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1. Introduction

The measurement of jets recoiling from a high-pT hadron is sensitive to jet azimuthal broaden-
ing effects. In vacuum, broadening effects occur via Sudakov radiation [1]. In medium, additional
jet deflection may occur via multiple soft scatterings, resulting in modification of the azimuthal cor-
relation between the trigger hadron and the recoiling jet [1, 2]. In addition, the tail of this azimuthal
correlation is sensitive to Molière scatterings off quasi-particles in the medium [3]. A search for
these phenemona in Run-1 of the LHC1 data using hadron-jet acoplanarity showed no evidence
of jet broadening with respect to the vacuum expectation within experimental uncertainties [4].
However, lower recoiling jet pT configurations should be more sensitive to in-medium modifica-
tions to the acoplanarity [1–3]. Recent theoretical work [5] suggests that radiative corrections to
in-medium modification may be negative and comparable to the non-radiative contribution, which
could suppress the broadening or even narrow the azimuthal jet distribution with respect to vacuum.
This contribution reports the first exploration of hadron-jet acoplanarity in central (0–10%) Pb–Pb
collisions using high-statistics Run-2 data2, with emphasis on the region of low recoil jet pT, and is
the first such analysis that has been fully corrected to the particle level.

The measurement reported here is the trigger-normalised semi-inclusive yield of jets recoiling

from a trigger hadron 1
NAA

trig

d3NAA
jet

dpch
T,jetd∆ϕdηjet

����
pT,trig∈TT

, where pch
T,jet is the jet transverse momentum and

∆ϕ is the azimuthal angle between the trigger hadron and a reconstructed jet. The observable ∆recoil

is then defined as the difference between the trigger-normalised recoil jet distributions in Signal
(TTSig) and Reference (TTRef) trigger track pT (pT,trig) intervals [4]:

∆recoil =
1
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− cref ·
1

NAA
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����
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, (1)

where cref accounts for the combined effects of invariance of total jet yield with pT,trig. cref is
calculated bin-by-bin in ∆ϕ, and ranges from 0.94 in the ∆ϕ region closest to 1

2π to 0.86 in the
∆ϕ region closest to π. With the ∆recoil observable one removes entirely the background from
uncorrelated reconstructed jets, giving the possibility of extending jet measurements to low-pT.
The jet population measured with this technique is likewise not biased in terms of jet fragmentation
pattern. The pT,trig trigger-track classes chosen for this analysis are 5 < pT,trig < 7 GeV/c for the
Reference class and 20 < pT,trig < 50 GeV/c for the Signal class.

2. Analysis

This analysis was carried out using central 0–10% Pb–Pb collisions at √sNN = 5.02 TeV
collected by ALICE in 2018. The ALICE experimental setup is detailed in Ref. [6]. The events
were triggered using both minimum bias and central triggers based on signals in the ALICE
V0 detector, and further offline selection was applied to ensure background events (e.g. beam-
gas events) were removed. 92M events were selected for analysis. The measurement uses jets

1The data taking period at the LHC from 2009-2013
2The data taking period from 2015-2018
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reconstructed from charged tracks from the ALICE Inner Tracking System and Time Projection
Chamber, i.e. ‘track-based jets’. To ensure statistical independence of the Signal and Reference
recoil jet distributions, each event is randomly assigned to one of the TT classes, and the statistical
reach of the distributions is optimised by using 80% of events for the Signal subset and 20% for
the Reference subset. Jet finding was performed with the FastJet package [7] using the anti-kT

algorithm [8] with jet resolution parameter R = 0.2, using tracks with a low-pch
T constituent cut-

off of pch
T = 0.15 GeV/c. The underlying event density ρ was then subtracted from the raw pT

(praw,ch
T,jet ) of each jet with area Ajet as preco,ch

T,jet = praw,ch
T,jet − ρAjet. ρ was estimated event-by-event by

reconstructing jets with the kT algorithm and using the median pT-density of these jets, excluding
the two leading jets in the event from the median. Events with high-pT tracks have on average a
higher ρ using this method, and to account for this offset, the difference between the mean ρ in
Signal- and Reference-classified events is added to ρ in reference-classified events.

2-dimensional distributions (preco,ch
T,jet , ∆ϕ) were filled separately for TTSig and TTRef recoil

jets. Figure 1 shows the projection of these distributions on the preco,ch
T,jet and ∆ϕ axes. The TTSig

and TTRef distributions are seen to be similar around preco,ch
T,jet = 0 and thus are independent of

pT,trig, corresponding to the fact that the jet population in this region is comprised primarily of
combinatorial jets. At higher preco,ch

T,jet the distributions begin to separate. The ∆ϕ distribution in
the region 30 < preco,ch

T,jet < 40 GeV/c shows a clear peak at ∆ϕ ∼ π, indicating the back-to-back
topology of di-jet events.

Figure 1: The raw trigger-normalised recoil jet distributions as a function of preco,ch
T,jet (left) and ∆ϕ (right).

The raw distributions were corrected simultaneously in preco,ch
T,jet and ∆ϕ for detector effects and

residual background fluctuations using 2-dimensional Bayesian unfolding techniques [9], with a
response mapping detector-level preco,ch

T,jet and ∆ϕ to particle level. The response was constructed
using simulated PYTHIA events, which were reconstructed using a full GEANT simulation, and
embedded into heavy-ion data events. PYTHIA detector-level jets were reconstructed among the
heavy-ion background (hybrid-level jets) and matched with the PYTHIA detector-level jets, which
were then matched with PYTHIA particle-level jets, and the response was generated with matched
hybrid-level and particle-level jets. The systematic uncertainties considered in this analysis include
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the uncertainties due to the tracking efficiency, the unfolding (including the choice of prior, binning
and Bayesian regularisation parameter), the cref scaling, and jet matching criteria.

3. Results

The fully-corrected ∆recoil distribution as a function of ∆ϕ in the region 30 < pch
T,jet < 40 GeV/c

is shown in Fig. 2. The reference distribution for pp collisions was generated by PYTHIA8 [10]
(Monash 2013 tune [11]). The recoil jet yield in Pb–Pb collisions is observed to be suppressed
with respect to the pp reference, indicating jet quenching effects. The ratio of the two distributions
in the lower panel shows a clear indication that the ∆ϕ distribution is narrower in central Pb–Pb
collisions, with the ratio of Pb–Pb / PYTHIA equal to around 0.9 at ∆ϕ ∼ π, and around 0.4–0.5 in
the region π/2 < ∆ϕ < 3π/4.

Figure 2: The fully corrected ∆recoil distributions in 0–10% Pb–Pb collisions as a function of ∆ϕ, compared
to a PYTHIA reference.

4. Outlook

Thefirstmeasurement of the fully-corrected semi-inclusive distribution of charged jets recoiling
from a trigger hadron in 0–10% Pb–Pb collisions at √sNN = 5.02 TeV as a function of the azimuthal
angle ∆ϕ has been shown. The results indicate a suppression and narrowing of the recoil jet yield
in 30 < pch

T,jet < 40 GeV/c with respect to PYTHIA. For a robust interpretation of this result, it is
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crucial that a measurement in pp collisions is taken as a true vacuum reference. A measurement
using the high statistics pp dataset at 5 TeV taken in 2017 will provide this necessary reference.
Work to extend this measurement to higher jet R and a wider pch

T,jet is also ongoing.
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