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1. Introduction

|Δ𝑐 | = |Δ𝑢 | = 1 transitions proceed via 1-loop penguin diagrams with down-type quarks in the
loop. A strong Glashow-Iliopoulos-Maiani (GIM) cancellation and Cabbibo-Kobayashi-Maskawa
(CKM) suppression then lead to tiny Standard Model (SM) contributions to rare charm decays [1].
Thus, 𝑐 → 𝑢ℓ+ℓ− induced decays are highly sensitive to physics Beyond the Standard Model
(BSM). On the other hand, sufficient theoretical control on decay amplitudes is absent in rare
charm decays due to overwhelming resonance pollution and a poor convergence of the heavy quark
expansion [2]. Therefore, null test observables are inevitable for New Physics (NP) searches in
𝑐 → 𝑢ℓ+ℓ− transitions, even more compelling than in the down-type counterparts 𝑏 → 𝑠(𝑑)ℓ+ℓ−,
where null tests already are a crucial part of ongoing and future precision programs, see Refs. [3, 4].

The experimental and theoretical status of rare charm decays is presented in Ref. [5] and
increasing and ongoing research interest [1, 2, 5–23] manifests the importance of progress in the
field.

The plan of this talk is as follows. We present the effective field theory framework, the necessity
to define null test observables in rare charm decays and give a brief overview of available upper
limits in Sec. 2. In Sec. 3 we focus on the charmed baryon decay mode Λ𝑐 → 𝑝ℓ+ℓ− and present
angular observables, CP–asymmetries and lepton universality ratios. Sec. 4 focuses on possibilities
with dineutrino modes. We conclude in Sec. 5.

2. Effective field theory framework and null test strategies

Rare 𝑐 → 𝑢ℓ+ℓ− and 𝑐 → 𝑢𝜈𝜈̄ processes are described by the effective Hamiltonian at the charm
mass scale 𝜇𝑐 ,

Heff ⊃ −4𝐺𝐹√
2
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[ ∑︁
𝑘=7,9,10,𝑆,𝑃

(
𝐶𝑘𝑂𝑘 + 𝐶 ′

𝑘𝑂
′
𝑘

)
+

∑︁
𝑘=𝑇 ,𝑇 5

𝐶𝑘𝑂𝑘 +
∑︁
𝑖 𝑗

(
𝐶
𝑖 𝑗

𝐿
𝑄

𝑖 𝑗

𝐿
+ 𝐶𝑖 𝑗

𝑅
𝑄

𝑖 𝑗

𝑅

) ]
, (1)

where the dimension 6 operators are defined as follows:

𝑂7 =
𝑚𝑐

𝑒
(𝑢𝐿𝜎𝜇𝜈𝑐𝑅)𝐹𝜇𝜈 , 𝑂 ′

7 =
𝑚𝑐

𝑒
(𝑢𝑅𝜎𝜇𝜈𝑐𝐿)𝐹𝜇𝜈 ,

𝑂9 = (𝑢𝐿𝛾𝜇𝑐𝐿) (ℓ𝛾𝜇ℓ) , 𝑂 ′
9 = (𝑢𝑅𝛾𝜇𝑐𝑅) (ℓ𝛾𝜇ℓ) ,

𝑂10 = (𝑢𝐿𝛾𝜇𝑐𝐿) (ℓ𝛾𝜇𝛾5ℓ) , 𝑂 ′
10 = (𝑢𝑅𝛾𝜇𝑐𝑅) (ℓ𝛾𝜇𝛾5ℓ) ,

𝑂𝑆 = (𝑢𝐿𝑐𝑅) (ℓℓ) , 𝑂 ′
𝑆 = (𝑢𝑅𝑐𝐿) (ℓℓ) ,

𝑂𝑃 = (𝑢𝐿𝑐𝑅) (ℓ𝛾5ℓ) , 𝑂 ′
𝑃 = (𝑢𝑅𝑐𝐿) (ℓ𝛾5ℓ) ,

𝑂𝑇 =
1
2
(𝑢𝜎𝜇𝜈𝑐) (ℓ𝜎𝜇𝜈ℓ) , 𝑂𝑇 5 =

1
2
(𝑢𝜎𝜇𝜈𝑐) (ℓ𝜎𝜇𝜈𝛾5ℓ) ,

𝑄
𝑖 𝑗

𝐿
= (𝑢𝐿𝛾𝜇𝑐𝐿) (𝜈̄𝐿 𝑗𝛾

𝜇𝜈𝐿𝑖) , 𝑄
𝑖 𝑗

𝑅
= (𝑢𝑅𝛾𝜇𝑐𝑅) (𝜈̄𝐿 𝑗𝛾

𝜇𝜈𝐿𝑖) ,

(2)

with the electromagnetic field strength tensor 𝐹𝜇𝜈 and 𝜎𝜇𝜈 = 𝑖
2 [𝛾𝜇, 𝛾𝜈]. For the dineutrino

operators 𝑄𝑖 𝑗

𝐿 (𝑅) the indices 𝑖 𝑗 count the neutrino flavors explicitly, while we omit flavor indices
for the charged leptons, as we refer to the muon case 𝑖 𝑗 = 𝜇𝜇, unless otherwise stated. Note that
primed operators are obtained via 𝐿 ↔ 𝑅.
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In order to predict branching ratios of 𝑐 → 𝑢ℓ+ℓ− induced modes, one has to split the hadronic
part from the short distance effects, encoded in the Wilson coefficients 𝐶𝑘 in Eq. (1). Turning
to predictions of SM contributions we observe that the severe GIM cancellation leads to tiny
effects, reflected in small SM Wilson coefficients. In fact, all contributions, which originate solely
from four quark operators at the 𝑊 mass scale, can be accounted for by effective 𝑞2 dependent
coefficients𝐶eff

7 (𝑞2), 𝐶eff
9 (𝑞2), where 𝑞2 is the dilepton invariant mass squared. For details we refer

to Refs. [10, 24, 25]. The real and imaginary parts of 𝐶eff
7 (𝑞2), 𝐶eff

9 (𝑞2) are shown in the upper row
of Fig. 1.
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Figure 1: Real and imaginary parts of the perturbative contributions 𝐶eff
7 (𝑞2) (upper left plot), 𝐶eff

9 (𝑞2)
(upper right plot) and resonant contribution as in Eq. (3) (lower plot). The figure is taken from App. A in
Ref. [23], which we refer to for more details.

With 𝐶7 at the permille level, 𝐶9 ∼ O(%) for most of the kinematic region (𝑞2 > 0.1) and all
other Wilson coefficients in Eq. (1) remaining zero, expected rates of rare charm decays stay beyond
current experimental reach. However, |Δ𝑐 | = |Δ𝑢 | = 1 transitions receive further contributions
from intermediate resonances. These can be parametrized in terms of a sum of Breit-Wigner
distributions fit to data. These resonance effects are then added as 𝑞2 dependent Wilson coefficients
𝐶𝑅

9 (𝑞2), 𝐶𝑅
𝑃
(𝑞2) and are the main source of uncertainty due to unknown strong phases entering

the parametrization. We exemplarily show the real and imaginary part of 𝐶𝑅
9 (𝑞2) for the decay

mode Λ𝑐 → 𝑝𝜇+𝜇− in the lower plot of Fig. 1 and observe a clear dominance with respect to the
perturbative contributions.

The phenomenological parametrization includes the spin-1 resonances 𝑀 = 𝜌(770), 𝜔(782),
𝜙(1020) and relates the 𝜌 and 𝜔 contributions via an isospin relation,

3



P
o
S
(
C
H
A
R
M
2
0
2
0
)
0
5
1

Null test searches for BSM physics with rare charm decays Marcel Golz

𝐶𝑅
9 (𝑞2) = 𝑎𝜔𝑒i𝛿𝜔

(
1

𝑞2 − 𝑚2
𝜔 + i𝑚𝜔Γ𝜔

− 3
𝑞2 − 𝑚2

𝜌 + i𝑚𝜌Γ𝜌

)
+

𝑎𝜙𝑒
i𝛿𝜙

𝑞2 − 𝑚2
𝜙
+ i𝑚𝜙Γ𝜙

, (3)

where the strong phases 𝛿𝜔 , 𝛿𝜙 are varied independently from −𝜋 to 𝜋, whereas the moduli 𝑎𝜔 , 𝑎𝜙
are fixed via

B𝐶𝑅
9
(Λ𝑐 → 𝑝𝜇+𝜇−) = B(Λ𝑐 → 𝑝𝑀)B(𝑀 → 𝜇+𝜇−) , with 𝑀 = 𝜔, 𝜙 . (4)

Input on branching ratios, masses and decay widths is taken from the PDG [26]. One finds
𝑎𝜔 = 0.065 ± 0.016 and 𝑎𝜙 = 0.110 ± 0.008 for the Λ𝑐 → 𝑝𝜇+𝜇− case, however the same
procedure can be applied to other rare charm baryon modes [23], 𝐷 → 𝑃ℓ+ℓ− modes [15] and
𝐷 → 𝑃1𝑃2ℓ

+ℓ− modes [14].
In Fig. 2 the dominance of resonance over perturbative contributions is evident. We exemplarily

show the 𝑞2 differential branching ratios for 𝐷+
𝑠 → 𝐾+𝜇+𝜇− (left) and Λ𝑐 → 𝑝𝜇+𝜇− (right) in

the SM. Here, the orange bands correspond to resonance contributions via 𝐶𝑅
9 (𝑃) (𝑞

2), where the
main source of uncertainty is due to varying strong phases independently from −𝜋 to 𝜋. The blue
bands show the perturbative contribution obtained via 𝐶eff

7 (9) (𝑞
2) and varying the charm mass scale

𝜇𝑐 . Both bands include form factor uncertainties from Lattice QCD results in Refs. [27, 28] for
𝐷 → 𝑃ℓ+ℓ− and Ref. [29] for Λ𝑐 → 𝑝ℓ+ℓ−.
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Figure 2: The differential branching ratios in the SM for 𝐷+
𝑠 → 𝐾+𝜇+𝜇− (left) and Λ𝑐 → 𝑝𝜇+𝜇− (right).

(Non-)resonant contributions are shown in orange (blue). The widths indicate uncertainties from form factors
plus strong phase variation in the resonant case and charm mass scale 𝜇𝑐 variation in the non-resonant case.
The figures are adapted from Ref. [15] (left) and Ref. [23] (right).

Clearly, perturbative SM contributions cannot be tested in branching ratio measurements as
they are shielded by resonance contributions in the full kinematic range. This, however, is exactly
the motivation to study null test observables instead of branching ratios (only). Here, any signal
implies the breakdown of the SM. Null tests are based on (approximate) symmetries of the SM that
can be violated in BSM extensions. This includes CP-symmetry, lepton universality, lepton flavor
conservation and the efficient GIM mechanism.
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Experimentally, data are available for a variety of decay modes and have recently been compiled
in Ref. [5]. Except for 𝐷0 → 𝜋+𝜋−𝜇+𝜇− and 𝐷0 → 𝐾+𝐾−𝜇+𝜇−, only upper limits are placed for
rare charm decay modes outside of the resonance search regions. However, the obtained upper
limits are close to the upper ends of the resonance estimates. Additionally these upper limits imply
maximally allowed values for NP contributions to Wilson coefficients in Eq. (1). The bounds on
dipole and muon (axial-)vector Wilson coefficients relevant in this work read

|𝐶 (′)
7 | . 0.3 , |𝐶 (′)

9 | . 0.9 , |𝐶 (′)
10 | . 0.8 , (5)

which defines the model-independent playground for benchmark scenarios in null test observables
studied in the remainder of this talk.

3. Rare baryon decays

In this section we discuss possibilities to test BSM physics in null test observables of Λ𝑐 → 𝑝𝜇+𝜇−

and compare our findings with other rare charm decays. We focus on angular observables in
Sec. 3.1, CP–asymmetries in Sec. 3.2 and lepton universality ratios in Sec. 3.3.

3.1 Angular observables

To start off, we take a look at the fully differential angular distribution for unpolarizedΛ𝑐 → 𝑝𝜇+𝜇−,
conveniently written as

d2Γ

d𝑞2d cos 𝜃ℓ
=

3
2
(𝐾1𝑠𝑠 sin2 𝜃ℓ + 𝐾1𝑐𝑐 cos2 𝜃ℓ + 𝐾1𝑐 cos 𝜃ℓ) , (6)

where 𝜃ℓ is defined as the angle of the ℓ+ momentum with respect to the negative direction of flight
of the Λ𝑐 in the dilepton rest frame. The full dependence on Wilson coefficients and form factors
of the angular coefficients 𝐾1𝑠𝑠, 𝐾1𝑐𝑐 , 𝐾1𝑐 is given in Ref. [23].

Fig. 3 includes plots of the fraction of longitudinally polarized dimuons 𝐹𝐿 and the forward-
backward asymmetry 𝐴FB (lower row), which are the two independent observables next to the
differential branching ratio that can be studied in this mode and are defined as

𝐹𝐿 =
2𝐾1𝑠𝑠 − 𝐾1𝑐𝑐
2𝐾1𝑠𝑠 + 𝐾1𝑐𝑐

, 𝐴FB =
3
2

𝐾1𝑐
2𝐾1𝑠𝑠 + 𝐾1𝑐𝑐

(7)

For 𝐹𝐿 the SM expectation is shown in the left plot, where the dominant contribution stems
from𝐶𝑅

9 (𝑞2) and the dark orange band indicates uncertainties due to interference with𝐶eff
7 (𝑞2). The

right plot shows the SM in orange and NP benchmark scenarios in blue, red and green for𝐶7 = 0.3 ,
𝐶 ′

9 = 0.5 and 𝐶 ′
7 = 0.3 , respectively. Clearly, 𝐹𝐿 is not a null test per se, however, due to strong

cancellations of hadronic uncertainties 𝐹𝐿 has excellent sensitivity to NP contributions. Especially
NP in dipole operators leads to a different shape of the distribution, which can be understood from
helicity arguments, as discussed in Ref. [23]. Also see Ref. [30] for a general discussion of endpoint
relations for baryons dictating 𝐹𝐿 (𝑞2

min) = 𝐹𝐿 (𝑞
2
max) = 1

3 , exactly as in Fig. 3.
Turning to 𝐴FB, Fig. 3 presents NP sensitivity in the axial-vector 𝐶10. The left plot shows

𝐴̃FB(𝑞2), where the denominator is integrated and only the numerator is differential in 𝑞2. The
same scenarios with both, numerator and denominator, differential as in Eq. (7) is shown in the

5
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Figure 3: Angular observables in Λ𝑐 → 𝑝𝜇+𝜇−. The upper row shows the fraction of longitudinally
polarized dimuons 𝐹𝐿 in the SM (left) and in various NP scenarios (right). The lower row shows the forward-
backward asymmetry 𝐴̃FB (left) and 𝐴FB (right) in NP scenarios with decreasing 𝐶10 Wilson coefficient, see
text for details. Plots are adapted from Ref. [23].

right plot. In both cases the SM is not shown, because 𝐾1𝑐 contains interference terms proportional
to either 𝐶9𝐶10, 𝐶 ′

9𝐶
′
10, or 𝐶 (′)

7 𝐶
(′)
10 . Therefore, 𝐴FB constitutes a clean null test with sensitivity to

axial-vector couplings down to the percent level.
We have seen that the simplest observables beyond the (𝑞2 differential) branching ratios already

offer possibilities to test the SM in rare charm decays despite the resonance domination. 𝐹𝐿 shows
high sensitivity to dipole operators and 𝐴FB is the first clean null test. In addition to 𝐴FB in
𝐷 → 𝑃ℓ+ℓ−, where scalar and/or tensor NP contributions are mandatory to observe a signal, the
baryon mode has signal already in the presence of 𝐶10 ≠ 0 alone. Motivated by these findings we
press on.

3.2 CP–asymmetries

Following the study of angular observables, the next natural step is to investigate the CP–violating
rate. In the left plot of Fig. 4 the CP–asymmetry

𝐴CP =
2𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 − 2 𝐾̄1𝑠𝑠 − 𝐾̄1𝑐𝑐

2𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 + 2 𝐾̄1𝑠𝑠 + 𝐾̄1𝑐𝑐
, (8)

for 𝐶9 = 0.5ei𝜋/4 and different strong phases 𝛿𝜙 = 0, ± 𝜋
2 , 𝜋 is shown in the region around the 𝜙

resonance. The barred angular coefficients 𝐾̄𝑖 indicate CP–conjugation.
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Ã
C

P
[G

eV
−

2
]

δφ = 0

δφ = π

δφ = π/2

δφ = −π/2

Figure 4: CP–asymmetry in Λ𝑐 → 𝑝𝜇+𝜇− around the 𝜙 resonance for a 𝐶9 = 0.5ei𝜋/4 benchmark for
different fixed phases, see legend. The left plot displays 𝐴CP as in Eq. (8), whereas the right plot shows 𝐴̃CP,
i.e. integrated decay rates in the denominator. Adapted from Ref. [23].

𝐴CP decreases towards the resonance peaks, where the Λ𝑐 → 𝑝𝜇+𝜇− event rates are larger.
This is also apparent in the right plot of Fig. 4, which is the same as the plot to the left but
with integrated decay rates in the denominator. The CP–violating signal around the resonance
increases, which is visible in 𝐴̃CP due to the constant denominator. Ever since the first reference
in [7], this resonance enhanced CP–violation was promoted for rare charm decays many times, see
Refs. [7, 10, 11, 14, 15] as a null test of the SM, due to negligible CP–violating phases in the mixing
of the first two SM quark generations. Next to the rate, it is also possible to study the CP-asymmetry
in an angular observable. For instance, 𝐴CP

FB probes the imaginary part of 𝐶10, complementary to
the CP conserving 𝐴FB [23].

3.3 Lepton universality ratios

As a last key feature of the SM, we study lepton universality (LU) tested with 𝑅 ratios like

𝑅Λ𝑐
𝑝 =

∫ 𝑞2
max

𝑞2
min

dB(Λ𝑐 → 𝑝𝜇+𝜇−)
d𝑞2 d𝑞2

/∫ 𝑞2
max

𝑞2
min

dB(Λ𝑐 → 𝑝𝑒+𝑒−)
d𝑞2 d𝑞2 , (9)

where the same 𝑞2 cuts need to be applied for both electrons and muons in the final state. LU tests
in the charm sector complement similar searches in 𝑏 → 𝑠 transitions, where recent results already
point towards a possible breakdown of the SM [31]. In 𝑐 → 𝑢 transitions the resonance domination
leads to enhanced BSM effects, which can be revealed by exemplary BSM contributions to the muon
mode in Λ𝑐 → 𝑝𝜇+𝜇− leading to the results presented in Tab. 1. The SM expectation is close to one
with uncertainties at the percent level. BSM effects lead to values of up to O(100) in the high 𝑞2

regime and O(10) in the low 𝑞2 region, whereas an integration of the full 𝑞2 range yields SM-like
values. The reason is again the supremacy of the resonance contributions in the full 𝑞2 integral.
Note that, despite the poor knowledge of these resonance effects, they result from QCD×QED
and therefore obey LU. Hence, similar results are obtained for LU ratios with 𝐷 → 𝑃ℓ+ℓ− and
𝐷 → 𝑃1𝑃2ℓ

+ℓ− modes [14, 15].

7
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Table 1: 𝑅Λ𝑐
𝑝 (9) in the SM and in NP-scenarios with couplings to muons for different 𝑞2–bins. Ranges

correspond to uncertainties and O(100) is indicated for the high 𝑞2 region, where we only display the largest
values found. Similar results are found for primed Wilson coefficients.

SM |𝐶𝜇

9 | = 0.5 |𝐶𝜇

10 | = 0.5 |𝐶𝜇

9 | = |𝐶𝜇

10 | = 0.5
full 𝑞2 1.00 ± O(%) SM-like SM-like SM-like
low 𝑞2 0.94 ± O(%) 7.5 . . . 20 4.4 . . . 13 11 . . . 32
high 𝑞2 1.00 ± O(%) O(100) O(100) O(100)

4. Dineutrino modes

For the last part of this talk we briefly review the possibility to test LU and charged Lepton Flavor
Violation (cLFV) in the charged lepton sector utilizing experimental information on dineutrino
modes. This link between the two sectors stems from the SU(2)𝐿 symmetry in the Standard Model
Effective Field Theory (SMEFT) and was recently presented in Refs. [17, 18].

The main feature of dineutrino branching ratios is that different contributions from Wilson
coefficients of a flavor combination 𝜈𝑖𝜈 𝑗 need to be summed incoherently. This incoherent sum
can then be rewritten as a trace over a coupling matrix in flavor space. The coupling matrices of
neutrinos and charged leptons are linked via SU(2)𝐿 , such that they can be replaced in the trace.
Afterwards one can go back to the incoherent sum, now over charged lepton Wilson coefficients.

B ∝
∑︁
𝜈=𝑖, 𝑗

(
|C𝑈𝑖 𝑗

𝐿

��2 + |C𝑈𝑖 𝑗

𝑅

��2) = Tr
[
C𝑈
𝐿 C𝑈†

𝐿
+ C𝑈

𝑅 C𝑈†
𝑅

]
= Tr

[
K𝐷

𝐿 K𝐷†
𝐿

+ K𝑈
𝑅 K𝑈†

𝑅

]
+ O(𝜆) =

∑︁
ℓ=𝑖, 𝑗

(
|K𝐷𝑖 𝑗

𝐿

��2 + |K𝑈𝑖 𝑗

𝑅

��2) + O(𝜆) ,
(10)

withB being any semileptonic dineutrino branching ratio with an underlying 𝑐 → 𝑢 transition. Note
that SU(2)𝐿 directly links the right-handed up-type Wilson coefficients, however for the left-handed
operators the up-type dineutrino coefficient is linked to the down-type charged lepton coefficient
and vice versa. This link is independent from the PMNS matrix and holds up to first order in
Wolfenstein 𝜆 due to the CKM rotation. However, these O(𝜆) corrections are taken into account in
Ref. [18].

In the following, three benchmark scenarios are put to test for the charged lepton sector via
K 𝑖 𝑗

𝐿,𝑅
. Lepton-universality (LU), Charged lepton flavor conservation (cLFC) and the general case

with K 𝑖 𝑗

𝐿,𝑅
arbitrary:

KLU
𝐿,𝑅 =

©­­«
𝑘 0 0
0 𝑘 0
0 0 𝑘

ª®®¬ , KcLFC
𝐿,𝑅 =

©­­«
𝑘11 0 0
0 𝑘22 0
0 0 𝑘33

ª®®¬ , Kgeneral
𝐿,𝑅

=
©­­«
𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

ª®®¬ .
Constraints on charged lepton couplings are conveniently available for 𝑐 → 𝑢ℓ+ℓ−(′) and 𝑠 →
𝑑ℓ+ℓ−(′) couplings from searches in high-𝑝𝑇 lepton tails of Drell-Yan 𝑝𝑝 → ℓ+ℓ−(′) transitions,
see Ref. [32, 33]. With these limits at hand, the three different assumptions on the lepton flavor
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structure imply different upper limits on dineutrino branching ratios. Exemplarily, we give results
for two baryon modes from Refs. [18, 23]:

B(Λ+
𝑐 → 𝑝𝜈𝜈̄) . 1.8 · 10−6 (LU) ,

B(Λ+
𝑐 → 𝑝𝜈𝜈̄) . 1.1 · 10−5 (cLFC) ,

B(Λ+
𝑐 → 𝑝𝜈𝜈̄) . 3.9 · 10−5 (general) ,

(11)

and

B(Ω0
𝑐 → Ξ0𝜈𝜈̄) . 3.4 · 10−6 (LU) ,

B(Ω0
𝑐 → Ξ0𝜈𝜈̄) . 1.9 · 10−5 (cLFC) ,

B(Ω0
𝑐 → Ξ0𝜈𝜈̄) . 7.1 · 10−5 (general) .

(12)

Measurements above the respective bounds imply the breakdown of the corresponding flavor sym-
metry. Since these limits are obtained in a data-driven approach, they will improve in the future.
Depending on the experimental progress either the charged lepton data constrain dineutrino branch-
ing ratios or vice versa. Note that for rare charm dineutrino modes the branching ratio is a clean null
test already. No resonance pollution exists in dineutrino modes and the efficient GIM cancellation
yields SM expectations beyond the current and foreseeable experimental reach.

5. Conclusions

We presented null test opportunities via the exemplarily chosen baryon mode Λ𝑐 → 𝑝𝜇+𝜇− and
commented similarities and complementarities to other rare charm decays. Dipole operators can
be tested in the fraction of longitudinally polarized dimuons and axialvector couplings lead to a
non-vanishing forward-backward asymmetry, with sensitivity down to the percent level in the NP
Wilson coefficient 𝐶10. While similar angular observables can be defined for the simpler meson
modes 𝐷 → 𝑃ℓ+ℓ−, the direct sensitivity to 𝐶10 alone highlights the benefits of baryon modes.
CP–violating NP is enhanced around the resonances in all 𝑐 → 𝑢ℓ+ℓ− modes, however strongly
dependent on unknown strong phases. Lepton universality is tested directly in 𝑅Λ𝑐

𝑝 and similar
ratios and indirectly via missing energy modes due to the SU(2)𝐿 link between charged leptons
and neutrinos. These null test observables overcome the problem of resonance domination in rare
charm decays and provide excellent opportunities to test NP in up-type Flavor Changing Neutral
Currents.
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