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We consider the following conundrum which attracted attention recently: on one hand the proton
as a quantum object is in a pure state and is described by a completely coherent wave function
with zero entropy. On the other hand in high energy experiments (DIS) when probed by a small
external probe, it behaves like an incoherent ensemble of (quasi-free) partons.
In this talk, we define the “entropy of ignorance,” which quantifies the entropy associated with the
ability to perform only a partial set of measurements on a quantum system. For a parton model, the
entropy of ignorance is equal to a Boltzmann entropy of a classical system of partons. We analyze
a calculable model used for describing low x gluons in the Color Glass Condensate approach,
which has similarities with the parton model of QCD. In this model we calculate the entropy
of ignorance in the particle number basis as well as the entanglement entropy of the observable
degrees of freedom. We find that the two are similar at high momenta, but differ by a factor of
order unity at low momenta. This holds for the Renyi as well as von Neumann entropies. We
conclude that entanglement does not seem to play an important role in the context of the parton
model.
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1. Introduction

In reference [1], the authors put forward one possible resolution of the following paradox.
On one hand the proton as a quantum object in a pure state and as such has zero entropy. On
the other hand in high energy experiments (DIS) the measurements are well described by an
incoherent ensemble of (quasi-free) partons with a nonvanishing “classical” entropy. The suggested
resolution is that the origin of this entropy is entanglement between the observed in DIS degrees
of freedom and the rest of the proton wave function which are not measured in the final state and
therefore play the role of an “environment”. Namely, if one knew the proton wave function, one
would be able to calculate this density matrix by reducing it with respect to the “environment”:
ρ̂PM = Trunobs

[
|P〉〈P |

]
. The entropy of the parton model is then identified with the von Neumann

entropy of the reduced density matrix according to SPM = −Tr
[
ρ̂PM ln ρ̂PM

]
. However there is

another natural resolution [2]. The set of measurements that is described by the parton model is not
complete, in the sense that it does not provide full information about the density matrix. In DIS,
it is possible to measure the average number of particles and transverse momentum distributions
(including multiparticle ones). The problem is that all of these observables are diagonal in the
number operator basis, and therefore carry no information about nondiagonal elements of the
density matrix in this basis. That is one may come up with an infinite number of density matrices;
all of them will be completely equivalent for the limited purpose of describing the results of only
these measurements.

Interestingly, this lack of knowledge of the actual density matrix of the system can be charac-
terized by an entropy. We will dub this entropy “the entropy of ignorance”. A particularly amusing
case for the entropy of ignorance arises if we consider a system in a pure state. In this case, the
von Neumann entropy is strictly zero; however if we ignore the off-diagonal elements of the density
matrix and compute the entropy of ignorance the result is non-zero.

We will consider the proton wave function in the Color Glass Condensate (CGC) effective
theory. The CGC describes scattering at high energy. For an ultra relativistic hadron, large fraction
of momentum is carried by the valence quarks and gluons. Due to their quantum nature, partons
carrying large fraction ofmomentum radiate low energy gluonswhich have a lifetime relatively short
to that of the valence charges. The CGC wave function was introduced and derived in Refs. [3, 4].
The wave function of the system of slowly evolving valence charges and faster soft gluon degrees
of freedom has the form |ψ〉 = |s〉 ⊗ |v〉 , where |v〉 is the state vector characterizing the valence
degrees of freedom and |s〉 is the vacuum of the soft fields in the presence of the valence source.
We use the McLerran-Venugopalan (MV) model for the valence degrees of freedom and the leading
order CGC wave function for soft fields, see Ref. [2] for details.

The hadron density matrix ρ̂ = |v〉 ⊗ |s〉〈s | ⊗ 〈v | describes a pure quantum state. We can
integrate out the valence (slow) degrees of freedom and define the reduced density matrix for the
soft gluons:

ρ̂r = Trρ ρ̂ ≡
∫

Dρ 〈ρ| ρ̂|ρ〉 =
∫

Dρ 〈ρ|v〉 |s〉〈s | 〈v |ρ〉 . (1)

We will then use this density matrix for calculating the entanglement entropy of the soft gluons and
compare it to the entropy of ignorance.
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Due to the special role of the number of parton representation for the parton model, the
calculations will be demonstrated in number of gluons basis. The straightforward calculation [2]
leads to

ρnm =〈nc(q),mc(−q)| ρ̂r (q)|αc(q), βc(−q)〉 =
(1 − R) (n + β)!√

n!m!α!β!

(
R
2

)n+β
δn+β,m+α , (2)

where R =
(
1 + q2

2g2µ2

)−1
.

2. Entropy of ignorance and entropy of entanglement

The von Neumann entropy of ignorance for a single momentum mode q is

SI (q) = −
∑
m,n

ρnm ln ρnm

= −
1
2
(N2

c − 1)S⊥
∫
q

∑
m,n

[
(1 − R)

(m + n)!
m!n!

(
R
2

)m+n]
ln

[
(1 − R)

(m + n)!
m!n!

(
R
2

)m+n]
. (3)

This expression does not have a closed analytical form [2].
The entanglement entropy in this model was calculated for the first time in Ref. [5]. It also can

be reproduced using the formalism in the previous section. The complete final result is

SE = −Tr ρ̂r ln ρ̂r =
1
2
(N2

c − 1)S⊥

×

∫
d2q
(2π)2

[
ln

(
g2µ2

q2

)
+

√
1 + 4

g2µ2

q2 ln ©­«1 +
q2

2g2µ2 +
q2

2g2µ2

√
1 + 4

g2µ2

q2
ª®¬
]
. (4)

There are a few notable properties in this expression:

• In general, for an arbitrary momentum the entanglement entropy may not be represented in
the conventional form for Bose particles:

S = (N2
c − 1)S⊥

∫
d2q
(2π)2

[
(nq + 1) ln

(
nq + 1

)
− nq ln nq

]
. (5)

Note that in this equation we included only one gluon polarization, i.e. 2(N2
c −1) → (N2

c −1),
as we are working in the leading density approximation where only longitudinal polarization
contributes.

• To gain more insight into Eq. (4), let’s analyze it at large momentum. Performing the
expansion, it is straightforward to obtain

SE (q) ' −(N2
c − 1)S⊥

g2µ2

q2 ln
(
g2µ2

q2

)
,

where SE (q) is defined through SE =
∫

d2q
(2π)2 SE (q). Identifying nq with the gluon Williams-

Weizsäcker (WW) occupation number nq = 〈a†(q)a(q)〉 =
g2µ2

q2 ,we obtain

SE (q) = −(N2
c − 1)S⊥nq ln nq

3
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Figure 1: Ratios of the entropy densities at a given magnitude of the transverse momentum q/gµ.

which reproduces Eq. (5) in the limit of the low occupation number. This shows that at high
momentum WW gluons are appropriate degrees of freedom characterizing the entanglement
entropy density.

• At small momenta, one gets

SE (q) ' −(N2
c − 1)S⊥

[
ln

(
gµ

q
+ 1

)
+
gµ

q
ln

(
1 +

q
gµ

)]
or, identifying nq =

gµ
q

SE (q) = (N2
c − 1)S⊥

[
ln

(
nq + 1

)
+ nq ln

(
1 + 1/nq

) ]
.

This modulo rearrangement of the terms coincides with Eq. (5). It is important to notice that
the identification nq =

gµ
q is different from the WW occupation number which is given by

g2µ2

q2 at all momenta. To understand this better, consider Bose-Einstein thermal distribution
for massless particles in the limit of small momenta q � T : nq = 1

exp( qT )−1 ≈
T
q . Thus

nq =
gµ
q coincides with the thermal distribution at small momenta, if we assign T to gµ.

Amusingly this suggests that due to entanglement the systems is thermal at small momenta
and that the appropriate degrees of freedom are not WW gluons! This statement can be made
more precise and proven rigorously by performing canonical transformations and defining a
Bose quasi-particle state, for details see Ref. [6].

3. Discussions and Conclusions

Comparing the ignorance and entanglement entropies at large q to the sub-leading

SI (q) '
(N2

c − 1)g2µ2S⊥
q2

[
ln

(
e

q2

g2µ2

)
+
g2µ2

q2 ln
e
2

]
(6)

and

SE (q) '
(N2

c − 1)g2µ2S⊥
q2

[
ln

(
e

q2

g2µ2

)
−
g2µ2

q2 ln
(
e

q4

g4µ4

)]
(7)
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we conclude that the leading behavior of the two expressions is the same. The difference appears in
a subleading power of 1/q2 ln q2. For an arbitrary momentum, the ratio of two entropies is shown
in Fig. 1.

The differences between SI and SE disappear in the ultraviolet. A careful analysis that the
identical UV asymptotics of SI (q2) and SE (q2) is due to the small occupation numbers of partons
at large q2. Indeed, at intermediate and low momenta where the occupation numbers per unit
phase space volume are of order unity the difference between the two types of entropies becomes
significant, at the order of 50%. We expect that the real parton model of QCD shares these features.
At very large momenta the entanglement and ignorance lead to the same entropy, while at low Q2

the resulting entropies should be different. This is likely to be unrelated to any nontrivial dynamics
of the “environment” degrees of freedom, such as confinement but is just the consequence of low
occupation number of partons at high momentum. To summarize, the lack of coherence and large
entropy of the partonic density matrix within the partonmodel approachmust be due to “ignorance”,
i.e. to our ability to measure only a restricted number of observables, rather than to the entanglement
of the observed partons with the unobserved degrees of freedom, as suggested in Ref. [1].
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