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On the Application of Intersection Theory to Feynman Integrals: the Multivariate Case

1. Introduction

Feynman integrals (FIs) are ubiquitous in the computation of multi-loop scattering amplitudes within the
realm of Quantum Field Theory. Typically, at two-loop level, the number of integrals appearing is of the order
O(105). The computation of these integrals is performed in two stages: i) the reduction to a smaller set of
independent integrals, known as Master Integrals (MIs) and ii) the evaluation of these independent MIs. Focusing
on i), it is known that FIs in dimensional regularization are related by integration-by-parts identities (IBPs) [13].
Thanks to IBPs it is possible to build a huge linear system of equations among FIs; solving this system, essentially
via Gauss’ elimination, the vast majority of FIs is expressed as a linear combination of fewer basic integrals -
the above-mentioned MIs [14]. However, as the number of loops, external particles and masses increase, the
algebraic manipulations required become very challenging and demanding.
Recently, a novel framework [1], relying on twisted de Rham co-homology and intersection theory, was proposed
in order to describe relations among FIs. An underlying vector space for the FIs was identified; it was shown that
this vector space is endowed with a scalar product, the so called intersection number. Thanks to these ideas, any
FI can be decomposed into a basis of MIs, resembling the decomposition of a generic vector in the basis of a
vector space. This approach avoided the generation of intermediate, auxiliary expressions, needed for applying
Gauss’ elimination in case of the standard IBP-based approaches. In [2], this idea was extensively applied to a
number of FIs supported on maximal cuts, thus admitting a one-fold integral representation, thanks to the use
of uni-variate intersection numbers. Then this proposal was further extended for generic FIs [3, 4], admitting
multi-fold integral representations, through the evaluation of multi-variate intersection numbers, via a recursive
algorithm proposed in [5]. Evaluation of multivariate intersection numbers in the case of logarithmic differential
forms have been previously addressed in [15–23]. The study of intersection numbers in the context of FIs as
well as their optimization is currently ongoing [24–26] - see [8, 9, 27, 28] for review articles; for the special
application to canonical differential equations [29] see [30, 31].
In these proceedings, we review the evaluation of multivariate intersection numbers, required to obtain a direct
decomposition of any given FI in terms of MIs, as well as the differential equation satisfied by them [32–34].
This contribution is organized as follows. First, in sec. 2, we describe the basic notations of intersection theory,
and we introduce the twisted co-homology group, which is nothing but the above-mentioned vector space for FIs.
Then in sec. 3, we explain in detail the ingredients needed to compute the (multivariate) intersection numbers,
touching upon the 1-variable case (see [6] for more details), then generalizing it to 2-variable and eventually
to 𝑛-variable cases. Then in sec. 4, we show the application of multivariate intersection numbers to obtain the
differential equation obeyed by the maximally cut two-loop double-box MIs. Finally, in sec. 5 we discuss the
conclusions and further outlooks.

2. Integral Decomposition and Intersection Theory

We will consider generalized hypergeometric integrals of the following form

𝐼 =

∫
C (n)
𝑅

𝑢(z) 𝜑 (n)
𝐿

(z), (1)

where: 𝑢(z) = ∏
𝑖 B

𝛾𝑖
𝑖

is a multivalued function; C (n)
𝑅

is an integration domain such that
∏

𝑖 B𝑖 (𝜕C (n)
𝑅

) = 0;
𝜑
(n)
𝐿

(z) is a single-valued differential 𝑛-form. In the context of the FIs discussed in these proceedings, we consider
𝑢(z) = B(z)𝛾 , where B is the so called Baikov polynomial [35]. The exponent 𝛾 reads 𝛾 = (𝑑−ℓ−𝐸−1)/2,
where 𝑑 denotes the space time dimensions, ℓ the number of loops and 𝐸 the number of independent external
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On the Application of Intersection Theory to Feynman Integrals: the Multivariate Case

momenta. 𝜑 (n)
𝐿

(z) has the following form

𝜑
(n)
𝐿

(z) = 𝜑̂
(n)
𝐿

(z) 𝑑𝑛z , 𝜑̂
(n)
𝐿

(z) = 𝑓 (z)
𝑧
𝑎1
1 . . . 𝑧

𝑎𝑛
𝑛

, (2)

where 𝑓 (z) is a rational function and 𝑎𝑖 are integer exponents1.
Using the key property B(𝜕C (n)

𝑅
) = 0 and employing Stokes’ theorem, we infer

0 =

∫
C (n)
𝑅

𝑑 (𝑢 𝜉 (n−1)
𝐿

) =
∫
C (n)
𝑅

(
𝑑𝑢 ∧ 𝜉

(n−1)
𝐿

+ 𝑢 𝑑𝜉
(n−1)
𝐿

)
=

∫
C (n)
𝑅

𝑢

(
𝑑𝑢

𝑢
∧ +𝑑

)
𝜉
(n−1)
𝐿

=

∫
C (n)
𝑅

𝑢 ∇𝜔 𝜉
(n−1)
𝐿

, (3)

where 𝜉
(n−1)
𝐿

is an arbitrary (𝑛 − 1) differential form and

∇𝜔 = 𝑑 + 𝜔∧, 𝜔 = 𝑑 log 𝑢 =

𝑛∑︁
𝑖=1

𝜔̂𝑖 𝑑𝑧𝑖 . (4)

Now, we can define an equivalence class among differential 𝑛-forms 𝜑 (n)
𝐿

, namely

𝜑
(n)
𝐿

∼ 𝜑
(n)
𝐿

+ ∇𝜔𝜉
(n−1)
𝐿

. (5)

since they give the same result upon integration.
In other words, eq. (5) leads to consider the following

𝐻𝑛
𝜔 = {𝑛-forms 𝜑 (n)

𝐿
| ∇𝜔𝜑

(n)
𝐿

= 0} / {∇𝜔𝜉
(n−1) }. (6)

This is known as the twisted cohomology group and its elements are called twisted cocycles. We just mention that
it is possible to introduce a similar structure for the integration contours, the so called twisted homology group,
whose elements are denoted by |C (n)

𝑅
]. Within this framework, the integral 𝐼 in eq. (1) can be identified as a

pairing between ⟨𝜑 (n)
𝐿

| and |C (n)
𝑅

].
𝐼 = ⟨𝜑 (n)

𝐿
|C (n)

𝑅
] . (7)

For us, the study of integrals of the form (1, 7) reduces to the study of the space in eq. (6): it can be considered
the vector space of FIs.
On the other hand, we can also define a dual vector space, the so called dual twisted cohomology group:
(𝐻𝑛

𝜔)∗ = 𝐻𝑛
−𝜔 where ∇−𝜔 now replaces ∇𝜔 in eq. (6); the importance of this auxiliary structure will be clear in

a moment.
We will denote the dimension of the (dual) twisted cohomology group, or, in other words, the number of MIs, by
𝜈; thanks to complex Morse (Picard-Lefschetz) theory, 𝜈 is determined as the number of critical points of the
function log 𝑢(z) [36]

𝜈 = dim
(
𝐻𝑛

±𝜔
)

= nr. solutions of: 𝜔̂𝑖 = 𝜕𝑧𝑖 log 𝑢(z) = 0 1 ≤ 𝑖 ≤ 𝑛.
(8)

We will denote a set of basis and dual basis of differential forms as ⟨𝑒 (n)
𝑖

| ∈ 𝐻𝑛
𝜔 and |ℎ (n)

𝑖
⟩ ∈ 𝐻𝑛

−𝜔 with
𝑖 = 1, . . . , 𝜈 respectively.

1Additionally, we assume that all the poles present in 𝜑
(n)
𝐿

are regulated by 𝑢(z) . When, in the context of FIs, this assumption is often
violated we refer the interested reader to [1–4] for the description of the necessary regularization procedure.
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On the Application of Intersection Theory to Feynman Integrals: the Multivariate Case

Following [1–3], the decomposition of an arbitrary integral in terms of MIs, or, better, of an arbitrary form, say
⟨𝜑 (n)

𝐿
| in terms of master forms ⟨𝑒 (n)

𝑖
| reads

⟨𝜑 (n)
𝐿

| =
𝜈∑︁
𝑖=1

𝑐𝐿,𝑖 ⟨𝑒 (n)𝑖
| . (9)

The key point is that it is possible to introduce a bilinear non-degenerate pairing, the so called intersection
number, denoted by ⟨𝜙 (n)

𝐿
|𝜙 (n)

𝑅
⟩ with ⟨𝜙 (n)

𝐿
| ∈ 𝐻𝑛

𝜔 and |𝜙 (n)
𝑅

⟩ ∈ 𝐻𝑛
−𝜔; it can be thought as the scalar product in

our vector space.
Once the intersection number is introduced, it can be shown that the coefficients in eq. (9) read [1–4]

𝑐𝐿,𝑖 =

𝜈∑︁
𝑗=1

⟨𝜑 (n)
𝐿

|ℎ (n)
𝑗
⟩

(
C−1

)
𝑗𝑖

(10)

with
C𝑖 𝑗 = ⟨𝑒 (n)

𝑖
|ℎ (n)

𝑗
⟩ 1 ≤ 𝑖, 𝑗 ≤ 𝜈. (11)

So the coefficients of the decomposition can be directly achieved expressed in terms of intersection numbers.
We notice that it is possible to decompose a dual form, say |𝜑 (n)

𝑅
⟩ in terms of the dual basis

|𝜑 (n)
𝑅

⟩ =
𝜈∑︁
𝑖=1

𝑐𝑅,𝑖 |ℎ (n)𝑖
⟩ (12)

with

𝑐𝑅,𝑖 =

𝜈∑︁
𝑖=1

(
C−1

)
𝑖 𝑗

⟨𝑒 (n)
𝑗

|𝜑 (n)
𝑅

⟩ . (13)

Even if eqs. (12, 13) do not have a direct physical interpretation they will be useful in our construction.
The main goal of the next section in this contribution is to review the evaluation of the intersection number in the
multivariate case.

3. Multivariate Intersection Numbers

As anticipated above, we discuss here a recursive algorithm for the evaluation of the multivariate intersection
numbers introduced in [5], and applied, for the first time, to FIs in [3, 4]. Loosely speaking the idea of the
recursive method consists in assuming (𝑛−1)-variable intersection numbers known and computable, and then
expressing the 𝑛-variable intersection numbers in terms of those. Here, we will first discuss the univariate
intersection number and then show explicitly how we can use this knowledge to evaluate a 2-variable intersection
number. Eventually, this can be generalized to obtain the expression of a 𝑛-variable intersection number.

3.1 1-variable intersection number

Let us consider the integral in eq. (1) depending on 1 variable, dubbed as 𝑧1, namely

𝐼 =

∫
C (1)
𝑅

𝑢(𝑧1) 𝜑 (1)
𝐿

(𝑧1) = ⟨𝜑 (1)
𝐿

|C (1)
𝑅

] . (14)

Rewriting eq. (3) for one variable, we get

0 =

∫
C (1)
𝑅

𝑑𝑧1 (𝑢 𝜉) =
∫
C (1)
𝑅

𝑢
(
𝑑𝑧1 𝜉 + 𝑑𝑧1 log 𝑢 ∧ 𝜉

)
=

∫
C (1)
𝑅

𝑢 ∇𝜔1 𝜉 (15)

4
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On the Application of Intersection Theory to Feynman Integrals: the Multivariate Case

where
∇𝜔1 = 𝑑𝑧1 + 𝜔1∧ , 𝜔1 = 𝑑𝑧1 log 𝑢 , 𝜉 any 0−form . (16)

So the equivalence relation among differential 1-forms reads

𝜑
(1)
𝐿

∼ 𝜑
(1)
𝐿

+ ∇𝜔1𝜉 (17)

since they give the same result upon integration, for any 0-form 𝜉.2
One might imagine defining the univariate intersection pairing ⟨𝜑 (1)

𝐿
|𝜑 (1)

𝑅
⟩ as

⟨𝜑 (1)
𝐿

|𝜑 (1)
𝑅

⟩ ?
=

1
2𝜋𝑖

∫
𝑋1

𝜑
(1)
𝐿

∧ 𝜑
(1)
𝑅

. (18)

As discussed in [8], eq. (18) is ill defined; it can be seen as a “ 0/0 problem ”, since, on the one hand, 𝜑 (1)
𝐿

∧ 𝜑
(1)
𝑅

vanishes at the integrand level (being 𝑑𝑧1 ∧ 𝑑𝑧1 = 0) and, on the other hand the poles in the differential forms
yield a divergent integral. The solution consists in considering the compact supported version of 𝜑 (1)

𝐿
laying in

the same equivalence class, namely 𝜄𝜔1

(
𝜑
(1)
𝐿

)
[16]. So eq. (18) becomes

⟨𝜑 (1)
𝐿

|𝜑 (1)
𝑅

⟩ = 1
2𝜋𝑖

∫
𝑋1

𝜄𝜔1

(
𝜑
(1)
𝐿

)
∧ 𝜑

(1)
𝑅

(19)

The explicit realization of the regularization is

𝜄𝜔1

(
𝜑
(1)
𝐿

)
= 𝜑

(1)
𝐿

−
∑︁

𝑝∈P𝜔1

∇𝜔1

(
ℎ𝑝 (𝑧1, 𝑧1)𝜓 (𝑝)

𝑖

)
; (20)

ℎ𝑝 (𝑧1, 𝑧1) is a complex bump function, see Fig. (1); 𝜓 (𝑝)
𝑖

is the holomorphic local solution of the differential
equation

∇𝜔1𝜓
(𝑝)
𝑖

= 𝜑
(1)
𝐿

, (21)

around every pole 𝑝 of 𝜔1 (including ∞), whose set is denoted by P𝜔1 . Thanks to Stokes’ theorem it can be

Figure 1: The bump functions ℎ𝑝 (𝑧1𝑧1); they are equal to 1 in the dark grey area, they decay smoothly in the light grey are
and they vanish outside – white area.

shown that eq. (19) localizes to

⟨𝜑 (1)
𝐿

|𝜑 (1)
𝑅

⟩ =
∑︁

𝑝∈P𝜔1

Res𝑧1=𝑝

(
𝜓
(𝑝)
𝑖

𝜑
(1)
𝑅

)
. (22)

2For ease of notation, from now on we will denote 0-forms as 𝜉 = 𝜉 (0) .
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3.2 2-variable intersection number

Now, we consider the integral in eq. (1) depending on two integration variables {𝑧1, 𝑧2},

𝐼 =
∫
C (2)
𝑅

𝑢(𝑧1, 𝑧2) 𝜑 (2)
𝐿

(𝑧1, 𝑧2) = ⟨𝜑 (2)
𝐿

|C (2)
𝑅

], (23)

where 2 = {1, 2}, 𝜑 (2)
𝐿

is a differential 2-form depending in 𝑧1 and 𝑧2 and the C (2)
𝑅

denotes a two-dimensional
integration region embedded in an ambient space 𝑋 , having complex dimension 2. Now, we consider the fibration
of the space 𝑋 into one-dimensional spaces 𝑋2 ∋ 𝑧2 and 𝑋1 ∋ 𝑧1. 3 The former is dubbed as outer space, while
the latter is the inner space. Eq. (8) allows us to determine 𝜈1, the number of (dual) basis elements in the inner
space. Their explicit choices are denoted by ⟨𝑒 (1)

𝑖
| and |ℎ (1)

𝑖
⟩ for 𝑖 = 1, . . . , 𝜈1 for the basis and dual basis

respectively. Since the 1−variable intersection numbers are known at this stage, we can write the following
decompositions

⟨𝜑 (2)
𝐿

| =

𝜈1∑︁
𝑖=1

⟨𝑒 (1)
𝑖

| ∧ ⟨𝜑 (2)
𝐿,𝑖

| , (24)

|𝜑 (2)
𝑅

⟩ =

𝜈1∑︁
𝑖=1

|ℎ (1)
𝑖

⟩ ∧ |𝜑 (2)
𝑅,𝑖

⟩ ; (25)

⟨𝜑 (2)
𝐿,𝑖

| and |𝜑 (2)
𝑅,𝑖

⟩ can be considered as the coefficients of the decompositions, and, in general will depend on the
variable 𝑧2 (but not on 𝑧1). Benefiting from eqs. (24, 25), one might imagine defining the 2−variable intersection
number as

⟨𝜑 (2)
𝐿

|𝜑 (2)
𝑅

⟩ ?
=

1
(2𝜋𝑖)2

∫
𝑋

𝜑
(2)
𝐿

∧ 𝜑
(2)
𝑅

?
=

𝜈1∑︁
𝑖, 𝑗=1

1
2𝜋𝑖

∫
𝑋2

𝜑
(2)
𝐿,𝑖

∧ 𝜑
(2)
𝑅, 𝑗

× 1
2𝜋𝑖

∫
𝑋1

𝜄𝜔1

(
𝑒
(1)
𝑖

)
∧ ℎ

(1)
𝑗

.

(26)

Once again eq. (26) needs to be regularized. Denoting by 𝜄𝛀(2)

(
𝜑
(2)
𝐿,𝑖

)
the regularized version4 of 𝜑 (2)

𝐿,𝑖
, eq. (26)

becomes

⟨𝜑 (2)
𝐿

|𝜑 (2)
𝑅

⟩ =
𝜈1∑︁

𝑖, 𝑗=1

1
2𝜋𝑖

∫
𝑋2

𝜄𝛀(2)

(
𝜑
(2)
𝐿,𝑖

)
∧ 𝜑

(2)
𝑅, 𝑗

× 1
2𝜋𝑖

∫
𝑋1

𝜄𝜔1

(
𝑒
(1)
𝑖

)
∧ ℎ

(1)
𝑗

. (27)

The innermost integral is nothing but 1−variable intersection number among (dual) inner basis elements. We
will denote (

C(1)
)
𝑖 𝑗
= ⟨𝑒 (1)

𝑖
|ℎ (1)

𝑗
⟩ (see also eq. (11)) . (28)

Therefore we have

⟨𝜑 (2)
𝐿

|𝜑 (2)
𝑅

⟩ =
𝜈1∑︁

𝑖, 𝑗=1

1
2𝜋𝑖

∫
𝑋2

𝜄𝛀(2)

(
𝜑
(2)
𝐿,𝑖

)
∧ 𝜑

(2)
𝑅, 𝑗

×
(
C(1)

)
𝑖 𝑗

. (29)

In order to build 𝜄𝛀(2)

(
𝜑
(2)
𝐿,𝑖

)
explicitly, we have first to generalize eq. (15) in the case of an integral over (𝑧1, 𝑧2).

Let us reconsider eq. (23) together with eq. (24)∫
C (2)
𝑅

𝑢 𝜑
(2)
𝐿

=

𝜈1∑︁
𝑖=1

∫
C (2)
𝑅

𝜑
(2)
𝐿,𝑖

∫
C (1)
𝑅

𝑢𝑒
(1)
𝑖

=

𝜈1∑︁
𝑖=1

∫
C (2)
𝑅

𝜑
(2)
𝐿,𝑖

𝑢𝑖 (30)

3This fibration does not necessarily signify that 𝑋 = 𝑋2 × 𝑋1, since 𝑋1 = 𝑋1 (𝑧1, 𝑧2) can depend on 𝑧2 (but 𝑋2 does not depend on 𝑧1);
for more detail see [5, 8] and references therein.

4The notation will be clear in a moment.
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where

𝑢𝑖 =

∫
C (1)
𝑅

𝑢𝑒
(1)
𝑖

. (31)

So eq. (15) becomes

0 =

𝜈1∑︁
𝑖=1

∫
C (2)
𝑅

𝑑𝑧2 (𝑢𝑖 𝜉𝑖) =
𝜈1∑︁
𝑖=1

∫
C (2)
𝑅

(
𝑢𝑖 𝑑𝑧2𝜉𝑖 + 𝑑𝑧2𝑢𝑖 ∧ 𝜉𝑖

)
=

𝜈1∑︁
𝑖, 𝑗=1

∫
C (2)
𝑅

𝑢 𝑗

(
𝑑𝑧2𝛿 𝑗𝑖 +𝛀(2)

𝑖 𝑗
∧
)
𝜉𝑖

=

𝜈1∑︁
𝑖, 𝑗=1

∫
C (2)
𝑅

𝑢 𝑗

(
∇𝛀(2)

)
𝑗𝑖
𝜉𝑖 ,

(32)

where (
∇𝛀(2)

)
𝑗𝑖
= 𝑑𝑧2𝛿 𝑗𝑖 +𝛀(2)

𝑖 𝑗
∧ (33)

and 𝛀(2)
𝑖 𝑗

is implicitly defined by

𝑑𝑧2𝑢𝑖 = 𝛀(2)
𝑖 𝑗

𝑢 𝑗 . (34)

Recalling the explicit expression (31), we infer that 𝛀(2)
𝑖 𝑗

is nothing but the matrix controlling the system of
differential equations fulfilled by the internal bases elements 𝑒

(1)
𝑖

; its elements can be expressed in terms of
univariate intersection numbers

𝛀(2)
𝑖 𝑗

= ⟨(𝜕𝑧2 + 𝜔2) 𝑒 (1)𝑖
|ℎ (1)

𝑘
⟩

(
C−1

(1)

)
𝑘 𝑗

,
(
C(1)

)
𝑘 𝑗

= ⟨𝑒 (1)
𝑘

|ℎ (1)
𝑗
⟩. (35)

Therefore the equivalence relations for 𝜑 (2)
𝐿,𝑖

are given by

𝜑
(2)
𝐿,𝑖

∼ 𝜑
(2)
𝐿,𝑖

+
(
∇𝛀(2)

)
𝑖 𝑗

𝜉 𝑗 . (36)

Having understood how to build equivalence relations for 𝜑 (2)
𝐿,𝑖

, mimicking eq. (20), we have

𝜄𝛀(2)

(
𝜑
(2)
𝐿,𝑖

)
= 𝜑

(2)
𝐿,𝑖

−
∑︁

𝑞∈P𝛀(2)

∇𝛀(2) 𝑖 𝑗

(
ℎ𝑞 (𝑧2, 𝑧2)𝜓 (𝑞)

𝑗

)
; (37)

now 𝜓
(𝑞)
𝑗

is the local holomorphic solution of the system of differential equation

∇𝛀(2) 𝑖 𝑗 𝜓
(𝑞)
𝑗

= 𝜑
(2)
𝐿,𝑖

(38)

around every pole 𝑞 of 𝛀(2) (including ∞), whose set is denoted by P𝛀(2) .
Given eq. (29) and the explicit expression of eq. (37), Stokes’ theorem leads to

⟨𝜑 (2)
𝐿

|𝜑 (2)
𝑅

⟩ =
𝜈1∑︁

𝑖, 𝑗=1

∑︁
𝑞∈P𝛀(2)

Res𝑧2=𝑞

[
𝜓
(𝑞)
𝑖

𝜑
(2)
𝑅, 𝑗

×
(
C(1)

)
𝑖 𝑗

]
(39)
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3.3 𝑛−variable intersection number

Eq. (39) can be generalized to 𝑛−variables intersection numbers, assuming (𝑛 − 1)−variables intersection
are computable and known; the explicit expression reads

⟨𝜑 (n)
𝐿

|𝜑 (n)
𝑅

⟩ =
𝜈𝑛−1∑︁
𝑖, 𝑗=1

∑︁
𝑞∈P𝛀(𝑛−1)

Res𝑧𝑛=𝑞
[
𝜓
(𝑞)
𝑖

(
C(n−1)

)
𝑖 𝑗

𝜑
(𝑛)
𝑅, 𝑗

]
(40)

where (
C(n−1)

)
𝑖 𝑗

= ⟨𝑒 (n−1)
𝑖

|ℎ (n−1)
𝑗

⟩ (41)

𝜑
(𝑛)
𝐿,𝑖

= ⟨𝜑 (n)
𝐿

|ℎ (n−1)
𝑗

⟩
(
C−1

(n−1)

)
𝑗𝑖

(42)

𝜑
(𝑛)
𝑅, 𝑗

=

(
C−1

(n−1)

)
𝑗𝑘
⟨𝑒 (n−1)

𝑘
|𝜑 (n)

𝑅
⟩ (43)

and 𝜓
𝑞

𝑖
the local solution of

∇𝛀(𝑛−1) 𝑖 𝑗𝜓
(𝑞)
𝑗

= 𝜑
(𝑛)
𝐿,𝑖

(44)

with
𝛀(𝑛)

𝑖 𝑗
= ⟨(𝜕𝑧𝑛 + 𝜔𝑛)𝑒 (n−1)

𝑖
|ℎ (n−1)

𝑘
⟩
(
C−1

(n−1)

)
𝑘 𝑗

(45)

around the set of poles P𝛀(𝑛−1) of 𝛀(𝑛−1) (including ∞).

4. Massless Double-Box on the Maximal Cut

We present in this section the intersection numbers required for the derivation of the system of differential
equations fulfilled by the MIs of the massless double-box integral family, depicted in Fig. (2), on the maximal cut.
For concreteness we will consider differentiation with respect to the invariant 𝑠.

Figure 2: Massless double-box integral family; the external momenta are such that 𝑝2
1 = 𝑝2

2 = 𝑝2
3 = 𝑝2

4 = 0 (with
𝑝4 = −𝑝1 − 𝑝2 − 𝑝3); the kinematic invariants read: 𝑠 = (𝑝1 + 𝑝2)2 and 𝑡 = (𝑝2 + 𝑝3)2.

The denominators are chosen as

𝐷1 = 𝑘2
1 𝐷2 = (𝑘1 − 𝑝1)2 𝐷3 = (𝑘1 − 𝑝1 − 𝑝2)2 𝐷4 = (𝑘1 − 𝑘2)2

𝐷5 = (𝑘2 − 𝑝1 − 𝑝2)2 𝐷6 = (𝑘2 − 𝑝1 − 𝑝2 − 𝑝3)2 𝐷7 = 𝑘2
2

(46)
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while the ISPs read
𝐷8 ≡ 𝑧1 = (𝑘2 − 𝑝1)2 𝐷9 ≡ 𝑧2 = (𝑘1 − 𝑝1 − 𝑝2 − 𝑝3)2. (47)

On the maximal cut we are just left with an integral over (𝑧1, 𝑧2), and a given FI within the integral family is5

IK
𝑎1 , ..., 𝑎7; 𝑎8 , 𝑎9

= K I𝑎1 , ..., 𝑎7; 𝑎8 , 𝑎9 (48)

with
K = (−𝑠 𝑡 (𝑠 + 𝑡))

4−𝑑
2 . (49)

In the language of intersection theory we have

I𝑎1 , ..., 𝑎7; 𝑎8 , 𝑎9 =

∫
C (2)
𝑅

𝑢 𝜑 (2) (50)

with
𝑢 = B 𝑑−6

2 , B = 𝑠𝑧1𝑧2 (𝑠 (−𝑡 + 𝑧1 + 𝑧2) + 𝑧1𝑧2) . (51)

Once the matrix of the system 𝜕𝑠 I = 𝛀I is known, the one for the system 𝜕𝑠 IK = AIK follows trivially; the
explicit expression is

A = 𝛀 + 𝜕𝑠 logK I. (52)

therefore we will focus on integrals of the form of eq. (50).
The counting of the critical points (see eq. (8)) reveals that there are 𝜈 = 2 MIs. They can be chosen as

J1 = I1, ..., 1; 0, 0 = ⟨1|C], J2 = I1, ..., 1;−1, 0 = ⟨𝑧1 |C]; (53)

and the corresponding differential forms read

⟨𝑒 (2)1 | = ⟨1|, ⟨𝑒 (2)2 | = ⟨𝑧1 |. (54)

We focus on the system of differential equation obeyed by the latter and, with respect to the invariant 𝑠. In order
to do this, we identify the following differential forms

⟨Φ(2)
1 | = 𝜕𝑠 ⟨𝑒 (2)1 | = ⟨(𝜕𝑠 + 𝜎) 𝑒 (2)1 | (55)

⟨Φ(2)
2 | = 𝜕𝑠 ⟨𝑒 (2)2 | = ⟨(𝜕𝑠 + 𝜎) 𝑒 (2)2 | (56)

with
𝜎 = 𝑑𝑠 log 𝑢 =

(𝑑 − 6) (2𝑠 (𝑡 − 𝑧1 − 𝑧2) − 𝑧1𝑧2)
2𝑠 (𝑠 (𝑡 − 𝑧1 − 𝑧2) − 𝑧1𝑧2)

. (57)

We can write the matrix 𝛀 in terms of intersection numbers (cf. eq. (10))

𝛀 = F C−1 (58)

with
F𝑖 𝑗 = ⟨Φ(2)

𝑖
|𝑒 (2)

𝑗
⟩ C𝑖 𝑗 = ⟨𝑒 (2)

𝑖
|𝑒 (2)

𝑗
⟩. (59)

Finally, in order to compute the intersection numbers in (𝑧1, 𝑧2), we have to specify the number of master forms,
namely 𝜈1, and their explicit expression, say ⟨𝑒 (1)

𝑖
|𝑖=1, ..., 𝜈1 and |ℎ (1)

𝑖
⟩𝑖=1, ..., 𝜈1 with respect to the inner variable,

5We omit irrelevant 𝑑-dependent prefactors for our discussion.
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chosen to be 𝑧1.
We find 𝜈1 = 1, which amounts to the number of solutions of the equation 𝜔1 = 0, and we choose

⟨𝑒 (1) | = ⟨1/𝑧1 | , |ℎ (1)⟩ = |1/𝑧1⟩ . (60)

The explicit intersection numbers read

C11 =
𝑠2 (

−3(3𝑑 − 20) (3𝑑 − 16)𝑠2 − 24(2(𝑑 − 12)𝑑 + 71)𝑠𝑡 − 4(5(𝑑 − 12)𝑑 + 177)𝑡2 )
16(𝑑 − 7)2 (𝑑 − 5)2

C12 =
𝑠2 (

3(3𝑑 − 22) (3𝑑 − 20) (3𝑑 − 16)𝑠3 + 6(3𝑑 − 20) (𝑑 (9𝑑 − 113) + 346)𝑠2𝑡 + 8(𝑑 (11(𝑑 − 19)𝑑 + 1313) − 2724)𝑠𝑡2 + 8(𝑑 − 7) (𝑑 − 6) (𝑑 − 5)𝑡3 )
32(𝑑 − 8) (𝑑 − 7)2 (𝑑 − 5)2

C21 =
𝑠2 (

3(3𝑑 − 20) (3𝑑 − 16) (3𝑑 − 14)𝑠3 + 6(3𝑑 − 16) (𝑑 (9𝑑 − 103) + 286)𝑠2𝑡 + 8(𝑑 (11(𝑑 − 17)𝑑 + 1049) − 1944)𝑠𝑡2 + 8(𝑑 − 7) (𝑑 − 6) (𝑑 − 5)𝑡3 )
32(𝑑 − 7)2 (𝑑 − 5)2 (𝑑 − 4)

C22 =
𝑠3 (

−3(3𝑑 − 22) (3𝑑 − 20) (3𝑑 − 16) (3𝑑 − 14)𝑠3 − 12(3𝑑 − 20) (3𝑑 − 16) (5(𝑑 − 12)𝑑 + 172)𝑠2𝑡 − 24(3(𝑑 − 12)𝑑 + 104) (5(𝑑 − 12)𝑑 + 178)𝑠𝑡2 )
64(𝑑 − 8) (𝑑 − 7)2 (𝑑 − 5)2 (𝑑 − 4)

− 𝑠3𝑡3 (𝑑 − 6)2

(𝑑 − 8) (𝑑 − 7) (𝑑 − 5) (𝑑 − 4) ;
(61)

and

F11 =
𝑠
(
−3(3𝑑 − 20) (3𝑑 − 16) (5𝑑 − 26)𝑠2 + 12(𝑑 ( (294 − 17𝑑)𝑑 − 1683) + 3192)𝑠𝑡 + 4(𝑑 ( (296 − 17𝑑)𝑑 − 1705) + 3252)𝑡2 )

32(𝑑 − 7)2 (𝑑 − 5)2

F12 =
𝑠
(
3(3𝑑 − 22) (3𝑑 − 20) (3𝑑 − 16) (5𝑑 − 26)𝑠3 + 6(3𝑑 − 20) (𝑑 (𝑑 (39𝑑 − 695) + 4078) − 7896)𝑠2𝑡

)
64(𝑑 − 8) (𝑑 − 7)2 (𝑑 − 5)2

+
𝑠
(
(𝑑 (𝑑 (𝑑 (40𝑑 − 973) + 8824) − 35358) + 52824)𝑠𝑡2 + (𝑑 − 7) (𝑑 − 6) (𝑑 − 5) (3𝑑 − 16)𝑡3 )

8(𝑑 − 8) (𝑑 − 7)2 (𝑑 − 5)2

F21 =
𝑠
(
3(3𝑑 − 20) (3𝑑 − 16) (3𝑑 − 14) (5𝑑 − 24)𝑠3 + 6(3𝑑 − 16) (𝑑 (13𝑑 (3𝑑 − 49) + 3422) − 6064)𝑠2𝑡

)
64(𝑑 − 7)2 (𝑑 − 5)2 (𝑑 − 4)

+
𝑠
(
(𝑑 (𝑑 (𝑑 (40𝑑 − 881) + 7234) − 26268) + 35616)𝑠𝑡2 + (𝑑 − 7) (𝑑 − 6) (𝑑 − 5) (3𝑑 − 16)𝑡3 )

8(𝑑 − 7)2 (𝑑 − 5)2 (𝑑 − 4)

F22 =
𝑠2 (

−3(3𝑑 − 22) (3𝑑 − 20) (3𝑑 − 16) (3𝑑 − 14) (5𝑑 − 24)𝑠3 − 12(3𝑑 − 20) (3𝑑 − 16) (𝑑 (𝑑 (22𝑑 − 371) + 2042) − 3688)𝑠2𝑡
)

128(𝑑 − 8) (𝑑 − 7)2 (𝑑 − 5)2 (𝑑 − 4)

−
𝑠2 (

3(𝑑 (𝑑 (3𝑑 (𝑑 (19𝑑 − 550) + 6330) − 108644) + 309072) − 349888)𝑠𝑡2 + 2(𝑑 − 7) (𝑑 − 6) (𝑑 − 5) (𝑑 (13𝑑 − 144) + 400)𝑡3 )
16(𝑑 − 8) (𝑑 − 7)2 (𝑑 − 5)2 (𝑑 − 4)

.

(62)

Therefore eq. (58) leads to

𝛀 =

( 2(𝑑−6)𝑠+(3𝑑−16)𝑡
2𝑠 (𝑠+𝑡) − 𝑑−4

𝑠 (𝑠+𝑡)
− (𝑑−4)𝑡

2(𝑠+𝑡)
(5𝑑−24)𝑠+(3𝑑−16)𝑡

2𝑠 (𝑠+𝑡)

)
(63)

and, finally, eq. (52) yields

A =

( (𝑑−6)𝑡−2𝑠
𝑠 (𝑠+𝑡) − 𝑑−4

𝑠 (𝑠+𝑡)
− (𝑑−4)𝑡

2(𝑠+𝑡)
(3𝑑−16)𝑠+2(𝑑−6)𝑡

2𝑠 (𝑠+𝑡)

)
. (64)

This is in agreement with LiteRed [37]

5. Conclusion

In these proceedings we reviewed the novel method [1–4] for the decomposition of FIs onto a basis of MIs
within the realm of twisted de Rham (co)-homology and intersection theory. The required projection formulas
(10, 13) are expressed in terms of intersection numbers. We described in details the evaluation of the multivariate
intersection numbers following a recursive algorithm. Specifically, we showed how the concepts of the evaluation
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of univariate intersection numbers can be used to obtain the multivariate intersection numbers, recursively. We
applied these ideas to derive the system of differential equations satisfied by the MIs appearing in the maximally
cut massless double-box integral family.
Let us mention that, despite the success of the application of the method reviewed here to physically relevant
examples [1–4], there is still much more to be said on the interplay between intersection theory and FIs. Recent
developments include: development and optimization of the multivariate algorithm [24, 38], the application of
the framework of twisted relative (co)-homology [25, 26, 39], the study of the 𝜖−factorized form of differential
equations (even beyond polylogarithms) [10, 30, 31, 40] and the diagrammatic coaction for FIs [41, 42] just to
mention a few.
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