the
orthonormal basis is having to compute the inverse of the intersection matrix C (in other words, C is
in general a non-diagonal metric on the space of twisted forms) [15, 17, 19]. It would be beneficial
to find ways of constructing orthonormal bases from first principles. One approach towards this goal
is taken recently in [21]. In this work 〈𝜑∨

𝑖
| are chosen to be differential forms supported on cuts,

which provides a natural way of making them orthonormal to another set |𝜑 𝑗〉.
Having motivated the need for computing intersection numbers, let us now move on to an

overview of methods for evaluating them in practice.

3.2 Evaluating Intersection Numbers

The complexity of computing (51) grows with the number of dimensions of 𝑀 and the geometry
of its boundaries. It will thus be instructive to start with the simplest case when 𝑀 has one complex
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dimension (𝑚=1), which should give the reader an idea of the flavor of techniques involved. Of
course, for physical applications we need to understand how to deal with 𝑚>1 cases. In contrast
with the one-dimensional one, which is fully understood, computing intersection numbers on general
higher-dimensional spaces is an active area of research. We will briefly review one promising
strategy in this direction.

One Dimension. The simplicity here comes from the fact that boundaries can only be points.
Since intersection numbers localize on the infinitesimal neighborhood of these points, it is natural to
expect that (51) will, one way or another, become a sum of residues extracting the local behavior
near these boundaries. Let us try to convert this intuition into equations. We start by giving an
explicit form of the compactly-supported form 𝜑𝑐+,

𝜑𝑐+ = 𝜑+ − ∇𝑑𝑊
∑︁

𝑝∈𝜕𝑀
Θ( |𝑧−𝑝 |2−𝜖2) ∇−1

𝑑𝑊𝜑+. (61)

It is manifestly in the same equivalence class as 𝜑+. Here 𝑧 denotes the complex coordinate on 𝑀 .
The sum goes over all points 𝑝 (orange below) in the boundary 𝜕𝑀 and Θ’s are step functions which
are equal to 1 inside a circle of radius 𝜖 around each 𝑝 (shaded region below) and equal to 0 outside:

z

(62)

One of the reasons for insisting on the use of projective spaces at the beginning is that infinity is now
not a special point and can in principle belong to the boundary 𝜕𝑀 on the same footing as other
boundary points. Here ∇−1

𝑑𝑊
is a formal inverse of the operator ∇𝑑𝑊 to which we will come back

shortly. Note that the step function is non-holomorphic (since a holomorphic function vanishing
in some open set also vanishes globally), which is exactly what we need to make the combination
𝜑− ∧ 𝜑𝑐+ receive non-zero contributions.

Acting with ∇𝑑𝑊 on each term in the sum in (61) we find

𝜑𝑐+ = 𝜑+

(
1 −

∑︁
𝑝∈𝜕𝑀

Θ( |𝑧−𝑝 |2−𝜖2)
)
−

∑︁
𝑝∈𝜕𝑀

𝛿( |𝑧−𝑝 |2−𝜖2)∇−1
𝑑𝑊𝜑+, (63)

where we used the fact that 𝑑Θ is a Dirac delta function supported on the circle with radius 𝜖 around
each 𝑝. The resulting expression has compact support: the first term vanishes everywhere outside of
the small circular neighborhoods of 𝜕𝑀 , while the second is supported only on the circles. When
inserted into the definition of intersection number,

〈𝜑− |𝜑+〉𝑑𝑊 =
−𝜀
2𝜋𝑖

∫
𝑀

𝜑− ∧ 𝜑𝑐+, (64)

the first term in (63) does not contribute since 𝜑−∧𝜑+ = 0 and we do not have issues with boundaries.
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Only the second term survives and leaves us with contour integrals

〈𝜑− |𝜑+〉𝑑𝑊 = 𝜀
∑︁

𝑝∈𝜕𝑀

1
2𝜋𝑖

∮
|𝑧−𝑝 |2=𝜖 2

𝜑−∇−1
𝑑𝑊𝜑+. (65)

This is how localization manifests itself. We recognize each term as a residue, so the final formula
reads

〈𝜑− |𝜑+〉𝑑𝑊 = 𝜀
∑︁

𝑝∈𝜕𝑀
Res𝑧=𝑝

(
𝜑−∇−1

𝑑𝑊𝜑+
)
. (66)

In order to evaluate this expression we need to find a function 𝜓𝑝 = ∇−1
𝑑𝑊
𝜑+ locally around each point

𝑝. Acting on both sides with ∇𝑑𝑊 , this is just a differential equation for 𝜓𝑝:

∇𝑑𝑊 𝜓𝑝 = 𝜑+ locally near 𝑧 = 𝑝. (67)

The boundary condition is forced upon us by the fact that 𝜓𝑝 enters a residue formula: it needs to be
holomorphic, i.e., 𝜕𝜓𝑝/𝜕𝑧 |𝑧=𝑝 = 0 on 𝑀 . Provided that we keep 𝜀 as a generic non-integer number,
a unique holomorphic solution of (67) exists. It can be found by a holomorphic Laurent expansion
of both sides of (67) and matching the coefficients. Note that we need only a few orders of this
expansion which can contribute to the residue in (66). For examples of using this prescription for
Feynman integrals on cuts see [15, 17].

The fact that the solution of ∇−1
𝑑𝑊
𝜑+ only exists locally is a rather fundamental issue. As a matter

of fact, studying how to “stitch together” different local solutions would lead us to a notion of a sheaf
of such solutions, which gives another way of thinking about cohomology of the loop momentum
space. While we will not attempt to explain it here, let us mention that the radius of convergence of
(67) is determined by places where the operator ∇−1

𝑑𝑊
= (𝑑 + 𝜀𝑑𝑊∧)−1 becomes singular. It happens

when 𝑑𝑊 = 0, i.e., at the critical points we encountered previously in Sec. 2.3. This is not an
accident and we will return to it briefly in Sec. 3.3.

Higher Dimensions. One idea for approaching the computation of intersection numbers on
higher-dimensional spaces is to split them into many one-dimensional problems of the type we just
encountered above and then “glue” the results together. This is actually closely related to what we
have been doing all along when we studied gauge theory on the kinematic space. There, prior to loop
integration we can think of the loop integrand 𝑒𝜀𝑊 𝜑+ living in the big kinematic space comprising
of both external kinematics (schematically 𝑝𝜇

𝑖
) and internal kinematics (schematically ℓ𝜇

𝑖
). We then

separate the big space into 𝑝𝜇
𝑖

and ℓ𝜇
𝑖

directions and integrate out the latter:

pµi

x

Vx

x

`µi

integrate out `µi−−−−−−−−−→

pµi

(68)

The effect of integrating out the internal momenta leaves us with a gauge field (vector bundle)
with connection 𝛀𝜇 on the external kinematic space. The rank of 𝛀𝜇 is computed by the Euler
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characteristic 𝜒 of the internal momentum space.
The idea is to apply the same strategy by further splitting the internal kinematic space into a

“product” of many one-dimensional spaces, say labeled by 𝑧𝑎 for 𝑎 = 1, 2, . . . , 𝑚:

pµi

x

z1
z2

zm

· · · (69)

Each of these spaces is called a fiber and the name for the whole structure is fiber bundle, see, e.g.,
[20, Ch. 9-10] for introduction. The algorithm for computing intersection numbers goes as follows.
At first, the connection on the 𝑚-th fiber is given by 𝛀(𝑚) = 𝜀𝜕𝑧𝑚𝑊𝑑𝑧𝑚, which is just the final
component of 𝜀𝑑𝑊 . Choosing some basis on the 𝑚-th fiber allows one to compute 𝛀(𝑚−1) on the
remaining space using intersection numbers on 𝑧𝑚. It is a 𝜒𝑚×𝜒𝑚 matrix, where 𝜒𝑚 is the absolute
value of the Euler characteristic of the 𝑚-th fiber. Then choosing a basis on the (𝑚−1)-th fiber gives
a way of computing 𝛀(𝑚−2) and so on. This gives a recursive way of reaching 𝛀𝜇 on the external
kinematic space, which is what we were looking for. Since in the intermediate steps we need to
compute intersection numbers of involving the higher-rank connections 𝛀(𝑎) , one needs to use a
“matrix” generalization of (66). The final expression involves taking one-dimensional residues and
locally solving differential equations in terms of holomorphic expansions. These recursion relations
were introduced in [18] and applied to Feynman integrals in [19], where we refer the reader for
details. Some further improvements are discussed in [21, 58].

While this algorithm is quite elegant, it also comes with some quirks that need to be understood
better. These mostly have to do with the fact that the choice of fibration is highly non-unique and
the amount of work in the intermediate steps strongly depends the specific choice of fibers. In
particular, there is an implicit assumption on “genericity” of each 𝛀(𝑎) (which can be stated in terms
of positivity of eigenvalues of Res𝑧𝑎=𝑝 𝛀(𝑎) around each boundary point 𝑝) which is necessary for
local solutions of differential equations to exist. A regularization might be necessary if this is not the
case. Another possible issue is that for bad choices of fibers the positions of boundaries can be a
complicated functions of the coordinates on the remaining fibers. There is clearly a large room for
improvements.

3.3 Two Limits

Complementary to the exact techniques for evaluating intersection numbers from Sec. 3.2, we
can attempt to compute them perturbatively in the small dimensional-regularization parameter 𝜀. To
gain intuition, let us see how this works in the one-dimensional case first. Since (67) is a simple
ordinary differential equation, its solution near each 𝑧 = 𝑝 can be expressed formally as

𝜓𝑝 =
1

𝑒𝜀𝑊 (𝑧)

∫ 𝑧

𝑝

𝑒𝜀𝑊 (𝑧′) 𝜑+(𝑧′)

=
1

𝑒𝜀𝑊 (𝑧)

∫ 𝑧

𝑝

(
(𝑧′−𝑝)𝜀 Res𝑧′=𝑝 (𝑑𝑊 ) + . . .

) (Res𝑧′=𝑝 (𝜑+)
𝑧′ − 𝑝 + . . .

)
. (70)
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In the second equality we isolated the only terms that can contribute to the leading order O(𝜀−1) of
the integral. Note that they can only come from the simple pole of 𝜑+. Performing the integral in
(70) we find to leading order

𝜓𝑝 =
1
𝜀

Res𝑧′=𝑝 (𝜑+)
Res𝑧′=𝑝 (𝑑𝑊) + O(𝜀0). (71)

In particular, at this order 𝜓𝑝 is a constant in 𝑧. Therefore the residue in (66) is sensitive only to a
simple pole of 𝜑−, which gives us the final answer to the leading order in 𝜀:

〈𝜑− |𝜑+〉𝑑𝑊 =
∑︁

𝑝∈𝜕𝑀

Res𝑧=𝑝 (𝜑−) Res𝑧′=𝑝 (𝜑+)
Res𝑧′=𝑝 (𝑑𝑊) + O(𝜀). (72)

Note that if both 𝜑− and 𝜑+ were logarithmic (having only simple poles), then all the steps would
have been exact and the result would not have any O(𝜀) corrections.

There is a second type of perturbative expansion we can make, this time in 𝜀−1. It might
seems counterproductive at first, since this means we expand around (negative) infinite space-time
dimension, but let us put this interpretation aside for a second. After all, intersection numbers
are rational functions, so we can expand them in whichever way is more convenient (with enough
perturbative orders one can reconstruct the full result using Padé approximants). One advantage of
this approach is that we can expand the differential operator ∇−1

𝑑𝑊
in powers of 𝜀−1 (we could not

have done it in 𝜀),
∇−1
𝑑𝑊 =

1
𝜀

1
𝑑𝑊

+ O(𝜀0). (73)

Hence at the order O(𝜀−1) the argument of each residue in (66) is the same,

〈𝜑− |𝜑+〉𝑑𝑊 =
∑︁

𝑝∈𝜕𝑀
Res𝑧=𝑝

(𝜑− ∧ 𝜑+
𝑑𝑊

)
+ O(𝜀−1). (74)

In order not to clutter the notation, we used a convention where the 𝑑𝑧 forms “cancel” between the
numerator and denominator, 𝑑𝑧∧𝑑𝑧

𝑑𝑧
= 𝑑𝑧. Note that the leading term here is different than the leading

term in (72). Moreover, the argument of the residue developed an additional set of poles at 𝑑𝑊 = 0,
which are the critical points we discussed previously around (41). This is completely expected,
because otherwise the answer would have been zero by a residue theorem. We can then deform the
contour from enclosing boundary points 𝑝 (orange) to enclose the critical points 𝑞 (blue) instead:

z z

deform contour−−−−−−−−−→ critical points, q∈{dW=0}
boundary points, p∈∂M (75)

The number of critical points is always 𝜒 and that of boundary points is 𝜒+2. Using the fact that all
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zeros of 𝑑𝑊 are simple, we can evaluate the residues at a cost of a Jacobian:

〈𝜑− |𝜑+〉𝑑𝑊 = −
∑︁

𝑞∈{𝑑𝑊 =0}

𝜑− 𝜑+
𝜕2𝑊/𝜕𝑧2

����
𝑧=𝑞

+ O(𝜀−1), (76)

which is yet another localization formula for intersection numbers. Here the hat converts a differential
form to a function by stripping away the differential, 𝜑 = 𝜑 𝑑𝑧. Note that since we already established
that for logarithmic forms intersection numbers are independent of 𝜀, it must be that O(𝜀−1) cancel
out above in those cases.

It is important to understand that this critical-point expansion has little to do with saddle-point
approximation for hypergeometric integrals such as (17) in the limit 𝜀 → ∞, even though it might
look similar. The latter case generically involves a sum over infinitely many critical points on
different sheets of the Riemann surface, each of which is weighted by an exponential factor and a
phase (for an example, see [16, App. A]). By contrast, (76) is much simpler.

The above patterns persist to higher-dimensional cases. Localization can happen on two distinct
sets of points, which we illustrate on the cartoon below:

0

0

∞

∞

F+U = 0

Re(z1)

Re(z3) ∂W/∂z1 = 0

∂W/∂z3 = 0

zeros of dW

poles of dW

(77)

The first set (orange) is given by the zero-dimensional components of the boundary 𝜕𝑀 . These are
the points which lie on the intersection of exactly 𝑚 boundary hypersurfaces 𝐻𝑖, so we can write
𝑝 = 𝐻1 ∩ 𝐻2 ∩ · · · ∩ 𝐻𝑚. Here we have to assume that all boundaries intersect normally, that is,
there are no points where more than 𝑚 hypersurfaces meet. Whenever this is not the case one needs
to resolve such a singularity à la Hironaka [59], in a procedure known as a blow-up (in the context of
Feynman integrals, see, e.g., [35]). In this sense the above figure, being a two-dimensional slice of
an eight-dimensional space, might be misleading, because it cannot possibly show all singularities,
such as the non-normally crossing one at (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (0, 0, 0, 0). After resolving any possible
singularities, the generalization of the formula (72) is given by

〈𝜑− |𝜑+〉𝑑𝑊 =
∑︁

𝑝∈𝜕𝑀
𝑝=𝐻1∩···∩𝐻𝑚

Res𝑝 (𝜑−) Res𝑝 (𝜑+)∏𝑚
𝑖=1 Res𝐻𝑖

(𝑑𝑊) + O(𝜀), (78)

which is written in terms of higher-dimensional residues, meaning that Res𝑝 denotes an integral over
a product of 𝑚 circles surrounding 𝑝, while Res𝐻𝑖

is an integral over a tubular neighborhood of 𝐻𝑖 ,
see [60, Ch. 5.1] for the standard reference. A closed-form formula for higher-order corrections is not
currently known, but will most likely involve a sum over not only maximal-codimension boundary
components (points 𝑝), but also next-to-maximal ones at the subleading order, next-to-next in the
following order, and so on. The fact that the sum in (78) resembles a Feynman diagram expansion is
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not an accident and in fact becomes precise when intersection numbers are computed on M0,𝑛 [55].5
The second set (blue) are simply the critical points determined by 𝑑𝑊 = 0. To state the

generalization of (76) we need to assume that all critical points are isolated and non-degenerate.
Then the formula reads [14]:

〈𝜑− |𝜑+〉𝑑𝑊 = (−1)𝑚
∑︁

𝑞∈{𝑑𝑊 =0}

𝜑− 𝜑+
det

(
𝜕2𝑊/𝜕𝑧𝑎𝜕𝑧𝑏

) ����
𝑧=𝑞

+ O(𝜀−1). (80)

The corrections in 𝜀−1 are in principle all known in terms of the so-called higher residue pairings
[13], see [16, Sec. 2.4] for detailed expressions. This formula is a double-edged sword: on the one
hand, it completely bypasses having to think about the boundary structure of the integration space
and any possible blow-ups, but on the other it requires the knowledge of the positions of critical
points, which might be difficult or impossible to find analytically. It is rather efficient numerically,
which would be particularly useful when combined with finite-field methods.

Note that situations with non-isolated and degenerate points do arise in physical applications at
higher-loop orders, see [27, Sec. 5]. It is an open question how to generalize the formula (80) to
those cases.

Even though both expansions (78) and (80) start at the order 𝜀0, they in general do not agree
(just consider 〈𝜑− |𝜑+〉𝑑𝑊 = 1−𝜀

1+𝜀 ). One can ask under what circumstances they do agree. For example,
extending the arguments given above one can show that when both 𝜑− and 𝜑+ are logarithmic then
their intersection number is independent of 𝜀 [47] and the two expansions must truncate. This is
a sufficient, but not a necessary condition. One reason is that intersection numbers need not be
independent of 𝜀 for the two limits to agree, for example 〈𝜑− |𝜑+〉𝑑𝑊 = 1+𝜀+𝜀2

1+𝜀2 . Another reason is
that twisted forms do not need to be logarithmic for their intersection numbers to be independent of
𝜀, see, e.g., [18, Sec. 4.1] for examples. This is tied to the fact that logarithmicity is not a property
of a cohomology class, but rather a twisted form, which is its specific representative.

The above perturbative expansions become particularly useful when applied to the computation
of the connection matrix 𝛀𝜇, given in (57). While for a generic choice of the basis |𝜑𝑖〉, this
connection can have a complicated 𝜀-dependence, it was noticed in [10] that for a suitable gauge
transformation one can often bring it to the simple polynomial form

𝛀𝜇 = 𝛀(0)
𝜇 + 𝜀𝛀(1)

𝜇 , (81)

where 𝛀(0)
𝜇 and 𝛀(1)

𝜇 themselves are 𝜀-independent. Even more so, in the special case when 𝛀(0)
𝜇

vanishes identically the differential equation for a basis of integrals becomes particularly simple to
solve in practice. The corresponding basis is then called canonical [10]. Note, however, that while

5Using similar arguments one can show that the leading 𝜀 → 0 order of a Feynman integral 〈Γ⊗𝑒𝜀𝑊 |𝜑+〉 is equal, up
to an overall constant, to

𝜀𝑚〈Γ⊗𝑒𝜀𝑊 |𝜑+〉 =
∑︁

𝑝∈𝜕𝑀
𝑝=𝐻1∩···∩𝐻𝑚

𝑣𝑝 (Γ) Res𝑝 (𝜑+)∏𝑚
𝑖=1 Res𝐻𝑖

(𝑑𝑊) + O(𝜀), (79)

where 𝑣𝑝 (Γ) equals to ±1 when Γ touches the boundary point 𝑝 (the sign depends on the orientation) and 0 otherwise.
Therefore if we choose 𝜑− in a “dual” way such that Res𝑝 (𝜑−) = 𝑣𝑝 (Γ) for all 𝑝, then the formula (78) can be used as a
proxy for computing the most divergent part of Feynman integral 〈Γ⊗𝑒𝜀𝑊 |𝜑+〉. This fact becomes important for coaction
properties of Feynman integrals [61].
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(81) is computed with intersection numbers and hence is always a rational function, removing 𝛀(0)
𝜇

might come at a cost of introducing non-rational functions, see, e.g., [62].
If the connection takes the form (81), the formulae (78) and (80) become especially useful

because the expansion truncates and we obtain the full information about the monodromy problem on
the kinematic space in just two steps (notice that (57) has terms of order 𝜀0 and 𝜀1, so they need to be
plugged into the expansions separately). This is particularly striking in the case of the 𝜀−1-expansion,
because it means that a finite-length expansion about critical points, which are typically associated
to the infinite-dimension limit of Feynman integrals, actually computes the full information about
the behavior of the integrals even in four dimensions! For examples, see [16, Sec. 3.3-3.4].

Let us stress that a generic basis of Feynman integrals does not lead to the polynomial form
(81). One can ask if there might exist a set of criteria that would allow us to determine whether a
given basis leads to such a form ahead of time. For example, we can carry on with the above 𝜀- and
𝜀−1-expansions and once we encounter terms of order O(𝜀2) or O(𝜀−1), respectively, we know that
the 𝜀-dependence must be non-polynomial. It would be interesting to study such criteria further.

4. Summary of Open Problems

In this article we reviewed the status of the connections between Feynman integrals and
intersection theory. We use the word status in order to emphasize that this research program is still
in its early stages and much remains to be understood. To this end, we finish with a non-exhaustive
list of open problems (in addition to the ones mentioned throughout the text), which can be freely
pursued by interested readers.

Intersection Numbers in the Relative Twisted Case. As explained in Sec. 2.2, the geometry of
Feynman integrals in dimensional regularization should be really formulated in terms of relative
twisted cohomologies. For example, in the Feynman representation the cohomology would be
defined on the manifold (CP1)𝑚 − {F+U = 0} relative to the hyperplanes ∪𝑚

𝑎=1{𝑧𝑎 = 0,∞} with
𝜀-twisting around the hypersurface {F+U = 0}. As the construction of such cohomology and its
dual are rather simple, the question is really about how to compute their intersection pairing, study
connections to complex Morse theory, etc. Some progress in this area was made in [63] in one
dimension. Note that while in this review we talked about the fully twisted case, the older works
[3–5] mentioned in Sec. 1 deal with the fully untwisted one (in particular, without dimensional
regularization). What we are trying to argue is that much would be learned from a synthesis of the
two approaches.

Mass Shells and Hypersphere Arrangements. Other than the Feynman representation, the
original loop momentum parametrization mentioned in Sec. 2 deserves more attention in the context
of twisted cohomologies. It has an advantage of having a simple physical interpretation: relative
boundaries are mass shells (or lightcones) and the singularity structure is governed by Landau
conditions. Moreover, some compact expressions for logarithmic forms have been introduced
recently in this representation [64–66]. It would also be interesting to further explore the connection
to hypersphere arrangements for twisted cohomologies [22, 23] in this context.
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Analytic Structure of Feynman Integrals. Following the strategy outlined in Sec. 1, one can
attempt to study the analytic structure of Feynman integrals using intersection numbers more
systematically. To be precise, positions of singularities and branch cuts are determined by the
positions and degrees of poles of the intersection matrix 𝛀𝜇. The latter are most likely highly
constrained by the form of the potential𝑊 (e.g., given by Symanzik polynomials) and it would be
interesting to study the extent to which this dictates the singularity structure on the kinematic space.
In a similar spirit one can consider the differential equations (59) for individual Feynman integrals,
whose singularity structure dictates the class of functions they belong to.

Preferred Bases of Feynman Integrals. One of the most pressing problems is how to construct
orthonormal bases from first principles, i.e., without having to invert a matrix as in (60). Interesting
progress on this issue was made recently in [21]. In addition, one can ask whether there exists a
geometric criterion for bases of twisted forms to produce a canonical system of differential equations.
Notice that, unlike individual intersection numbers, for which there are some criteria determining
their 𝜀-dependence, the question about canonical differential equations depends on the collective
behavior of intersection numbers for the whole basis.

Practical Computations. For practical applications there is always a need for optimizing efficiency
of algorithms computing intersection numbers, which most likely will build upon one of the strategies
outlined in Sec. 3. A particularly interesting direction is combining the resolution of singularities
[35] with one of those methods. One issue to comment on is that all the algorithms discussed in
this article are applicable to general classes of hypergeometric integrals, and as such they do not
use the fact that Feynman integrals are not generic integrals, but have an underlying diagrammatic
interpretation. This combinatorial nature of Feynman integrals should be exploited one way or
another.

Intersection Inception. In footnote 4 we speculated that intersection numbers on the moduli
spaces M𝑔,𝑛 will compute 𝑔-loop integrands for 𝑛-point processes in specific quantum field theories
(this is not unlikely given that the closely-related ambitwistor string theory has such an interpretation
[67]). If this was the case, then the resulting intersection number on M𝑔,𝑛 would define a twisted
form on the loop momentum space 𝑀 , and hence the study of the analytic structure on the kinematic
space would involve computing intersection numbers of intersection numbers.
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