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1. Introduction

The Large Hadron Collider (LHC) set a formidable problem for those working on the software
and computing aspects of the project. A distributed computing model was devised, spread across
potentially hundreds of data centres in universities and national laboratories, but with common
fabric for data and job management. Such a model is known as a computing grid and so the
resulting system became known colloquially in the community as the Grid, under the umbrella of
the Worldwide LHC Computing Grid (WLCG) Collaboration. At the same time the community
took a giant leap from procedural FORTRAN software to object oriented C++, developing new data
processing frameworks from scratch.

In 2020 the status of the computing and software for the LHC can be summarised as follows.
In terms of computation, the Grid provides more than 6 billion HEPSPEC06 (HS06) [1] hours per
months for the LHC community, mostly via Intel or AMD multi-core CPUs with x86 instruction
sets. More than an exabyte of storage capacity on tape (for long term archival) and disk (for regularly
accessed data) are deployed. With respect to network, CERN is connected to each of the major Grid
sites around the world on a dedicated, private, high-bandwidth network called the LHC Optical
Private Network (LHCOPN) [2], such that links can sustain between 10-100 gigabits/second, leading
to average data movement of 50 GB/second and around 50 million individual files per week. There
is a complex patchwork of software in use in the HEP community. The experiments have dedicated
frameworks written in C++ and configured in Python. They rely on many external packages from
within and outside the HEP field. This adds up to many millions of lines of code, generally written
for x86 architectures. Originally these frameworks were single threaded but are increasingly multi-
threaded. Analysis software is as varied as the user community, but there is a strong movement
towards the Python ecosystem and particularly interactive notebooks. The ROOT I/O layer and
data analysis framework [3] underpins much of the software used in HEP. In recent years a very
welcome organisational innovation was introduced in the form of the HEP Software Foundation
(HSF) where ideas can be exchanged and commonalities and synergies identified and acted on.

The beautiful results presented by the HEP community at this ICHEP2020 conference, as
well as in dozens of other conferences and workshops since 2010, are a testament to the success
of LHC-era computing and software, since all of those results are underpinned by the computing
power and storage capacity that the Grid provides, and by the expertise embedded in the software.

The High Luminosity LHC (HL-LHC) provides an additional set of demands on software and
computing which are as daunting as the original challenge of the LHC, especially given that funding
for computing and software will be at best sustained but not increased. They can be broken down
into five general and related headings.

Computation: the unprecedented volume and complexity of the HL-LHC data, and more
importantly the accompanying simulation, will have to be addressed in a computing environment
where the speed of single-threaded execution no longer increases with newer models of processor,
and technological improvements can only be harnessed through concurrency.

Portability: the challenge of computation may be partly addressed through the use of accel-
erators such as general purpose graphics processing units (GP-GPUs), but this is contingent on
significant re-coding to use such technology efficiently, and given the range of hardware types on
the market it is implausible that large parts of HEP software could be re-implemented for each one,
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pointing to the need for a common portability library such that the same software can be executed
on a range of products.

Facilities: resources provided to the Grid are generally dedicated clusters or parts of clusters in
universities and labs, but in recent years there has been a trend towards funding agencies providing
their resources in the form of High Performance Computers (HPCs). Thanks to work by the
experiments, many HPCs have been seamlessly integrated into the Grid, but some are difficult to
use due to special access protocols or because they are largely composed of accelerators. Integrating
such “difficult HPCs” and making efficient use of them is likely to become increasingly important
in the coming years.

Storage: the cost per PB of disk storage has ceased to decline, and yet the demands of HL-LHC
will be ten times greater than the LHC. Technology is unlikely to help here as there is no equivalent
of GPUs for storage, so the problem must be solved with more efficient use of space (smaller and
fewer data formats) and more use of tape for long-term storage, with expensive disk resources being
used only as a cache for active data processing.

Analysis and data delivery: the data and simulated events must be made available to the user
community at sufficient speed to allow analysis to proceed in a reasonable time frame, addressing
the expectations of researchers that access will be possible via modern platforms such as interactive
notebooks. This again points to smaller, flatter analysis formats, and also to using new data delivery
technologies.

The success of the HL-LHC will require a great deal of innovation from those working on
software and computing, involving all parts of the data processing chain from event generation and
simulation to analysis by users. Computing models will have to evolve to push more data to cheaper
storage media. Those writing software may need to learn new skills to adapt to greater levels of
concurrency and hardware types. Fortunately the HEP community is highly innovative, and many
individuals and bodies are pursuing the goal of sustainable computing in the HL-LHC era. The
computing and data handling track at the ICHEP 2020 conference showcased many such examples,
and these are summarised in this report. It is arranged in sections according to the headings above,
with an additional section dedicated to machine learning and artificial intelligence. After a brief
summary the relevant contributions from ICHEP2020 are highlighted.

2. The computation and portability challenge

Since the early 1970s, the number of transistors available for computation on an average
processor has doubled approximately every two years. This trend, known as Moore’s Law, continues
to this day, as can be seen from the orange points on Figure 1(a). However, since the early 2010s
the performance of a single core executing a single instruction thread no longer increases with new
hardware, whereas previously it rose alongside the number of transistors (blue points). The reason
for this can be seen clearly from the red points - the high density of transistors has limited the heat that
can be dissipated and thus the power that can be consumed by the processor. Consequently the clock
speed (green) and the single-threaded performance no longer increases as it did previously. In order
to profit from the still increasing availability of transistors, it is necessary to use concurrency, such
that multiple logical cores are put to work on the same problem, in multiple threads of instructions
(black points).
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Figure 1: Computational and storage technology trends

HL-LHC will produce events at up to ten times the current rates, with each event having
up to 200 pile-up interactions per bunch crossing (as opposed to 30-50 now). In order to cope
with the demands of this data and the accompanying simulation, the experiments must optimise
existing workflows, and also make significant use of concurrency. Progress has been made in
both regards. In terms of concurrency, multi-threading is now common in LHC experiments’
software frameworks, allowing additional cores to be brought to bear on a given computational
problem with minimal additional memory requirements. The ‘next level’ of concurrency would
include use of GP-GPUs, which provide very large numbers of relatively weak (in terms of single
threaded performance) cores, successful utilisation of which could yield performance improvements
of several orders of magnitude. Such extreme concurrency is not applied straightforwardly to any
problem, and some aspects of high energy physics computing may not be well suited to it. Despite
the work to harness GP-GPUs being in its early days in the HEP community, several presentations
at ICHEP2020 addressed the topic directly and demonstrated significant progress, alongside efforts
to re-think workflows in general for the HL-LHC era.

2.1 Preparation of simulated events

Although the huge data rates expected from the HL-LHC are often highlighted, this is not
expected to be the main consumer of CPU as Figure 2 from ATLAS indicates. Instead, the
experiment expects that, assuming aggressive savings are made, by 2028 almost three quarters of its
compute resources will be occupied in simulating the initial production of particles in the collisions
(event generation), their subsequent interaction with the detector and conversion into digital signals
(detector simulation and digitisation), and finally their reconstruction into analysis data. Other LHC
experiments have made similar estimates. Reflecting the importance of minimising the compute
impact of simulated event production, several talks at ICHEP2020 addressed this topic.

2.1.1 Event generation

Event generation is currently a relatively small part of the total CPU consumption of the LHC
experiments. In the HL-LHC era the statistical uncertainty for many analyses will be significantly
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reduced, exposing Standard Model background estimation as a major source of remaining uncer-
tainty. This will require increasingly precise background modelling, including at higher orders
of perturbative calculations, and will lead to greater demand on compute resources. Fortunately,
event generation is likely to be amenable to parallelism on (e.g.) GP-GPUs. This is partly due to
the nature of the calculations involved (including Monte Carlo integration), and also because event
generators tend to be smaller standalone software packages that can be more easily profiled and
migrated than the enormous software stacks maintained by the experiments.

At ICHEP2020, two contributions gave a flavour of the impact that GPUs might have on event
generation. Rather than directly re-coding the software, both used the same interesting approach
of re-implementing relevant parts of the event generation chain into Google’s TensorFlow library
[6]. This is a tool-kit for numerical computation using data flow graphs, and is mainly designed
for building deep learning applications, but can also be deployed for other kinds of problem. It is
engineered to run transparently on GPUs. The two tools presented - VegasFlow [7] and PDFFlow
[8] - implement respectively the evaluation of high dimensional integrals based on MC algorithms,
and PDF interpolation. Impressive speed ups (of an order of magnitude for LO calculations and
2-3 times for NLO) when run on a variety of GPUs were presented. The authors stressed that
these results were without optimisation and migration of other parts of the workflow, so further
improvements can be expected. As a proof of concept these are very encouraging results and it is
hoped that further work along these lines will be done both by these authors and others.

2.1.2 Detector simulation

Detector simulation will be the largest consumer of compute resources for most of the experi-
ments in the HL-LHC era. A general review of this topic was presented at ICHEP2020 [9]. Three
tracks for improvement in the compute performance of detector simulation were identified: refac-
toring and internal improvements to the GEANT4 [10] toolkit, which is the cornerstone of detector
simulation for the LHC experiments, particularly for high fidelity simulations; use of computational
accelerators such as GPUs; and greater use of fast simulation which replaces detailed particle track-
ing methods with more approximate (and lower fidelity) techniques such as parameteric approaches
or generative deep learning models.

On the first of these tracks, there is reason to be optimistic; for example, the GeantV project
[11], which aimed to exploit vectorisation in particle transport in G4, identified significant savings
by deploying better data caching, better instruction cache use (simpler code with fewer classes,
indirections and code branchings), more compact code, better data layouts and fewer virtual function
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calls. The conclusion was that, although the gains from vectorisation were smaller than hoped, the
associated refactoring, rewriting and modernisation of parts of G4 could yield a speed-up of several
10s of percent, which would have a very considerable impact on HL-LHC computing.

The use of computational accelerators, identified as the second track for sustainable simulation,
is perhaps less encouraging. Unlike event generation, detector simulation is not a natural candidate
for running on GPUs, due to the inherently ‘branchy’ nature of particle transport algorithms.
Nevertheless research is going into several aspects, including the use of ray-tracing techniques.

The third track - using faster algorithms that replace the detailed particle transport algorithms
of G4 with more approximate methods, are largely under the domain of the experiments. The
LHCb Collaboration gave two contributions on this topic at ICHEP2020, on general fast simulation
techniques [12] and those specifically related to calorimetry simulation [13]. LHCb identified a
number of features that are common to most of the LHC experiments, including the use of mixed
workflows, where certain parts of the detector which require very high fidelity are handled by G4,
with other sub-detectors dealt with by faster more approximate methods. In principle one could go
further, simulating particles from specific decays with full simulation, and handling less important
states with fast techniques, but it must be borne in mind that simulated data of any kind requires
scaling factors to be produced to ensure good matching with real data, and this becomes increasingly
complex as each new flavour of simulation is added to the menu.

The second LHCb contributor discussed the use of generative models driven by deep learning
techniques to simulate calorimeter response. This is again common amongst the LHC experiments,
and is perhaps the most advanced and encouraging application of ‘deep’ machine learning in
particle physics. Two neural network architectures have come to the fore in this regard - Generative-
Adversarial Networks (GANs) and Variational Autoencoders (VAEs). They hold the promise of
not only matching traditional parametrised methods in terms of computing performance, but also
outperforming them in terms of physics fidelity. The training of the models can also be run on
GPUs. Although work on these techniques is still at a relatively early stage, progress is such that
they may see some use even in Run 3.

2.2 HL-LHC data processing

Several contributions at ICHEP2020 addressed the processing of real data. Unlike event
generation and detector simulation, which are mainly impacted by the number of simulated events
which must be created to match the real data, the compute resources occupied by data processing
also increase with pile-up. Given that the pile-up may be as high as 200, steps to minimise the
impact on the reconstruction time are of great importance for HL-LHC computing.

Approaches to addressing this problem include re-factoring both reconstruction workflows and
software (see e.g. [14]) and deploying accelerators. Speakers from the ALICE Collaboration gave
two presentations, on data processing in general [15] and on the use of accelerators in particular
[16]. In a sense the challenges that the other experiments will face in Run 4 arrive for ALICE
in Run 3, as significant upgrades will allow the experiment to collect data at 50kHz without a
high level trigger, 100 times greater than in Runs 1 and 2. This will require online reconstruction
(synchronous processing) during which larger components of the raw data, especially output from
the time projection chambers (TPCs) will be compressed by a factor of up to 35. Use of GPUs for
this step is mandatory, and ALICE has demonstrated very significant progress in this regard. The
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ALICE O? data processing framework has been developed to allow offloading to GPUs, and the
entire tracking software for the TPCs can run on them. Studies to ensure numerical consistency
have been completed, and portability between hardware types (CPUs, NVidia and AMD GPUy)
has been achieved via a single transparent interface, requiring only one code-base, with dynamic
loading of the underlying libraries ensuring the framework can switch to the correct architecture.
ALICE reports that for the TPC reconstruction a single graphics card can replace between 40 and
150 CPU cores, with an order of magnitude speed-up for TPC tracking. The eventual objective is
to run all of the track reconstruction in the detector barrel on GPUs, and also use them for elements
of the asynchronous reconstruction, which is executed later during shut-downs or pp runs.

3. The storage challenge

Storage for HL-LHC is a bigger challenge even than compute, because there is no equivalent
of accelerators for storage, and opportunistic storage resources at commercial cloud centres are
expensive. The cost of disk storage has ceased to decline in recent years as can be seen from
Figure 1(b), and although tape is much cheaper and has more room for technical improvements than
disk, there are few manufacturers and so the downward pressure on prices due to competition is
less pronounced. Consequently, in order to handle the expected factor of ten increase in data and
MC under a flat resources budget, the LHC experiments must “do more with less", that is, produce
fewer and smaller data formats, and perhaps produce less Monte Carlo through measures such as
minimising negative weights in generated events. Much of this work will rely on the resourcefulness
of physics analysts to work with fewer variables whilst not sacrificing the quality or precision of the
results.

Several contributions at ICHEP2020 addressed this challenge, notably the speaker from ATLAS
[18] who introduced the data carousel concept, where expensive disk resources are used largely
as an operational cache for ongoing production, with tape being the primary storage medium for
all types of data. This mechanism requires very close collaboration between the central operations
teams at the experiments and the data centres providing the tape resources, and also needs a flexible
and sophisticated data management system such as Rucio [19], which was originally developed by
ATLAS and is now used by several experiments, including by the Dune Collaboration who reported
on its adoption at ICHEP2020 [20]. The ATLAS speaker also reported on the experiment’s new
analysis model, which includes far fewer and much more compact analysis formats than is currently
the case, thus treading a path already taken by CMS.

4. The analysis and data delivery challenge

For many particle physicists the analysis step is where their own software is used, tailored
to their specific physics objectives. It is where final calibrations must be applied and resulting
experimental systematic uncertainties evaluated, and where data and simulated events must be
brought into final agreement through often complex re-weighting schemes. Consequently analysis
software is a patchwork of software, tools and data formats, with wide varieties of approaches even
within the same experiment. Nevertheless there remain some commonalities. Perhaps the most
obvious of these is the ROOT framework, the authors of which gave a detailed presentation at
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ICHEP2020 [25]. They focused on the upcoming ROOT 7 release, which represents a fundamental
overhaul of many aspects of the framework, including the all-important I/O layer where the familiar
TTree will be replaced with a new structure called RNTuple. The speaker discussed the impressive
performance of this new data structure, and its connection to another innovation, the RDataFrame
interface, which will see analysis code move from traditional explicit loops over events and user-
implemented reading/writing of data to a more declarative style. In the same contribution there
was also a report on updates to the other aspects of ROOT: graphics, histograms, parallelism and
Python bindings. The speaker remarked that, although ROOT now faces “competition” in the
form of the wider Python-based scientific ecosystem, there are good reasons to bet on ROOT,
given the centrality of its I/O system in the experiments’ frameworks and data formats, the highly
competitive performance of its data structures, the fact that it is built with HEP workflows in mind,
and that in any case, it can easily interface with tools from the wider ecosystem, including those
delivering machine learning capabilities. A further contribution [26] addressed upgrades to the
RooFit statistical analysis suite that is closely associated with ROOT, highlighting in particular
adaptations for running on GPUs.

The question of high-speed delivery of analysis data to users was not addressed in detail
at ICHEP2020, but is a topic of intense interest, since the movement to more declarative and
interactive analysis (increasingly via Python notebooks) clearly requires a different approach to the
batch-processing workflows familiar to most analysts today. Several major projects (e.g. [27]) are
committing significant resources to this problem. The adoption of very compact analysis formats
is an obvious pre-requisite for on-demand data delivery to become a reality.

5. The role of machine learning and artificial intelligence

The use of machine learning (ML) is well established in HEP, with several LEP- and Tevatron-
era measurements and discoveries having been assisted by neural networks and boosted decision
trees (BDTs). However, the capabilities of deep neural networks, made possible by modern com-
puting power and fundamental developments in the field of artificial intelligence, are new and
of great interest in HEP. For the moment, the main application remains physics analysis, where
deep networks can be highly effective at discriminating minute signals from large backgrounds,
given sufficient training data. Additionally, machine learning is finding increasing relevance in jet
reconstruction and B-jet tagging, and as described earlier, as a means of fast simulation.

Several contributions at ICHEP2020 discussed the opportunities provided by advanced machine
learning. Of particular interest was a talk [21] on ranking the importance of input features (variables)
in influencing the decisions made by the algorithm. Such rankings enable analysts to cast light
inside the so-called “black box" and provide an explanation as to why an algorithm behaved as
it did, improving reproducibility and confidence in the results. Another contribution [22] gave a
primer on techniques that can be used to improve the performance of deep neural networks. A third
talk [23] showcased a proof-of-concept study on quantum machine learning in HEP applications.

One area where machine learning has yet to make much of an impact (other than in very limited
applications such as pixel clustering) is track reconstruction. To address this, an open challenge (the
TrackML Challenge) was set for the wider community on the Kaggle and Codalab platforms to try
to beat established HEP track-finding software in terms of accuracy (first phase) and speed/accuracy
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(second phase). The conclusions of the challenge were presented at ICHEP2020 [24]. There was
widespread interest in the challenge from competitors both within and outsider of HEP. None of
the solutions were able to out-perform HEP code for both speed and accuracy, and the highest
scoring individuals were often from within the field, indicating that domain-specific knowledge
helps. Nevertheless, some of the new techniques will be worth following up in more detail. The
dataset used in the challenge, and the hypothetical detector layout on which it was based, have
proved to be valuable in other R&D applications.

It is clear that ML will have a growing impact on the field. Whilst there is unlikely to be a time
in the foreseeable future when “all tracking" or “all simulation" is done entirely by ML techniques,
ML elements will be added to an increasing range of applications, and this process is well under
way.

6. Conclusions

In 33 excellent contributions, the computing and data handling track at ICHEP2020 highlighted
a small part of the work under way across the HEP community to ensure that the needs of HL-LHC
can be met. It is clear that the community has the skills, imagination and drive to successfully
address HL-LHC computing - as long as the relevant personnel are able to remain in the field.
It is essential that funding agencies and institutes understand that computing and software is as
important for physics as detector development and construction. The days when software grew
organically with the detectors are over - writing software and building computing systems for HEP
now requires detailed project planning and management, and significant person power sustained
over many years. Stable career paths need to be defined for those who wish to stay in HEP and
work on computing. If this can be achieved, there is little doubt that the HEP community will pass
the test of HL-LHC computing and lay the foundations for decades of beautiful new results and
inspiring discoveries.
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