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Recently, there have been significant progresses for theories of quarkonium production in proton-
proton and proton-nucleus collisions at colliders. We give a brief review of these theories, with
emphasis on the successes and difficulties of nonrelativistic QCD factorization formalism, as well
as the new proposal of soft gluon factorization.
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1. Introduction

Heavy quarkonium production at high energy hadronic collisions is important to test our under-
standing of QCD. Heavy quarkonium is a bound state of a heavy quark (Q) and its anti-quark (Q̄),
and a heavy quarkonium production process involves three typical momentum scales: the heavy
quark mass mQ (mc ≈ 1.3GeV and mb ≈ 4.2GeV in MS scheme), which governs the perturbative
creation of the heavy quark pair (QQ̄); the heavy quark momentum mQv in the quarkonium rest
frame; and the heavy quark kinetic energy mQv2, which governs the nonperturbative hadroniza-
tion of the QQ̄ to physical quarkonium. Here v is the typical heavy quark velocity inside of the
quarkonium rest frame (v2 ≈ 0.3 for charmonium and v2 ≈ 0.1 for bottomonium). Hence heavy
quarkonium presents an ideal laboratory to study both perturbative and nonperturbative aspects of
QCD dynamics. Moreover, in nucleus-nucleus collisions, heavy quarkonium production consti-
tutes a sensitive probe of the hot strongly-interacting matter. Therefore, a good understanding of
the heavy quarkonium production mechanism is very crucial.

2. Quarkonium production mechanism

Heavy quarkonium production is usually separated into two steps: (1) the production of a QQ̄
pair with definite spin and color state in a hard collision, which could be calculated perturbative-
ly; and (2) hadronization of the QQ̄ pair into a physical heavy quarkonium at a momentum scale
much less than the heavy quark mass mQ, which is in principle a nonperturbative process. Differ-
ent treatments of the nonperturbative hadronization process led to different theoretical models for
quarkonium production.

In the color evaporation model (CEM) [1, 2, 3], it is assumed that each produced QQ̄ pair
can evolve into a specific heavy quarkonium if its invariant mass is below the open-charm/bottom
threshold. It is further assumed that the probability for the QQ̄ pair pair to evolve into a quarkonium
state H is given by a constant FH , which is the only free parameter FH . The CEM is intuitive
and simple, but it is not very successful phenomenologically. A straightforward prediction of the
CEM is that the ratio of production rate of any two different charmonium states is independent of
kinematics and process. However, this prediction contradicts the data from many experiments, for
example, the ratio of production cross section of ψ(2S) over that of J/ψ depends on their transverse
momentum [4, 5]. To overcome these obstacles, an improved version of the model, the ICEM, was
proposed [6], in which kinematic effects of soft gluons emission in the hadronization process are
considered. It was found that the ICEM describes the charmonium yields as well as the ratio of
ψ(2S) over J/ψ better than the traditional CEM.

In the color singlet model (CSM) [7, 8, 9], the QQ̄ pair is assumed to have the same color, spin
and angular-momentum quantum numbers as the physical heavy quarkonium. Especially, it must
be in a color singlet. Under this assumption, the production cross section for each quarkonium
state H is related to the wave-function (or its derivative) of H at the origin, which can be extracted
from the decay process of H, or be calculated from the potential model or lattice QCD. Therefore,
the CSM effectively has no free parameter. The LO CSM predictions were found to underestimate
the experimental data of direct J/ψ and ψ(2S) production at

√
s = 1.8TeV [10] by more than an

order of magnitude. In the past decade, it was found that, the NLO and NNLO corrections to the
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CSM are significantly larger than the LO contributions [11, 12, 13, 14]. Including these corrections
can reduce the big gap between the LO CSM prediction and the data, although a full description of
data is still hard. Moreover, in the case of P-wave production and decay, the CSM is known to be
inconsistent because it suffers from uncanceled infrared divergences.

In the NRQCD factorization theory [15], the production cross section of a heavy quarkonium
H is given by the factorization formula

σH = ∑
n

σn(µΛ)〈OH
n (µΛ)〉. (2.1)

Here µΛ is the NRQCD factorization scale, which is the ultraviolet (UV) cutoff of the NRQCD
effective theory, σn is the short-distance coefficient (SDC) which describes the production of a QQ̄
pair with quantum number n in the hard scattering, and 〈OH

n (µΛ)〉 is the NRQCD long-distance
matrix element (LDME) that describe the hadronization of the QQ̄ pair in state n into the heavy
quarkonium H. Each LDME has a definite scaling with v and thus the sum over n can be organized
in powers of v. In practice, for a certain accuracy, one truncates and keeps only a few LDMEs
for each H production. The predictive power of the NRQCD factorization approach is relied on
the validity of such a truncation, which requires a good convergence of the velocity expansion,
as well as the universality of LDMEs. As shown in Eq. (2.1), the NRQCD factorization contains
both color-singlet (CS) channel and color-octet (CO) channel contributions. If one set the CO
contributions to be zero, one would recover the CSM. Including the CO contributions, NRQCD
solved the infrared divergence problem encountered in the CSM [16]. Based on the NRQCD
factorization formula, a phenomenological study requires perturbative calculations of the SDCs and
nonperturbative determinations of the LDMEs. In recent years, complete NLO studies have been
carried out in the NRQCD framework, and theoretical predictions for inclusive heavy quarkonium
production are generally consistent with experimental data from the Tevatron and the LHC [17, 18,
19, 20].

However, similar to the CSM, one problem with the NRQCD factorization formula is that it
suffers from large high-order corrections at large pT , which could make the perturbative expansion
of the SDCs unstable. The reason for this is that the high-order corrections for some channels
may receive huge power enhancements in terms of p2

T/m2
Q, which could be much larger than the

suppression of αs at large pT . Besides, the large ln(p2
T/m2

Q)-type logarithms also could make
the perturbative expansion unreliable. Considered this, a new QCD factorization approach was
proposed to describe the large-pT heavy quarkonium production [21, 22, 23, 24, 25], by including
both single-part fragmentation contributions and double-parton fragmentation contributions. All
large ln(p2

T/m2
Q)-type logarithms can be resumed by solving a closed set of evolution equations

of FFs, which makes the αs expansion more convergent. By calculating fragmentation functions
using NRQCD, as simply LO calculation in the QCD factorization can approximately reproduce
the complicated NLO calculation in NRQCD framework [26].

Furthermore, studies in recent years have shown that there are still other notable issues in the
application of NRQCD factorization formula to world data on quarkonium production [27, 28, 29,
30, 31, 32, 33, 34, 35], which may be caused by the bad convergence of velocity expansion [36].
To overcome this problem, a new factorization method called soft gluon factorization (SGF) was
proposed [37]. In this method, the differential cross section of the quarkonium H production is
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factorized as

(2π)32P0
H

dσH

d3PH
≈∑

n

∫ d4P
(2π)4 Hn(P)Fn→H(P,PH), (2.2)

where P is the momentum of the intermediate QQ̄ pair, PH is the momentum of H, Fn→H(P,PH)

are soft gluon distribution functions (SGDs), which describe the hadronization of the QQ̄ pair into
physical quarkonium H by emitting soft gluons. SGDs are defined by QCD fields in small loop
momentum region. With an explicit definition of the small region, the SGF is demonstrate to be
equivalent to the NRQCD factorization [38]. Moreover, it was shown that, by using equations of
motion, one can deduce SGF from NRQCD effective field theory. Comparing with the NRQCD
factorization, the advantage of SGF is that it resums the series of relativistic corrections originated
from kinematic effects to all powers, which gives rise to a better convergence in velocity expansion.

3. Quarkonium production with small x effects

The observed quarkonium suppression in nucleus-nucleus collisions was considered as a key
signature of the formation of QGP. However, there are other effects that are not necessarily related
to the QGP formation can lead to quarkonium suppression. Some of these effects also present in pA
collisions and are known as cold nuclear matter (CNM) effects. Study of pA collisions can not only
understand CNM effects themselves, but also help to clearly extract hot medium effects. There are
several CNM effects in pA collisions, the modification of the parton distribution functions in the
nuclei, the parton saturation effects, the multiple scattering of partons in the nucleus before or after
the hard scattering, the absorption or breakup of quarkonium states, and so on. Various approaches
have been introduced to study these effects [43]. Here we emphasize two of them.

In the collinear factorization approach, cross sections of quarkonium production are assumed
to be dominated by leading-twist, but using nuclear parton distribution functions (nPDFs) of the
target nucleus, which are usually assumed to be different from normal PDFs by a nuclear modifi-
cation factor RA

i (x,Q
2). The modification factor is determined by performing global fit analyses of

lepton-nucleus and proton-nucleus data. It was found that there is nuclear shadowing effect, name-
ly a suppression (RA

i (x,Q
2) < 1) at small x . 10−2. Nuclear shadowing leads to a corresponding

depletion of quarkonium production in pA with respect to pp collisions [44].
In the low pT region, higher twist contributions as well as large ln(1/x) contributions arise that

are not accounted for in collinear factorization framework. These contributions can be systemati-
cally computed in the Color Glass Condensate (CGC) effective field theory [39, 40]. Quarkonium
production can then be studied by combining the CGC with quarkonium production theories. E.g.,
by combining CGC with NRQCD [41, 42], good description of low pT quarkonium production in
pp and pA collisions is obtained [42, 45]. Moreover, results in this framework can be matched
smoothly to the results obtained in the NLO NRQCD factorization framework [18, 29, 30] at high
pT , providing a unified description for quarkonium production in full pT region.

4. Summary

The traditional NRQCD factorization is quite successful in describing the quarkonium pro-
duction in pp collisions and pA collisions. Especially, by combining NRQCD factorization for
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quarkonium with appropriate factorization approach for colliding particles, CGC effective field
theory, unified description for quarkonium production in full pT region was obtained. However,
there are some notable difficulties with the NRQCD factorization, including the polarization puzzle
and the universality problem, which may be caused by the bad convergence of v expansion. Hope-
fully, these difficulties may be resolved or relieved in the SGF framework with well controlled
relativistic corrections.
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