

A study of γ -hadron correlation in p + Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

Man Xie,^{*a*,*} Xin-Nian Wang^{*a*,*b*} and Han-Zhong Zhang^{*a*}

^aKey Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, China

^bNuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720, Berkeley, USA

E-mail: xieman-stu@mails.ccnu.edu.cn

Under the assumption that a quark-gluon plasma droplet is created in p + A collisions and partons traversing it will lose their energy, we calculate γ -triggered hadron correlation in p + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, within a next-to-leading-order perturbative QCD parton model with the medium-modified fragmentation functions. The parton energy loss can be controlled by the scaled jet transport coefficient \hat{q}/T^3 within the high-twist (HT) approach. The evolution informations of such QGP medium created in p + A collisions are provided by the SuperSONIC hydrodynamics model. With the value of \hat{q}/T^3 extracted via single hadron suppressions in A + A collisions with similar highest initial temperature as in p + A collisions, the γ -hadron spectra with $p_T^{\gamma} = 12 - 40$ GeV/*c* show a suppression of 5%~10% in the most central 0 - 10% p + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. We also provide the predictions for γ -hadron suppression in Pb + Pb collisions at the LHC energies.

HardProbes2020 1-6 June 2020 Austin, Texas

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

It is generally believed that γ -jet production is a golden probe for studying the parton energy loss [1] in high-energy heavy-ion collisions. If we assume that a small QGP droplet is produced in p + A collisions and its evolution can be described by hydrodynamics, we can also predict suppression of γ -hadron production with medium-modified fragmentation functions. We assume that partons will lose their energy when traversing such a medium and the lost energy is controlled by the jet transport coefficient \hat{q} [2] which is defined as the transverse momentum broadening squared per unit length. It depends on medium temperature T and four fluid velocity u^{μ} in the form $\hat{q} = \hat{q}_0 \frac{T_3^3}{T_0^3} \frac{p^{\mu} \cdot u^{\mu}}{p_0}$, where T₀ is the highest temperature at the center of the medium at the initial time τ_0 for the QGP formation. The information for T and u^{μ} are given by event-by-event simulations of the superSONIC hydrodynamic model[3, 4]. In our last work [5], we find that the scaled dimensionless initial jet transport coefficient \hat{q}/T^3 is decreasing slightly with the initial temperature. So we believe that the same value of jet transport coefficient can be approximatively applied for γ -hadron in p + A collisions as obtained for single hadron in A + A collisions at the similar initial temperature of the created QGP mediums.

2. The theory model

In p +A collisions, γ -hadron cross section can be expressed as,

$$\frac{d\sigma_{pA}^{\gamma h}}{dy^{\gamma} d^2 p_{\rm T}^{\gamma} dy^h d^2 p_{\rm T}^h} = \sum_{abd} \int d^2 r dz_d t_A(\vec{r}) f_{a/A}(x_a, \mu^2, \vec{r}) f_{b/p}(x_b, \mu^2) \frac{x_a x_b}{\pi z_d^2} \\
\times \frac{d\sigma_{ab \to \gamma d}}{d\hat{t}} \tilde{D}_{h/d}(z_d, \mu^2, \Delta E_d) + O(\alpha_e \alpha_s^2),$$
(1)

where $f_b/p(x_b, \mu^2)$ and $f_a/A(x_a, \mu^2, \vec{r})$ are the parton distribution functions and $t_A(\vec{r})$ is the nuclear thickness function. $d\sigma_{ab\to\gamma d}/d\hat{t}$ are the tree-level $2 \to 2$ partonic scattering cross sections. The NLO correction at $O(\alpha_e \alpha_s^2)$ order included in our calculation contains $2 \to 2$ virtual diagrams and $2 \to 3$ tree diagrams. We only focus on direct photons which come from the hard processes of the Compton $(qg \to q\gamma)$ or annihilation $(q\bar{q} \to g\gamma)$ scattering. With isolation cuts the contribution from fragmentation photons is only about 10%. We can ignore them here [7].

The medium-modified fragmentation function $\tilde{D}_{h/d}(z_d, \mu^2, \Delta E_d)$ can be expressed as [6],

$$\tilde{D}_{h/d}(z_d, \mu^2, \Delta E_d) = (1 - e^{-\langle N_g^d \rangle}) \left[\frac{z'_d}{z_d} D_{h/d}(z'_d, \mu^2) + \langle N_g^d \rangle \frac{z_g'}{z_d} D_{h/g}(z_g', \mu^2) \right] + e^{-\langle N_g^d \rangle} D_{h/d}(z_d, \mu^2).$$
(2)

With the high-wist formalism [8], the radiative energy loss ΔE_d can be calculated as,

$$\frac{\Delta E_d}{E} = \frac{2C_A \alpha_s}{\pi} \int d\tau \int \frac{dl_{\rm T}^2}{l_{\rm T}^4} \int dz \times \left[1 + (1-z)^2\right] \hat{q}_d \sin^2 \left[\frac{l_{\rm T}^2(\tau-\tau_0)}{4z(1-z)E}\right],\tag{3}$$

where $C_A = 3$, l_T is the transverse momentum of the radiated gluon.

Using the spectrum in p + p collisions as a baseline, the gamma-hadron nuclear modification factor $I_{pA}^{\gamma h}(z_{\rm T}) = \frac{D_{pA}^{\gamma h}(z_{\rm T})}{D_{pA}^{\gamma h}(z_{\rm T})}$ can be expressed as a function of $z_{\rm T} = p_{\rm T}^{h}/p_{\rm T}^{\gamma}$ [9]. $D_{pA}^{\gamma h}(z_{\rm T})$ is the γ -triggered fragmentation function which can be defined as the ratio of γ -hadron cross section to the trigger photon cross section.

3. Numerical results

We first calculate the γ^{dir} -triggered fragmentation function in p + p collisions at $\sqrt{s_{\text{NN}}} = 0.2$ TeV and the corresponding medium modification factor $I_{AuAu}^{\gamma h}$ in 0 - 10% Au + Au collisions. Both of them agree well with the experimental data. The details are shown in our recent paper [10]. The predictions for γ -hadron suppression $I_{PbPb}^{\gamma h}$ in Pb + Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV and 5.02 TeV for different (0 - 5%, 20 - 30%, 40 - 50%, 60 - 70%) centralities are shown in Fig. 1. The corresponding $\hat{q}_0 = 1.8$ GeV²/fm in Pb + Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV and $\hat{q}_0 = 2.0$ GeV²/fm in Pb + Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV are extracted via comparisons to single inclusive hadron suppressions in 0 - 5% Pb + Pb collisions at these two energies, respectively [10].

Shown in Fig. 2 are our predictions for $I_{pPb}^{\gamma h}$ in p + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with $\hat{q}_0 = 1.5$ GeV²/fm which is extracted from single hadron production in Au + Au collisions at $\sqrt{s_{NN}} = 0.2$ TeV which have the similar central temperature as in p + Pb collisions. The shaded bands indicate variations of the results when one changes the initial time for parton-medium interaction between $\tau_0 = 0.5$ and 1.0 fm/c. For γ -hadron spectra in p + Pb collisions, we see a suppression of about 5%~10% due to jet quenching. In both Pb + Pb and p + Pb collisions, the suppression of γ -triggered hadron spectra becomes weaker with a larger p_T trigger photon.

Figure 1: γ^{dir} -hadron suppression factors as a function of z_{T} in 0 - 5%, 20 - 30%, 40 - 50% and 60 - 70% Pb + Pb collisions, with $12 < p_{\text{T}}^{\gamma} < 40 \text{ GeV}/c$, $0.5 < p_{\text{T}}^{h} < 15 \text{ GeV}/c$ (upper panels) and $40 < p_{\text{T}}^{\gamma} < 60 \text{ GeV}/c$, $0.5 < p_{\text{T}}^{h} < 45 \text{ GeV}/c$ (lower panels) at $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$ with $\hat{q}_{0} = 1.8 \text{ GeV}^{2}/\text{fm}$ (left panels) and at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ with $\hat{q}_{0} = 2.0 \text{ GeV}^{2}/\text{fm}$ (right panels).

4. Summary

Under the assumption that a QGP droplet is produced in p + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and its evolution can be described by hydrodynamics, we predict the suppression of γ -triggered

Figure 2: γ^{dir} -hadron suppression factors as a function of z_{T} in 0 - 10%, 20 - 30%, 40 - 50% and 60 - 80% p + Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with $12 < p_{\text{T}}^{\gamma} < 40$ GeV/c, $0.5 < p_{\text{T}}^{h} < 15$ GeV/c (upper panels) and $40 < p_{\text{T}}^{\gamma} < 60$ GeV/c, $0.5 < p_{\text{T}}^{h} < 45$ GeV/c (lower panels). The shaded bands indicate variations of the results when one changes the initial time for parton-medium interaction between $\tau_0 = 0.5$ and 1.0 fm/c.

hadron spectra within NLO perturbative QCD parton model with medium modified fragmentation function due to parton energy loss. The parton energy loss is calculated with the high-twist formalism. The evolution information of the medium created in p + Pb collisions are provided by event-by-event superSONIC hydrodynamics model. Our numerical results show a suppression of about 5%~10% for γ -hadron spectra for 12 < p_T^{γ} < 40 GeV/*c* in the most 0 - 10% central p + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the initial jet transport coefficient \hat{q}_0 extracted from the suppression of single hadron spectra in A + A collisions. And we also predict the γ -hadron productions in Pb + Pb collisions at the LHC energies.

This work is supported by Natural Science Foundation of China (NSFC) under grant No. 11935007.

References

- [1] X. N. Wang, Z. Huang and I. Sarcevic, Phys. Rev. Lett. 77, 231-234 (1996)
- [2] R. Baier, Y. L. Dokshitzer, A. H. Mueller and D. Schiff, Nucl. Phys. B 531, 403-425 (1998)
- [3] P. Romatschke, Eur. Phys. J. C 75, no.7, 305 (2015)
- [4] R. D. Weller and P. Romatschke, Phys. Lett. B 774, 351-356 (2017)
- [5] M. Xie, S. Y. Wei, G. Y. Qin and H. Z. Zhang, Eur. Phys. J. C 79, no.7, 589 (2019)
- [6] X. N. Wang, Phys. Rev. C 70, 031901 (2004)
- [7] H. Zhang, J. F. Owens, E. Wang and X. N. Wang, Phys. Rev. Lett. 103, 032302 (2009)
- [8] W. t. Deng and X. N. Wang, Phys. Rev. C 81, 024902 (2010)
- [9] H. Zhang, J. F. Owens, E. Wang and X. N. Wang, Phys. Rev. Lett. 98, 212301 (2007)
- [10] M. Xie, X. N. Wang and H. Z. Zhang, [arXiv:2003.02441 [hep-ph]].