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Introduction

In these lectures, I give a basic introduction to two topics in the theory of Lie algebras: Lie
algebra cohomology and Kac-Moody algebras. These topics appear in many areas of theoretical
physics and, while many details and important concepts are missing, my hope is that the reader will
have

1. some understanding of the main message when these terms appear in a talk;

2. a basic entry point for further study.

These lectures are aimed at Ph.D. students in high-energy theoretical physics. They are highly
encouraged to work out the thirteen provided exercises.

The first topic is the so-calledChevalley-Eilenberg cohomology of Lie algebras. Asmotivation,
we will discuss some important physical applications: central extensions, projective representations
and Lie algebra deformations. In particular, we will derive the uniqueness of the Virasoro algebra.
This part of the lectures is based on references [1–3].

The second topic is Kac-Moody algebras. They generalize the structure of simple finite-
dimensional Lie algebras to the infinite-dimensional case while preserving much of their rich
mathematical structures, for example Dynkin diagrams, root lattices, highest weight representations
etc. As such, they appear in many physical applications and provide one of the few tractable
families of infinite-dimensional Lie algebras. We will begin by presenting the realisation of affine

2



P
o
S
(
M
o
d
a
v
e
 
2
0
2
0
)
0
0
1

Two useful topics in Lie algebras Victor Lekeu

Kac-Moody algebras in terms of extensions of loop algebras. Then, generic Kac-Moody algebras
are defined in terms of generalized Cartan matrices and Dynkin diagrams, and the lectures finish
with classification theorems for affine and hyperbolic Kac-Moody algebras. This second part of the
lectures is based on [2, 4, 5].

I havemostly used references [1–5]while preparing the lectures, and they constitute an excellent
starting point for further study. Beyond those, I have only listed a few more papers that I found
useful; more complete references to the mathematical literature and some of the modern physical
applications can be found in [1–5].

1. Lie algebra cohomology

1.1 Cohomology: generalities

Let’s start with some general definitions before we go to Lie algebra cohomology. A cochain
complex (�∗, 3∗) is a collection of abelian groups �= indexed by an integer number = (this integer
is called the degree), along with group homomorphisms

3= : �= → �=+1 (1.1)

that increase the degree by one (so, if 2 ∈ �=, then 3=2 ∈ �=+1). They are required to satisfy

3=+1 ◦ 3= = 0 (1.2)

for all = ∈ Z. This is pictured as

. . .
3=−2
−→ �=−1 3

=−1
−→ �=

3=−→ �=+1
3=+1−→ . . . , (1.3)

where going two steps to the right gives zero. This means that we always have

Im 3=−1 ⊂ Ker 3= ⊂ �= . (1.4)

In these lectures, the �= will be vector spaces and the 3= will be linear maps. The abelian group
structure just given by the addition of vectors. A few more words of vocabulary:

• elements of �= are called =-cochains;

• the maps 3= are the coboundary maps, or sometimes more simply the differentials;

• elements of Ker 3=, i.e. =-cochains which satisfy 3=2 = 0, are called =-cocycles; and

• elements of Im 3=−1, i.e. =-cochains 2 ∈ �= which are of the form 2 = 3=−11 for some
1 ∈ �=−1, are =-coboundaries.

Often the superscript = on the differential will be omitted. However, in the general case it is
important to keep in mind that each of the 3= could be defined in very different ways for different =.

Coboundaries are automatically cocycles, but they are the ‘uninteresting ones’: cohomology
is about finding the non-trivial ones. Accordingly, the =-th cohomology group �= is defined as the
quotient

�= =
Ker 3=

Im 3=−1 . (1.5)
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Elements of �= are equivalence classes of cocycles, where two cocycles are considered equivalent
if they differ by a coboundary:

[2] ∈ �= ⇔ 3=2 = 0 , 2 ∼ 2 + 3=−11 . (1.6)

So for example, all elements of the form 3=−11 are equivalent to (or, in the same equivalence class
as) the zero element.

For completeness, let us mention the group structure of the cohomology groups (it will not be
too important in these lectures, but it justifies the name ‘cohomology group’). It is just the addition
that comes from the abelian group structure of the �=: so, the addition of two cohomology classes
[0] and [1] is defined as

[0] + [1] = [0 + 1] . (1.7)

This is well defined. Indeed, if 30 = 31 = 0, then 3 (0 + 1) = 30 + 31 = 0 by the homomorphism
property of the differential. Moreover, if we had started with other elements 0′ = 0+35 , 1′ = 1+36
that are equivalent to 0 and 1, we would have gotten the same class:

[0′] + [1′] = [0′ + 1′] = [0 + 35 + 1 + 36] = [(0 + 1) + (35 + 36)]
= [(0 + 1) + 3 ( 5 + 6)] = [0 + 1] (1.8)

so [0′] + [1′] = [0] + [1]: the definition really depends only on the equivalence class and not on
the choice of representative (note that the abelian property of the group is crucial in this proof).

There are two well-known examples:

• The main example of cohomology groups is given by the de Rham cohomology of smooth
manifolds. There, the cochains are the differential forms and 3 is the de Rham differential:
for a manifold " of dimension =, the complex looks like

0 −→ Ω0(") 30
−→ Ω1(") 31

−→ . . .
3=−1
−→ Ω= (") −→ 0 (1.9)

where Ω? (") is the vector space of ?-forms on " . Cohomology groups are equivalence
classes of closed forms modulo exact ones; they carry important topological information
about the manifold " .

• Another familiar example to physicists is BRST cohomology. There, = is called the ‘ghost
number’ and the �= are the space of functionals in the fields, ghosts, antifields etc. of
total ghost number =. The cohomology of the BRST differential B then encodes important
field-theoretic quantities, for example conserved currents (= = −1), counterterms (= = 0) and
anomalies (= = 1).

We will define a third one in section 1.3.

1.2 Motivations

As a motivation for this part of the lectures, we’ll be looking at some algebraic problems in
the theory of Lie groups and algebras. They have some trivial solutions that we want to discard
and, in fact, we will even want the freedom of redefining solutions by adding a trivial part. It is
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then useful to reformulate this as cohomology, i.e. define suitable spaces �= and differentials 3=

such that the algebraic problem can be written as 3=2 = 0, and the trivial solutions are of the form
2 = 3=−11. This enables us to see the underlying structure, and use all the mathematician’s work
on cohomology to understand them instead of reinventing the wheel.

Projective representations

In quantum mechanics, normalised states are defined only up to a phase. Accordingly, when
we have a symmetry group � of the system, the condition for a representation ) ,

) ( 5 ) ◦ ) (6) = ) ( 5 6) , (1.10)

is too strong: one should only ask for this up to a phase, i.e.

) ( 5 ) ◦ ) (6) = l( 5 , 6) ) ( 5 6) (1.11)

where l( 5 , 6) is some complex number satisfying |l( 5 , 6) | = 1. Such representations are called
projective representations, and are those relevant in quantum mechanics. As the notation suggests,
the phase appearing in (1.11) can depend on the group elements, so we are dealing with a map

l : � × � → * (1) . (1.12)

Equivalently, one can work with the “local exponents”

b : � × � → R (1.13)

defined modulo 2c by
l( 5 , 6) = 48 b ( 5 ,6) . (1.14)

What conditions should these maps satisfy? Since the ) (6) are linear operators acting on a Hilbert
space, associativity of composition still holds,

() ( 5 ) ◦ ) (6)) ◦ ) (ℎ) = ) ( 5 ) ◦ () (6) ◦ ) (ℎ)) . (1.15)

Combined with (1.11) and the associativity of group multiplication, ( 5 6)ℎ = 5 (6ℎ), this implies
that b should satisfy

b ( 5 , 6) + b ( 5 6, ℎ) = b (6, ℎ) + b ( 5 , 6ℎ) ∀ 5 , 6, ℎ ∈ � . (1.16)

Such a map is called a (R-valued) 2-cocycle. There is a class of maps that satisfy this automatically:
the b’s of the form

b ( 5 , 6) =  ( 5 6) −  ( 5 ) −  (6) (1.17)

for some  : � → R, as can easily be checked. But when b takes this form, it can be redefined
away: take the operators

)̃ (6) = 48 (6)) (6) (1.18)

instead of ) (6): they satisfy

)̃ (6) ◦ )̃ (ℎ) = 48 ( (6)+ (ℎ))) (6) ◦ ) (ℎ) = 48 (6ℎ)) (6ℎ) = )̃ (6ℎ) (1.19)
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and so define a representation of the usual kind.
So, we look for maps satisfying the “cocycle condition” (1.16). However, we want to discard

the trivial solutions of the form (1.17), and also consider two solutions that differ by a trivial
one as equivalent (since this difference corresponds to redefining the operators of the projective
representation by an irrelevant phase). This is exactly a cohomology problem.

Central extensions of groups

Using a cocycle b, we can define a new group �̂ which is called a central extension of �. As
a set it is given by �̂ = � × R, and the group operation is

(6, 0) ∗ (ℎ, 1) = (6ℎ, 0 + 1 + b (6, ℎ)) . (1.20)

If b is trivial (in the sense of equation (1.17)), then this is isomorphic to the direct product � × R
with group operation (6, 0) • (ℎ, 1) = (6ℎ, 0 + 1), where b does not appear (so, b can be ‘redefined
away’).

Exercise 1. Using the cocycle condition for b, prove that �̂ is indeed a group. Prove its
isomorphism with � × R when b is trivial.

Now comes the crucial bit: all projective representations of� come from usual representations
of �̂. Indeed, if we have a projective representation of � as in (1.11), then the map T defined by

T[(6, 0)] = 480) (6) (1.21)

gives a genuine representation of �̂, i.e.

T[(6, 0)] ◦ T[(ℎ, 1)] = T[(6, 0) ∗ (ℎ, 1)] . (1.22)

(Checking this is your exercise 2.) This is why central extensions are important: for the symmetries
of a quantum system, one should be looking at representations of the centrally extended group
instead of representations of the group itself.

Central extensions come in two kinds. Topological central extensions have to do with the
global structure of the group; for example, the difference between ($ (3) and (* (2) is responsible
for fermionic representations. In these lectures we will focus on the algebraic, local kind: then, this
information is already contained in the Lie algebra.

Central extensions of Lie algebras

So, we turn to the notion of central extensions of Lie algebras. As a vector space, the centrally
extended Lie algebra is ĝ = g ⊕ R, with bracket

[(G, _), (H, `)]ĝ = ( [G, H]g, 2(G, H)) (1.23)

for some linear map 2 : g × g→ R. Writing a basis of ĝ as {)0, /}, where )0 = (C0, 0) with {C0}
a basis of g and / = (0, 1), this gives

[)0, )1]ĝ = 5 012 )
2 + 201/ , [)0, /]ĝ = 0 . (1.24)

Here, 5 012 are the original structure constants, [C0, C1]g = 5 012 C
2 , and the 201 are the components

of 2 in this basis, 201 = 2(C0, C1). So, the new ‘central element’ / commutes with everything,

6
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but appears in an extra term in the original commutators. Now, this new bracket should be a Lie
bracket: this implies that the map 2 is antisymmetric and satisfies

2( [G, H]g, I) + 2( [H, I]g, G) + 2( [I, G]g, H) = 0 (1.25)

as a consequence of the Jacobi identity. This is the cocycle condition. Again, we want to discard
trivial extensions: those occur when 2 takes the form

2(G, H) = U( [G, H]g) (1.26)

for some linear function U : g→ R, since then (1.25) is clearly satisfied automatically. Moreover,
when 2 is trivial in this sense, one can redefine the generators to get rid of the extra term in (1.24):
the function 5 (-, 0) = (-, 0 + U(-)) provides an isomorphism between the central extension ĝ

and the non-centrally extended algebra g ⊕ R. This is again a cohomology problem.
Exercise 3. Differentiate correctly the discussion of central extensions of groups and make the

link with central extensions of Lie algebras.

Lie algebra deformations

Another important mathematical question is the following [6]: starting with a given Lie algebra
(g, [·, ·]), can the Lie algebra structure be deformed? This means that on the same vector space g,
we look for another bracket `C (·, ·) depending on a continuous parameter C ∈] − n, n [ such that

1. g equipped with this new bracket is a Lie algebra (for all values of C); and

2. we recover the original Lie algebra at C = 0, i.e. `0(G, H) = [G, H].

As is often the case, it is useful to look at the infinitesimal version of the problem, writing

`C = `0 + C i + O(C2) . (1.27)

for some map i : g × g → g. The second condition is then automatic, and the first condition
becomes the two equations

i(G, H) = −i(H, G) (1.28)∑
cyclic

(
[i(G, H), I] + i( [G, H], I)

)
= 0 . (1.29)

The first is antisymmetry; the second is again called the cocycle condition. Here too, there is a
notion of trivial deformation, which leads to trivial solutions of these constraints and the idea of
cohomology.

A deformation is trivial if there is an isomorphism between the deformed algebra and the
original one, i.e. if the deformation can be undone by a change of basis. This isomorphism would
be a linear, invertible map 5 : g→ g satisfying

5 (`C (G, H)) = [ 5 (G), 5 (H)] . (1.30)

Again, we look at the infinitesimal version and write 5 = idg −CV + O(C2): at first order, this
condition is

i(G, H) = V( [G, H]) − [V(G), H] − [G, V(H)] . (1.31)

Using the Jacobi identity, it is easy to check that maps i of this form satisfies the cocycle condition
automatically.

7
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1.3 The Chevalley-Eilenberg complex

We now come to the general definition of Lie algebra cohomology. Let (g, [·, ·]) be a Lie
algebra and d : g→ 6; (+) a representation of g in a vector space + .1 A (+-valued) =-cochain is a
totally antisymmetric multilinear map

2 : g × g × · · · × g︸            ︷︷            ︸
= times

→ + . (1.32)

The space of all =-cochains is written �= (g, +). Note that �0(g, +) ' + (maps with no arguments
are just defined by their image), and that �= (g, +) = 0 for = > dim g. The differential 3 is given by
the collection of maps

3= : �= (g, +) → �=+1(g, +) (1.33)

defined by

(3=2) (G1, G2, . . . , G=+1) =
∑

1≤8< 9≤=+1
(−1)8+ 92( [G8 , G 9], G1, . . . , Ĝ8 , . . . , Ĝ 9 , . . . , G=+1)

+
=+1∑
8=1
(−1)8+1d(G8) (2(G1, . . . , Ĝ8 , . . . , G=+1)) , (1.34)

where the hats mean that those elements are omitted from the list. This is clearly multilinear, and
the right-hand side is indeed an element of + . Less easy to see are the following two properties:

1. the right-hand side of (1.34) is antisymmetric in G1, . . . , G=+1;

2. we have 3=+1 ◦ 3= = 0.

The proof of those two properties is exercise 4. The first one ensures that 3=2 ∈ �=+1(g, +), and
the second one means that we really defined a cochain complex, the Chevalley-Eilenberg complex.
Now, the cohomology groups are defined as usual:

�= (g, +) = Ker 3=

Im 3=−1 . (1.35)

Let’s unpack the definition of 3= for the first few cases:

• = = 0: The map 30 acts on 0-cochains, which are just elements of + . Then, the 1-cochain
302 is

(302) (G) = d(G)2 . (1.36)

• = = 1: 1-cochains are maps g→ + , on which 31 acts as

(312) (G, H) = −2( [G, H]) + d(G)2(H) − d(H)2(G) . (1.37)

1Reminder: this means that to each G in g, we associate a linear map d(G) : + → + and, moreover, we have the
property d( [G, H]) = d(G) ◦ d(H) − d(H) ◦ d(G) for all G, H ∈ g.

8
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• = = 2: now

(322) (G, H, I) = −2( [G, H], I) + 2( [G, I], H) − 2( [H, I], G)
+ d(G)2(H, I) − d(H)2(G, I) + d(I)2(G, H) . (1.38)

Note that we can shuffle terms around to get cyclic permutations with nicer signs:

(322) (G, H, I) =
∑
cyclic

(
− 2( [G, H], I) + d(G)2(H, I)

)
. (1.39)

With these formulas, we can check explicitly 3=+1 ◦ 3= = 0 at low degrees: on a 0-cochain we get

(31302) (G, H) = −(302) ( [G, H]) + d(G) (302) (H) − d(H) (302) (G)
= −d( [G, H])2 + d(G)d(H)2 − d(H)d(G)2 (1.40)

which is zero because d is a representation, and on a 1-cochain we have

(32312) (G, H, I) =
∑
cyclic

(
− (312) ( [G, H], I) + d(G) (312) (H, I)

)
=

∑
cyclic

(
2( [[G, H], I]) − d( [G, H])2(I) + d(I)2( [G, H])

− d(G)2( [H, I]) + d(G)d(H)2(I) − d(G)d(I)2(H)
)
, (1.41)

which vanishes because of the Jacobi identity and the fact that d is a representation.
We recognize the formulas that appeared in the previous section:

1. For central extensions, the relevant representation is the trivial one,+ = R and d(G) = 0. The
cocycle condition is 322 = 0 and the trivial solutions are 2 = −31U. So, central extensions
are classified by �2(g,R).

2. For infinitesimal deformations, the representation is the adjoint, + = g and d(G) = adG , i.e.

d(G) (H) = adG (H) = [G, H] . (1.42)

The cocycle condition is 32i = 0 and the trivial solutions are i = −31V: infinitesimal
deformations are classified by elements of �2(g, g).

Remark: in the notation �= (g, +), the representation d does not appear. This can unfortunately
lead to confusion when there exist several inequivalent representations in the same vector space + ,
so sometimes the heavier notation �=d (g, +) is used. Here, we will stick to the notation �= (g, +);
in particular, in these lectures + = R will always mean the trivial representation, and + = g the
adjoint.

Exercise 5. For infinitesimal deformations, spell out the conditions at order two. What is the
relevant cohomology group?

9
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1.4 General theorems and examples

In this section, we first give a few general theorems about Chevalley-Eilenberg cohomology,
with some applications. Then we give two examples of non-trivial central extensions, leading to
the Heisenberg and Virasoro algebras.

• First, there is a nice general interpretation of the ‘zeroth’ cohomology group �0(g, +): it is
the space of invariants2 in + ,

�0(g, +) ' {E ∈ + | d(G) (E) = 0 ∀G ∈ g} . (1.43)

Indeed, the cocycle condition is 302 = 0, i.e. (302) (G) = d(G)2 = 0 for all G ∈ g. There are
no trivial solutions since there is no space at degree −1.

In particular, if the representation is trivial (meaning d(G) = 0 for all G in g), we have �0(g, +) = +
since everything is invariant. So, for any Lie algebra g, we have

�0(g,R) = R (1.44)

(where we mean the trivial representation d = 0 on R, see remark above).

• Another generic statement we can make is Whitehead’s lemmas: if g is a finite-dimensional
semisimple algebra3 and d is a finite-dimensional representation, then

�1(g, +) = 0 (Whitehead’s first lemma) (1.45)

and
�2(g, +) = 0 (Whitehead’s second lemma). (1.46)

There is no third lemma under these conditions; however, if we also assume that the repre-
sentation is irreducible4 and non-trivial, then actually

�= (g, +) = 0 ∀= ≥ 0 . (1.47)

Exercise 6. Prove the = = 0 case.

In particular, semisimple, finite-dimensional algebras are very rigid: they cannot be deformed,
since �2(g, g) = 0, and don’t admit central extensions, since �2(g,R) = 0. This is why we never
consider deforming (or analysing the RG flow) of the structure constants in Yang-Mills theory
(despite the fact that they are parameters in the Lagrangian), only the masses and couplings: such
a deformation can always be absorbed by a change of basis.

2At the group level, the invariance condition would be '(6)E = E for all 6 ∈ �, where ' is now a group representation.
Differentiating gives d(G)E = 0 for a Lie algebra representation.

3Reminder: a subset i ⊆ g is an ideal of g if any commutator involving an element of i is again an element of i,
[G, 8] ∈ i for all G ∈ g and 8 ∈ i. There are always ‘trivial’ ideals: {0} and the whole of g. Now, an algebra is simple if it
is non-abelian and has no non-trivial ideal. A semisimple algebra is a direct sum of simple ones.

4Reminder: a subspace, ⊆ + is invariant if d(G)F ∈ , for all G ∈ g and all F ∈ , . Any representation has trivial
invariant subspaces: {0} and + . A representation is irreducible if it has no nontrivial invariant subspace.
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• As a last general theorem before we move on to examples, let us mention the link with the
de Rham cohomology of the Lie group. First, define the cohomology groups �= (�) as de
Rham cohomology �=dR(�) restricted to left-invariant differential forms5. Then, we have the
following theorem:

Theorem. Let � be a connected Lie group with Lie algebra g. Then,

�= (g,R) = �= (�) . (1.48)

If in addition � is compact,
�= (�) = �=dR(�) . (1.49)

As application, we can give the cohomology of BD(2): since the group (* (2) is compact and equal
to (3 as a manifold, the theorem gives

�= (BD(2),R) = �=dR((
3) =

{
R if = = 0, 3
0 if = = 1, 2.

(1.50)

(The second equality is a well-known fact for the de Rham cohomology of spheres.) This is of
course consistent with Whitehead’s lemmas.

We now move on to examples of non-trivial central extensions, i.e. examples of non-vanishing
second cohomology groups �2(g,R). To reiterate: we are looking for antisymmetric bilinear maps
2 : g × g→ R satisfying the cocycle condition (1.25), up to trivial solutions of the form (1.26).

Heisenberg algebra. The easiest example with a central extension is the abelian algebra R2,
which has �2(R2,R) = R. This can be seen easily from the explicit formulas (1.25) and (1.26):
since all commutators are zero, any antisymmetric map is automatically a cocycle, and the only
trivial cocycle is the zero map. But, up to a constant, there is only one antisymmetric map on R2:
the volume form 2(G, H) = Y8 9G8H 9 . Said equivalently, the space of antisymmetric 2 × 2 matrices is
one-dimensional. This proves �2(R2,R) = R. In the basis & = (1, 0), % = (0, 1) of R2, this leads
to the Heisenberg algebra

[&, %] = 0 + 2(&, %) / = / (1.51)

with / the central element.

Virasoro algebra. Another important example of central extension is the Virasoro algebra. This
is the unique central extension of the algebra Vect((1) of vector fields on a circle (the Witt algebra).
In a Fourier basis

!< = 8 4
8<C 3

3C
, < ∈ Z , (1.52)

the commutators of the Witt algebra are

[!<, !=] = (< − =)!<+= . (1.53)

5Left-invariant forms are defined by the property !∗6l = l where !∗6 is the pullback by the smooth map !6 : � →
� : ℎ ↦→ 6ℎ (left translation by 6). Because of 3 (!∗6l) = !∗6 (3l), the exterior derivative preserves this property and it
makes sense to look at �= (�). Note that this is really different from de Rham cohomology in general: it could be the
case that a left-invariant l can be written as l = 3[, but where [ cannot be chosen to be left-invariant. In that case [l]
is zero in �=dR (�) but not in �

= (�).

11
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Again, the cohomology group �2(Vect((1),R) is one-dimensional. It is generated by the cocycle

2(!<, !=) = <3X<+=,0 . (1.54)

The proof of this takes a few steps. First, we show that, up to a trivial redefinition, we can always
take 2(!0, !<) = 0. For < = 0, this is already the case by antisymmetry. A trivial redefinition
gives

2′(!0, !<) = 2(!0, !<) + U( [!0, !<]) = 2(!0, !<) − <U(!<) . (1.55)

Choosing U(!<) = 2(!0, !<)/< for all < ≠ 0 then gives 2′(!0, !<) = 0. (We drop the primes in
what follows.) Using the notation 2<,= = 2(!<, !=), the cocycle condition in this basis is

0 = 2( [!<, !=], !?) + 2( [!=, !?], !<) + 2( [!?, !<], !=)
= (< − =)2<+=,? + (= − ?)2=+?,< + (? − <)2?+<,= . (1.56)

Choosing ? = 0 and using 2<,0 = 0 as well as 2=,< = −2<,=, this reduces to

(< + =)2<,= = 0 . (1.57)

So, 2<,= is non-zero only when = = −<, and we can write

2<,= = 5< X<+=,0 (1.58)

for some constants 5< which satisfy 5−< = − 5<. Then, evaluating (1.56) for ? = −< − 1 and = = 1
gives the recurrence relation

0 = (< − 1) 5<+1 − (< + 2) 5< + (1 + 2<) 51 . (1.59)

Observe that this gives 0 = 0 for < = 1: so, all 5<’s for < ≥ 3 are determined from the two “initial
conditions” 51 and 52. The general solution to the recurrence is

5< = �< + �<3 ∀< > 0 , (1.60)

where � and � is some linear combination of 51 and 52. The 5< for negative < are determined
from those using 5−< = − 5<. So, we found two independent cocycles, one linear in < and the other
cubic. But the linear one is trivial: indeed, a redefinition acts as

2′<,−< = 2<,−< + U( [!<, !−<]) = 2<,−< + 2< U(!0) . (1.61)

Clearly, this can be used to redefine away the linear part, but not the cubic part. Observe also that
this redefinition is independent from the previous one where U(!0) was left arbitrary.

This proves the statement and leads to the Virasoro algebra

[!<, !=] = (< − =)!<+= + <3X<+=,0 / , [!<, /] = 0 . (1.62)

A more conventional way to write the first commutator is as

[!<, !=] = (< − =)!<+= +
1
12
<(<2 − 1)X<+=,0/ . (1.63)

This is always allowed by a change of basis: the factor of 1/12 can be absorbed in a redefinition of
/ , and the cocycle 2̃(!<, !=) = <X<+=,0 is trivial. This algebra is very important in string theory
and in two-dimensional conformal field theory; however, it is interesting to know that this result is
purely algebraic and can be derived without quantum field techniques.

12
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2. Kac-Moody algebras

We now come to the second topic: Kac-Moody algebras. The presentation is organized as
follows:

1. First, we give the explicit construction of a family of infinite-dimensional algebras known as
affine Kac-Moody algebras.

2. The second subsection is a short reminder about the presentation of simple, finite-dimensional
Lie algebras starting from a Cartan matrix.

3. We then define generalized Cartan matrices, weakening the definition of the previous section,
and list a few of their properties.

4. The generalized Cartan matrices are used to define Kac-Moody algebras; this definition
reproduces that of section 2.2 when the Cartan matrix is of the usual kind (of ‘finite type’).

5. Then, we explain how the affine algebras of section 2.1 are understood from this point of
view (generalized Cartan matrices of ‘affine type’).

6. We finish with the definition of hyperbolic Kac-Moody algebras and the presentation of their
classification theorem.

The whole second part of these lectures will be over the complex numbers.

2.1 Affine Kac-Moody algebras

We begin with the construction and a few properties of loop algebras, and their extensions the
affine Kac-Moody algebras.

Loop algebras

Start with a finite-dimensional Lie algebra g. It’s loop extension is the space of analytic maps
from the circle (1 to g (hence the name: the image of this map is a loop in g). So, using a
parametrization of (1 by C ∈ R, U ∈ gloop means that U(C) ∈ g for all C ∈ R, with the periodicity
condition

U(C + 2c) = U(C) . (2.1)

Moreover, this map must be analytic, so we can expand it in Fourier modes.
There is a natural bracket on this space: take brackets pointwise,

[U, V] (C) = [U(C), V(C)]g . (2.2)

(On the LHS, we define the map [U, V] ∈ gloop by specifying its value at C; on the RHS, the bracket
is the original one in g between the elements U(C), V(C) ∈ g.) This makes the space gloop into an
infinite-dimensional Lie algebra.

Using a Fourier basis
)0= (C) = C048=C (2.3)

13
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with the C0 a basis of the original Lie algebra g and = ∈ Z, this gives

[)0= , )1<] = 5 012 )
2
<+= (2.4)

in terms of the structure constants of g, [C0, C1]g = 5 012 C
2 . Note that the generators )00 span a

subalgebra of gloop that is isomorphic to g. This is called the zero-mode subalgebra of the loop
algebra.

Untwisted affine Kac-Moody algebras

From now on, we assume that g is simple. Then, there is a unique central extension of the
algebra above: it reads

[)0<, )1= ] = 5 012 )
2
<+= + < X<+=, 0 ^01 (2.5)

[ ,)0= ] = 0 , (2.6)

where ^01 are the components of the Killing form ^ of the original finite-dimensional algebra g,

^01 = ^(C0, C1) = tr(adC0 ◦ adC1 ) = 5 023 5
13
2 (2.7)

(in (2.7), the first two equalities hold by definition; the last one is exercise 7). Remember that ^01

is non-degenerate since g is simple (Cartan’s criterion). As explained before, in a quantum theory
one should always be looking at the centrally extended algebra instead of the original one.

This is not the last step, however. To get to the proper affine Kac-Moody algebra, one extra
generator � is needed: it is called the “derivation” and its brackets with the other generators are
simply

[�,)0<] = <)0< , [�,  ] = 0 . (2.8)

This finishes the construction of the “untwisted” affine Kac-Moody algebra based on g. It is written
g(1) : as a vector space it is

g(1) = gloop ⊕ C ⊕ C� , (2.9)

with basis {)0= ,  , �}. Its brackets are given in (2.5), (2.6) and (2.8).
Exercise 8. Show that the bilinear form (· , ·) : g(1) × g(1) → C defined by

()0<, )1= ) = ^01X<+=,0 ( , �) = 1 , others = 0 (2.10)

is invariant, i.e. ( [G, H], I) = (G, [H, I]) for all G, H, I ∈ g(1) , and non-degenerate. Twomore (harder)
exercises are: prove that it is unique up to a change of basis, and that no such form would exist if �
had not been included.

Twisted affine Kac-Moody algebras

In the previous section we constructed the so-called “untwisted” affine Lie algebras. To get
the “twisted” ones, we give up the periodicity condition and impose instead the twisted boundary
conditions

U(C + 2c) = l(U(C)) , (2.11)

for some automorphism l : g → g of finite order # . This means that the map l satisfies the
following three conditions:

14
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1. it is linear and preserves the Lie bracket, l( [G, H]g) = [l(G), l(H)]g for all G, H ∈ g;

2. it is invertible; and

3. applying it # times gives the identity,

l ◦ l ◦ · · · ◦ l︸             ︷︷             ︸
# times

≡ l# = idg . (2.12)

In particular, the first condition means that we can still define the bracket of maps as before: that
definition is compatible with the twisted periodicity,

[U, V] (C + 2c) = [U(C + 2c), V(C + 2c)]g = [l(U(C)), l(V(C))]g = l( [U(C), V(C)]g)
= l( [U, V] (C)) . (2.13)

This defines the twisted loop algebra glloop. Let us write the commutation relations in a basis. The
maps are now 2c#-periodic,

U(C + 2c#) = l# (U(C)) = U(C) , (2.14)

so a Fourier basis is now given by the

)0
=+ 9/# (C) = C

048 (=+ 9/# )C (2.15)

with = ∈ Z as before and 9 = 0, · · · , # − 1. Their commutation relations are

[)0
=+ 9/# , )

1
<+:/# ] = 5 012 )

2
=+<+( 9+:)/# . (2.16)

Note that those basis elements satisfy

)0
=+ 9/# (C + 2c) = C048 (=+ 9/# )C48 (2c 9/# ) , (2.17)

whereas
l()0

=+ 9/# (C)) = l(C
0)48 (=+ 9/# )C . (2.18)

This can be only compatible if the basis element C0 that appears in )0
=+ 9/# satisfies

l(C0) = 482c 9/# C0 . (2.19)

In particular, the zero-mode subalgebra of glloop spanned by the )
0
0 is not isomorphic to g anymore.

Instead, since 9 = 0 in (2.19), it is the subalgebra g0 of elements fixed by l,

g0 = { G ∈ g | l(G) = G } ⊆ g . (2.20)

From there, we proceed as before by adding a central extension  and a derivation �. The
central extension is again unique and takes the form

[)0
=+ 9/# , )

1
<+:/# ] = 5 012 )

2
=+<+( 9+:)/# +

(
= + 9

#

)
^01X=+<+( 9+:)/# ,0  , (2.21)
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while the derivation acts as

[�,)0
=+ 9/# ] =

(
= + 9

#

)
)0
=+ 9/# . (2.22)

This defines the twisted affine Kac-Moody algebra, written g(# ) (where # is the order of l). As a
vector space it is

g(# ) = glloop ⊕ C ⊕ C� , (2.23)

with basis {)0
=+ 9/# ,  , �}. Its non-zero brackets are given in (2.21) and (2.22).

Now, it can happen that for some automorphisms l, the construction of the twisted algebra
does not give anything new, and the resulting algebra is isomorphic to an untwisted one. It turns out
that the automorphisms for which this construction yields truly new algebras come from symmetries
of the Dynkin diagram (those define equivalence classes of ‘outer’ automorphisms). The Dynkin
diagrams of simple finite-dimensional Lie algebras over the complex numbers are well known and
displayed in figures 1 and 2. So, the algebras �= = B; (=+1,C), �= = B>(2=,C) and the exceptional
algebra �6 all have an automorphism of order 2, and �4 = B>(8,C) also has an automorphism of
order 3. Therefore, from the classification of simple complex finite-dimensional Lie algebras we
get the list of affine Kac-Moody algebras: the untwisted ones are

�
(1)
= , �

(1)
= , �

(1)
= , �

(1)
= , �

(1)
6 , �

(1)
7 , �

(1)
8 , �

(1)
4 , �

(1)
2 , (2.24)

and the twisted ones are
�
(2)
= , �

(2)
= , �

(2)
6 , �

(3)
4 . (2.25)

In this notation, the exponent denotes the order ofl (this is # = 1 in the untwisted case, which can be
seen as the degenerate twisted case with l = idg). Of course, at this stage the classification (2.24)–
(2.25) is just a consequence of the construction, along with some theorems about automorphisms
of simple Lie algebras. However, in section 2.4 we will see an independent definition of affine
Kac-Moody algebras; it is a non-trivial fact that those two constructions actually coincide.

Finally, for the twisted algebras g(# ) we list the zero-mode subalgebra (isomorphic to the
subalgebra g0 of g which is fixed under the automorphism l, see (2.20)). Those are again simple
Lie algebras of the Cartan classification:

g(# ) g(1) �
(2)
2 �

(2)
2= �

(2)
2=−1 �

(2)
=+1 �

(2)
6 �

(3)
4

g0 g �1 �= �= �= �4 �2
. (2.26)

The D(1) case

For completeness, let us mention the algebra D̂(1), which by abuse of terminology is often
called “D(1) Kac-Moody”. It is a central extension of the D(1) loop algebra: as a vector space,

D̂(1) = D(1)loop ⊕ C . (2.27)

In the basis {C<,  }, with < ∈ Z, its brackets are

[C<, C=] = < X=+<,0  , [C=,  ] = 0 . (2.28)

16



P
o
S
(
M
o
d
a
v
e
 
2
0
2
0
)
0
0
1

Two useful topics in Lie algebras Victor Lekeu

2.2 Finite-dimensional case

Before going to the general notion of Kac-Moody algebra, we review some (maybe unfamiliar)
facts about the finite-dimensional case.

A finite-dimensional, complex, simple Lie algebra of rank A is completely specified by its
Cartan matrix � as the Lie algebra generated by the 3A generators

{ ℎ8 , 48 , 58 | 8 = 1, 2, . . . , A } (2.29)

and all their commutators, subject to the Chevalley-Serre relations6

[ℎ8 , ℎ 9] = 0 [48 , 5 9] = X8 9ℎ8 (2.30)
[ℎ8 , 4 9] = �8 94 9 [ℎ8 , 5 9] = −�8 9 5 9 (2.31)

ad1−�8 9

48 (4 9) = 0 ad1−�8 9

58
( 5 9) = 0 (2.32)

(no sum over repeated indices) along with antisymmetry and the Jacobi identity. The relations of
the last line are the Serre relations; they should be taken only for 8 ≠ 9 .

What this means is that (2.29) does not give a basis of the algebra. To find a basis, one must
take those and all possible commutators between them, then use the Chevalley-Serre relations to
find the independent ones. In this presentation, the ℎ8’s generate the Cartan subalgebra, the 48’s and
their multicommutators are associated to positive roots, and the 58’s and their multicommutators to
the negative ones.

In this case, the Cartan matrix is a square A × A matrix that satisfies the following properties:

a) �8 9 ∈ Z

b) �88 = 2 (no sum on 8),

c) �8 9 ≤ 0 for 8 ≠ 9 ,

d) �8 9 = 0⇔ � 98 = 0,

e) det � > 0,

f) � is “indecomposable”: there is no renumbering of the indices that puts � in block-diagonal
form.

If the last property is dropped, one simply gets a semi-simple Lie algebra, whose simple factors
have Cartan matrices given by the diagonal blocks. The property det � > 0 is equivalent to
the requirement that the algebra obtained from the procedure described above (by generators and
relations) is finite-dimensional. This is very non-trivial, and in general it is quite difficult to work
out all the consequences of the Serre relations.

A Cartan matrix can be neatly encoded in a Dynkin diagram, defined as follows:

a) There is one node in the diagram for each 8 = 1, . . . , A;

6Unfortunately, two conventions exist. We follow here references [4, 5]; the book [2] has the opposite convention
where the transpose of the Cartan matrix is used.
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�=

�=

�=

�=

Figure 1: The Dynkin diagrams of the four infinite families of finite-dimensional complex simple Lie
algebras. Each diagram contains = nodes. They are the algebras of the classical matrix groups over the
complex numbers: �= ' sl(= + 1,C), �= ' so(2= + 1,C), �= ' sp(2=,C) and �= ' so(2=,C).

b) We draw a line between nodes 8 and 9 if �8 9 ≠ 0;

c) We write the pair of integers ( |�8 9 |, |� 98 |) above that line.

Clearly, indecomposable Cartan matrices correspond to connected Dynkin diagrams. Often7, we
have �8 9� 98 ≤ 4: then, the last two rules are replaced by

b’) The nodes 8 and 9 are connected by = = max
(
|�8 9 |, |� 98 |

)
lines;

c’) There is an arrow pointing to node 8 if |�8 9 | > |� 98 |.

In this way, the classification of simple, finite-dimensional complex Lie algebras is reduced to the
problem of classifying all Cartan matrices, or all corresponding Dynkin diagrams. The result (the
Killing-Cartan classification) is well known and is displayed in figures 1 and 2.

Let’s give two simple examples. The simplest Cartan matrix is the 1 × 1 matrix � = (2), with
Dynkin diagram consisting of just one node. The corresponding algebra is generated by the triple
{ℎ, 4, 5 }, and the Chevalley-Serre relations reduce to

[ℎ, 4] = 24 , [ℎ, 5 ] = −2 5 , [4, 5 ] = ℎ . (2.33)

This is just the algebra B; (2,C) in the basis

ℎ =

(
1 0
0 −1

)
, 4 =

(
0 1
0 0

)
, 5 =

(
0 0
1 0

)
. (2.34)

Note that in the general case, for each fixed 8 the triple {ℎ8 , 48 , 58} generates an B; (2,C) subalgebra;
the other relations tell us how these various B; (2,C)’s interact.

Another example is the rank 2 Cartan matrix

� =

(
2 −1
−1 2

)
, (2.35)

7Actually (and this is a non-trivial thing to prove), this is always the case here because of the condition det � > 0, but
the same set of rules will also be used for the more general Cartan matrices introduced in the next section.
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�6

�7

�8

�4

�2

Figure 2: The Dynkin diagrams of the five exceptional simple Lie algebras �6, �7, �8, �4 and �2.

with Dynkin diagram
. (2.36)

The algebra is generated by {ℎ1, ℎ2, 41, 42, 51, 52} and all their commutators. As before, the triples
with the same index give two B; (2,C) subalgebras. The other Chevalley-Serre relations (with mixed
indices) are

[ℎ1, ℎ2] = [41, 52] = [42, 51] = 0
[ℎ1, 42] = −42 , [ℎ1, 52] = 52 , [ℎ2, 41] = −41 , [ℎ2, 51] = 51 (2.37)

and

[41, [41, 42]] = [42, [42, 41]] = 0
[ 51, [ 51, 52]] = [ 52, [ 52, 51]] = 0 . (2.38)

The first set of relations show that, among all multi-brackets, it is sufficient to consider those only
containing 48’s or only containing 58’s, but not mixed ones or any containing ℎ8’s. For example,

[ 51, [41, 42]] = −[41, [42, 51]] − [42, [ 51, 41]] = 0 + [42, ℎ1] = −�1242

= 42 . (2.39)

This is indeed the case in general (a recursive proof of this fact, for any Cartan matrix, is left as
exercise 9).

Then, the Serre relations (2.38) show that any such bracket with twice the same element
vanishes; therefore, the algebra is 8-dimensional and spanned (as a vector space) by

{ℎ1, ℎ2, 41, 42, [41, 42], 51, 52, [ 51, 52]} . (2.40)
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A matrix realization of this basis, satisfying all required relations, is

ℎ1 =
©­­«
1 0 0
0 −1 0
0 0 0

ª®®¬ , 41 =
©­­«
0 1 0
0 0 0
0 0 0

ª®®¬ , 51 =
©­­«
0 0 0
1 0 0
0 0 0

ª®®¬ ,
ℎ2 =

©­­«
0 0 0
0 1 0
0 0 −1

ª®®¬ , 42 =
©­­«
0 0 0
0 0 1
0 0 0

ª®®¬ , 52 =
©­­«
0 0 0
0 0 0
0 1 0

ª®®¬ ,
[41, 42] =

©­­«
0 0 1
0 0 0
0 0 0

ª®®¬ , [ 51, 52] =
©­­«
0 0 0
0 0 0
1 0 0

ª®®¬ . (2.41)

This is the algebra B; (3,C). The two B; (2,C) subalgebras spanned by {ℎ1, 41, 51} and {ℎ2, 42, 52}
are clearly visible; compare with (2.34).

With these formulas at hand, we can also prove explicitly a claim made in the previous section.
(This can be skipped on a first reading.) There is a symmetry in the Dynkin diagram (2.36) of
B; (3,C) which exchanges the two nodes. This corresponds to an automorphism l of the algebra
exchanging the indices 1 and 2,

l(ℎ1) = ℎ2 l(41) = 42 l( 51) = 52

l(ℎ2) = ℎ1 l(42) = 41 l( 52) = 51 . (2.42)

The morphism property then gives, for the two remaining basis elements,

l( [41, 42]) = [l(41), l(42)] = [42, 41] = −[41, 42] (2.43)

and, likewise, l( [ 51, 52]) = −[ 51, 52]. This is the Dynkin diagram automorphism8 of order 2
appearing in the construction of the twisted algebra �(2)2 . In table 2.26, we claimed that the
subalgebra that is fixed by l is isomorphic to �1 = B; (2,C). Indeed, that algebra is clearly given
by linear combinations of ℎ1 + ℎ2, 41 + 42 and 51 + 52, and it is easily checked that

� = 2(ℎ1 + ℎ2) , � =
√

2(41 + 42) , � =
√

2( 51 + 52) (2.44)

satisfy the defining relations (2.33) of B; (2,C).

2.3 Generalized Cartan matrices

The idea behind Kac-Moody algebras is to keep the same Chevalley-Serre generators and
relations, but dropping the condition det � > 0 on the Cartanmatrix. Themost striking consequence
is that the algebras obtained this way, when det � ≤ 0, are infinite-dimensional: the Serre relations
do not restrict the multicommutators to a finite number.

So, a generalized Cartan matrix is a A × A matrix such that

8The general definition of such automorphisms should be clear from this example: for a permutation ¤l ∈ (A of the A
nodes that leave the diagram invariant, i.e. � ¤l (8) ¤l ( 9) = �8 9 for all 8, 9 = 1, . . . , A , one can define an automorphism l

of the algebra by the formula

l(ℎ8) = ℎ ¤l (8) , l(48) = 4 ¤l (8) , l( 58) = 5 ¤l (8) .
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a) �8 9 ∈ Z

b) �88 = 2 (no sum on 8),

c) �8 9 ≤ 0 for 8 ≠ 9 ,

d) �8 9 = 0⇔ � 98 = 0.

As before, we will often ask that � is also indecomposable. Dynkin diagrams can be associated to
generalized Cartan matrices as above.

Generalized Cartan matrices come in three types (proving this is a fun exercise in linear
algebra; see [5], chapter 4). For a vector E = (E1, E2, . . . , EA ) ∈ RA , we use the notation E > 0 if all
components satisfy E8 > 0 (E ≥ 0 and E < 0 are defined in the same manner).

Theorem. Let � be an indecomposable generalized Cartan matrix. Then, one and only one of the
following holds, both for � and its transpose:

1. ∃D > 0 such that �D > 0. This is ‘finite type’.

2. ∃D > 0 such that �D = 0, and D is unique (up to a positive factor). This is ‘affine type’.

3. ∃D > 0 such that �D < 0. This is ‘indefinite type’.

Moreover, one often considers symmetrizable Cartan matrices: they are those which can be
written as

� = �( , (2.45)

where � is diagonal with strictly positive entries and ( is symmetric. As in the finite-dimensional
case (where � is given in terms of simple roots by the formula �8 9 = 2(U8 , U 9)/(U8 , U8)), this
property has to do with a scalar product on root space, which however is not Euclidean in the
general case.

Theorem. Cartan matrices of finite and affine type are symmetrizable.

One can also prove the following characterization of finite and affine generalized Cartan
matrices:

1. � is of finite type if and only if det � > 0;

2. � is of affine type if and only if det � = 0 and det �{8 } > 0, where �{8 } is the matrix obtained
from � by removing the 8th line and the 8th column.

The signature of ( is then (+ + · · · +) (finite) or (0 + · · · +) (affine). Notice that, at the level of
Dynkin diagrams, this characterization of affine generalized Cartan matrices means that removing
any node leaves a diagram of finite type (or a disjoint union of them). Since those are classified
(figures 1 and 2), this enables a complete classification of all affine generalized Cartan matrices.
The corresponding Dynkin diagrams are displayed in figures 3 and 4.

Exercise 10. Study the generalized Cartan matrix

�?,@ =

(
2 −?
−@ 2

)
(2.46)
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�
(1)
1

�
(1)
=

�
(1)
=

�
(1)
=

�
(1)
=

�
(1)
6

�
(1)
7

�
(1)
8

�
(1)
4

�
(1)
2

Figure 3: The Dynkin diagrams of the untwisted affine Kac-Moody algebras g(1) . They contain one more
node than the Dynkin diagram of g (so, these diagrams have = + 1 nodes, where = is the rank of g).

for ?, @ strictly positive integers. This means the following questions: For which values of ? and
@ is it of finite type? Affine? Indefinite? Draw the Dynkin diagrams in every case. When is it
symmetrizable? What is the signature of (?

2.4 Definition of Kac-Moody algebras

We now come to the definition of the Kac-Moody algebra associated to a symmetrizable
generalized Cartan matrix. (The definition in the general case is more complicated; see [5].) First,
notice that the definition of the algebra from the Chevalley-Serre generators and relations in section
2.2 does not involve the condition det � > 0: therefore, it also makes sense for generalized Cartan
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�
(2)
2 (�(2)1 )

�
(2)
2= (�̃ (2)= )

�
(2)
2=−1 (� (2)= )

�
(2)
=+1 (� (2)= )

�
(2)
6 (� (2)4 )

�
(3)
4 (� (3)2 )

Figure 4: The Dynkin diagrams of the twisted affine Kac-Moody algebras g(# ) . The zero-mode subalgebra
g0 (see table 2.26) is obtained by removing the leftmost node: again, the number of nodes of these diagrams
is = + 1, where = is the rank of g0. Sometimes, the notation in parenthesis is used for the same algebra to
emphasize the sub-diagram corresponding to g0.

matrices. We denote the algebra obtained this way by g′(�). As alluded to before, one can prove
the following:

Theorem. Let � be a generalized Cartan matrix. The algebra g′(�) is finite dimensional if and
only if � is of finite type.

As before, independent multicommutators only involve 48’s or 58’s, but not both, and never any
ℎ8 . Accordingly, g′(�) has the following useful ‘triangular’ decomposition (as a vector space):

g′(�) = n− ⊕ h ⊕ n+ , (2.47)

where as basis of h is given by the ℎ8’s, a basis of n+ is given by the 48’s and all their commutators
[48 , [4 9 , . . . , [4: , 4;] . . . ]], and a basis of n− by the 58’s and their multicommutators (which of
those commutators survive is determined by the Serre relations, as we saw before). Moreover, it
is easy to see that the adjoint action of h on n± is diagonal. Many of the interesting properties of
finite-dimensional simple Lie algebras, such as root systems and highest-weight representations,
come from this triangular structure and generalize to this infinite-dimensional case.

Let us now finally come to the definition of Kac-Moody algebras. There are two cases to
consider. First, if det � ≠ 0, the Kac-Moody algebra g(�) is just defined via the generators and
relations we saw, i.e. as

g(�) = g′(�) (det � ≠ 0) . (2.48)

The following important theorem holds:
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Theorem. Let � be an indecomposable generalized Cartan matrix with det � ≠ 0. Then, the
Kac-Moody algebra g(�) is simple.

In the case det � = 0, the definition of g(�) involves a number of extra derivations, one per
zero eigenvalue of (. We will give the definition in the affine case, in which there is only one new
generator [: as a vector space, the affine Kac-Moody algebra is then

g(�) = g′(�) ⊕ C[ (affine case), (2.49)

and the extra commutators involving [ are

[[, ℎ8] = 0 , [[, 48] = X1841 , [[, 58] = −X18 51 . (2.50)

This algebra is not simple. Indeed, let D be the non-zero left eigenvector of �,
∑A
8=1 D8�8 9 = 0,

which is unique up to a factor since � is affine. Then, the linear combination

2 =

A∑
8=1

D8ℎ8 (2.51)

commutes with everything (exercise 11: check this assertion). The center of g(�) is in fact
one-dimensional and is spanned by 2; the only proper ideals of g(�) are then g′(�) and C2.

2.5 Affine Kac-Moody algebras, revisited

We now have two definitions of affine Kac-Moody algebras: there is the construction of section
2.1 based on loop extensions of finite-dimensional simple Lie algebras, and the definition of section
2.4 based on affine Cartan matrices. It is now a non-trivial fact that those two constructions give
indeed isomorphic algebras. The Dynkin diagrams of the untwisted algebras listed in (2.24) are
presented in figure 3, and those of the twisted ones listed in (2.25) appear in figure 4.

We will not present the general proof. Instead, we go quite explicitly through the simplest
example, that of the algebra �(1)1 with Cartan matrix

� =

(
2 −2
−2 2

)
(2.52)

(The trusting reader can skip the remainder of this subsection on a first reading.) This Cartan matrix
can be read off the corresponding graph of figure 3. It is indeed an affine Cartan matrix, with zero
determinant and a single zero eigenvalue, with corresponding eigenvector D = (1, 1). We want
to check that the corresponding Kac-Moody algebra g(�) and the untwisted algebra B; (2,C) (1)
constructed in section 2.1 are isomorphic.

Let’s take {C0} = {�, �, �} as a basis of B; (2,C), with commutation relations as in (2.33). In
that basis, the only non-zero components of the Killing form ^ are

^(�, �) = 1 , ^(�, �) = 2 . (2.53)
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Then, the untwisted affine algebra B; (2,C) (1) as constructed in the previous section has basis
{�<, �<, �<,  , �} with commutators

[�<, �=] = 2�<+= (2.54)
[�<, �=] = −2�<+= (2.55)
[�<, �=] = �<+= + <X<+=,0 (2.56)
[�<, �=] = 2<X<+=,0 (2.57)
[�, �<] = <�< , [�, �<] = <�< , [�, �<] = <�< . (2.58)

On the other hand, the Chevalley-Serre generators of g(�) are

{ℎ1, 41, 51, ℎ2, 42, 52, [} . (2.59)

The algebra is infinite-dimensional: indeed, the Serre relations

[41, [41, [41, 42]]] = 0 , [42, [42, [42, 41]]] = 0 (2.60)

do not kill any of the multicommutators where 41 and 42 alternate,

E3
= = [41, [42, . . . , [41, 42] . . . ]] (= 41’s and 42’s) (2.61)
E−= = [41, [42, . . . , [42, 41] . . . ]] (= + 1 41’s and = 42’s) (2.62)
E+= = [42, [41, . . . , [41, 42] . . . ]] (= 41’s and = + 1 42’s) (2.63)

for = ≥ 1 (the same is true for multicommutators of 5 ’s, and F ’s are defined in the same way). In
fact, those are the only multicommutators that survive and the set

{ℎ1, 41, 51, ℎ2, 42, 52, [, E3
=, E−= , E+=, F 3

= , F −= , F += } (= ≥ 1) (2.64)

is a basis of g(�).
The isomorphism between the two algebras is reasonably easy to find explicitly, at least for the

Chevalley-Serre generators. First, it is natural to identify the central element 2 =
∑
D8ℎ8 = ℎ1 + ℎ2

appearing in (2.51) with  , and the derivation [ with �. Another natural choice is to identify the
zero-mode B; (2,C) subalgebra spanned by {�0, �0, �0} with one of the two natural B; (2,C)’s in the
Kac-Moody algebra, either {ℎ1, 41, 51} or {ℎ2, 42, 52}. But the zero-mode subalgebra commutes
with the derivation �; looking at (2.50) tells us to pick {ℎ2, 42, 52}. Then, [[, 41] = 41 and
[[, 51] = − 51 tell us that 41 and 51 should be some linear combinations of generators at level 1
and −1 respectively. Combined with the B; (2,C) commutators [41, 51] = ℎ1, [ℎ1, 41] = 241 and
[ℎ1, 51] = −2 51, the only solution is to identify 41 with �1 and 51 with �−1. So, we can define a
Lie algebra homomorphism

i : g(�) → B; (2,C) (1) (2.65)

by its action on the Chevalley-Serre generators:

i(ℎ1) =  − �0 , i(41) = �1 , i( 51) = �−1 ,

i(ℎ2) = �0 , i(42) = �0 , i( 52) = �0 , (2.66)
i([) = � .
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�10

��10

��10

��10

Figure 5: The Dynkin diagrams of the four hyperbolic Kac-Moody algebras of rank 10.

�11

Figure 6: The Dynkin diagrams of the �11 algebra. It is Lorentzian but not hyperbolic.

This is extended to the rest of the algebra by linearity and the morphism property i( [G, H]) =
[i(G), i(H)]. So, for example, further commutators give

i( [41, 42]) = [�1, �0] = −�1 ,

i( [42, [41, 42]]) = [�0,−�1] = −2�1 ,

i( [41, [42, [41, 42]]]) = [�1,−2�1] = 2�2 (2.67)
...

In this way, it is easy to see that we have

i(E3
=) ∼ �= , i(E+=) ∼ �= , i(E−= ) ∼ �=+1

i(F 3
= ) ∼ �−= , i(F += ) ∼ �−= , i(F −= ) ∼ �−=−1 (2.68)

for all positive =. This shows that the morphism i is invertible and therefore an isomorphism.
Exercise 12. Check that all Chevalley-Serre relations are indeed satisfied in the B; (2,C) (1)

algebra.

2.6 Hyperbolic case

Aswe saw above, the Dynkin diagrams of affineKac-Moody algebras can be found by requiring
that removing any node yields Dynkin diagrams corresponding to finite-dimensional algebras. The
classification of affine algebras then nicely follows from the classification of finite-dimensional
ones.

Likewise, hyperbolic Kac-Moody algebras are defined by the fact that removing any node only
gives finite-dimensional or affine diagrams. One can prove that symmetrizable hyperbolic algebras
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are “Lorentzian”: the signature of ( is (− + · · · +). See figure 5 for some examples; by contrast, the
algebra �11 of figure 6 is Lorentzian but not hyperbolic.

Hyperbolic algebras have also been completely classified [7–9]:

1. There is only one infinite family, of rank two: the algebras g(�?,@) with Cartan matrix

�?,@ =

(
2 −?
−@ 2

)
(2.69)

and Dynkin diagram
(?, @)

, (2.70)

where ? and @ are strictly positive integers and ?@ > 4.

2. Apart from this infinite family, hyperbolic algebras are in finite number! They only appear
in ranks ≤ 10, and their number is 238. This is reduced to 142 if one also imposes the
symmetrizability condition.

This is in stark contrast to the finite and affine cases, where one finds infinite familieswith unbounded
rank related to the classical matrix algebras. Here, the hyperbolic condition is stronger and, apart
from the rank 2 family, one could say that they are all ‘exceptional’. The bound A ≤ 10 on the rank
is closely related to the fact that exceptional finite-dimensional algebras stop with �8.

Exercise 13. Classify all hyperbolic algebras of maximal rank 10. (You should find the
algebras of figure 5.)
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