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We study the finite-Nc corrections to the next-to-leading order (NLO) Balitsky-Kovchegov (BK)
equation. This contains correlators of sixWilson lines, which we express in terms of the two-point
function using the Gaussian approximation. Numerically, the effects of these finite-Nc corrections
on the NLO BK equation are found to be smaller than the expected 1/N2

c ∼ 10%. Corrections may
be large for individual correlators, but have less of an influence on the shape of the amplitude as a
function of the dipole size. There is an even smaller effect on the evolution speed as a function of
rapidity.
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1. Introduction

The Color Glass Condensate effective field theory is used to describe QCD in the region where
parton densities grow to the order of the inverse of the QCD coupling. Cross sections for scattering
processes can be expressed in this framework in terms of n-point correlators of Wilson lines -
these describe the eikonal propagation of a parton in the target field. The energy dependence of
the target is obtained by solving the Balitsky–Kovchegov (BK) equation for the 2-point correlator,
which was derived to next-to-leading order (NLO) accuracy in Ref. [1]. The NLO BK equation is
known to be unstable [2] and that its finite-Nc corrections are smaller than the naive expectation
of O(1/N2

c ) [3, 4]. It contains six-point correlators, for which we derive analytical parametric
equations using the Gaussian approximation [5–7]. We study numerically the effect of finite-Nc
corrections from the six-point correlators on NLO BK evolution. For the full details, see [8].

2. NLO BK correlators using the Gaussian approximation

For any product of n/2 pairs of fundamental Wilson lines UU†, we use the notation
S(n)
x1,x2,...,xn−1,xn

:= tr
(
Ux1U

†
x2 . . .Uxn−1U

†
xn

)
/Nc. The NLO BK equation (with n f = 0) reads [1]

∂Y
〈
S(2)
x,y

〉
=
αsNc

2π2

∫
z

KBC
1 〈D1〉 +

α2
s N2

c
16π4

∫
z,z′

(
K2,1〈D2,1〉 + K2,2〈D2,2〉

)
+ O(n f ), (1)

where the brackets 〈〉 refer to the expectation value over target color field configurations. The kernels
are simple functions of r2 = (x−y)2, X2 = (x−z)2, X ′2 = (x−z′)2,Y 2 = (y−z)2,Y ′2 = (y−z′)2

and Z2 = (z − z′)2. The Wilson line operators are

〈D1〉 =
〈
S(2)
x,zS(2)

z,y

〉
−

〈
S(2)
x,y

〉
, 〈D2,1〉 =

〈
S(2)
x,zS(2)

z,z′S
(2)
z′,y

〉
−

1
N2

c

〈
S(6)
x,z,z′,y,z,z′

〉
− (z′ → z), (2)

〈D2,2〉 =
〈
S(2)
x,zS(2)

z,z′S
(2)
z′,y

〉
− (z′ → z). (3)

We refer to two pieces of the right side of Eq. (1) as the “LO-like” contribution αsNc
2π2 KBC

1 ⊗ 〈D1〉

and the “NLO-like” contribution α2
s N

2
c

16π4 K2,1 ⊗ 〈D2,1〉+
α2

s N
2
c

16π4 K2,2 ⊗ 〈D2,2〉. In the large-Nc limit, one
can drop terms suppressed by 1/Nc. Then averages of products factorize into products of averages.

In the Gaussian approximation, all correlators are parametrized by a two-point function as

〈O[U]〉η = exp
{
−

1
2

∫ η

dη̃
∫
u1,u2

Gu1,u2 (η̃)La
u1 La

u2

}
O[U], (4)

where
∫
u
=

∫
d2u, η is a parametrization rapidity and La

u is a Lie derivative that acts on Wilson
lines according to La

uUx = −igδ(2) (x − u)taUx. In the case of n-point correlators larger than the
dipole, 〈O[U]〉 is an n × n matrix of correlators, denoted A (η) and the differential form of Eq. (4)
becomes an n × n matrix differential equation ∂ηA (η) = −M (η)A (η).

The procedure to find parametric equations for the six-point correlators is as follows. First,
we choose a multiplet basis B for the space of all six-point correlators. Then, we construct the
correlator matrix A by taking B

(
Uz ⊗ U†z′ ⊗ Uv ⊗ U†y ⊗ Ux ⊗ U†w

)
BT. Next, we construct the

transition matrixM by summing (for each element inA) all possible one-gluon diagrams obtained
with the double Lie derivative operator and rewriting the result in terms of elements of A.
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The most efficient way to construct a basis is to exploit the structure of the six-point correlators
that are actually needed for the NLO BK equation, which only have four distinct coordinates. It is
then easy to see that there is one way to join the endpoints of sixWilson lines with these coordinates
such that four Wilson lines cancel (due to unitarity) and only a dipole remains. Similarly, the choice
of two more particular basis elements results in two correlators that reduce to four-point correlators.
The remaining three basis elements are chosen such that they are orthonormal to the first three.

The differential equation, which has an exponential solution, now decouples into three indepen-
dent equations. Instead of exponentiating a six-by-six matrix; at most we will need to exponentiate
a three-by-three matrix, which can be done analytically. The first transition sub-matrix gives the
parametrization for the dipole correlator. The second transition sub-matrix gives the parametriza-
tion for the four-point correlator with one repeated coordinate [6]. Taking linear combinations of
the elements of the last transition sub-matrix gives the six-point correlators required.

To verify the validity of our parametric equations, we perform two checks. Firstly, the Gaussian
approximation has the built-in property that it should be consistent in color algebra. Secondly, when
the equation for 〈S(2) S(2) S(2)〉 is taken in the dilute limit, it should be the same up to second order
as the parametric equation for the large-Nc counterpart operator.

3. Numerical results

In Fig. 1, we plot 〈D2,1〉 and 〈D2,2〉. Since both quantities reduce to the same expression in
the large-Nc limit, only one curve is shown for the large-Nc case. The dashed curves show the
differences between large and finite Nc for each quantity. The finite-Nc corrections are negligible at
aQs � 1, but become numerically important when aQs & 1. At aQs = 1, the finite-Nc corrections
to 〈D2,1〉 and 〈D2,2〉 are approximately 20% and 16%, respectively. In comparison, the LO-like
operator 〈D1〉 has a finite-Nc correction of approximately 8%. Since the evolution is driven by
the dipole sizes r . 1/Qs, the effect of the 1/N2

c suppressed contributions to the evolution can be
smaller.

In Fig. 2, we plot the difference between the large-Nc and finite-Nc cases, separately for the
LO-like and NLO-like terms. The difference has the opposite sign in the LO-like and the NLO-like
terms and so part of the difference cancels in the total evolution speed. At rQs = 1, the relative
finite-Nc correction is approximately 8% in the LO-like contribution and 13% in the NLO-like
contribution. The relative magnitude of the total 1/N2

c suppressed contribution is 5%.
In Fig. 3, we show the ratio of N obtained by solving the full NLO BK equation at finite Nc

to that at large Nc . At r & 1/Qs, when the details of the initial condition are lost and one enters
the geometric scaling region, the difference between the large-Nc and finite-Nc cases evolves only
very slowly. At small dipoles, the ratio grows approximately linearly in Y . The fact that the total
finite-Nc correction is positive at small dipole sizes and negative at large dipoles, as seen in Fig. 2,
is found to hold also asymptotically after many units of rapidity evolution.

The evolution speed of the saturation scale, ∂Y ln Q2
s, is shown in Fig. 4. The finite-Nc

corrections are seen to be more important at the initial condition, slowing down the evolution of Q2
s

by approximately 5%. Later in the evolution, the difference becomes smaller - of the order of 1%.
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Figure 1: Correlator factors 〈D2,1〉 and 〈D2,2〉 in the
NLO-like part of the BK equation (1), in the line
configuration of coordinates. Both factors reduce
to the same expression 〈D2〉Large Nc in the large-Nc
limit, as also shown in the figure.
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Figure 2: Difference of the evolution speeds at fi-
nite Nc and at large Nc, shown separately for the
LO-like, NLO-like and total (LO-like + NLO-like)
contributions.
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Figure 3: Evolution for the ratio of the dipole ampli-
tudes obtained by performing the finite-Nc and large-
Nc evolutions with the same initial condition.
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Figure 4: Evolution speed of the saturation scale Q2
s

as a function of rapidity at large Nc and at finite Nc.

4. Conclusions

The overall finite-Nc corrections to the NLO-like part of the BK equation are somewhat
smaller than what is naively expected. However, they need to be considered carefully in the
NLO BK equation, since they may have a non-negligible effect at the required accuracy. When
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correlators are considered between Wilson lines separated by large distances relative to 1/Qs,
1/N2

c suppressed corrections may be considerable. Despite these potentially large corrections to
individual correlators, these configurations do not contribute much to the right side of the BK
equation. There is a small but significant effect on the shape of the dipole amplitude as a function
of r . The finite-Nc corrections are watered down further when one considers the evolution speed of
Qs as a function of rapidity.
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