
P
o
S
(
I
C
H
E
P
2
0
2
0
)
3
9
7

Angular analysis of modes with b→ c`ν̄ transition
and New Physics

Rusa Mandal∗
Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,
Universität Siegen, 57068 Siegen, Germany
Rusa.Mandal@uni-siegen.de

Starting with the most general dimension six beyond the standard model Hamiltonian we derive
the four fold angular distributions for B→Dπ`ν̄ mode, where the Dπ final state arises from a vec-
tor D∗ or a tensor meson D∗2 onshell decay. Distinguishable features in the angular distributions of
these two modes are explored. Plenty of observables are constructed with which the experimental
information would help to disentangle the dynamical origin of the observed deviations in b→ cτν̄

transition.
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Transition b→ c`ν̄ and New Physics Rusa Mandal

1. Introduction

Angular analysis of multi-body semileptonic decays are known as a powerful tool for indirect
search of physics beyond the Standard Model (SM). Plethora of observables constructed in flavor
changing neutral current (FCNC) decay B→K∗`` has been measured at experiments, where certain
tension between the data and SM prediction has been observed. An analogous study in decays like
B→ D∗`ν is needed as such channel has already provided some clear deviations in lepton flavor
violating ratios during last few years [1]. The theoretical predictions are significantly cleaner in this
charged current mode (tree level transition in the SM) compared to the FCNC decays. Decays with
higher spin mesons like B→ D∗2`ν also provides complementary information as the short distance
physics remains the same in both the cases. In this article we briefly highlight the key differences in
the angular analysis of the B→ D∗(→ Dπ)`ν and B→ D∗2(→ Dπ)`ν decays and discuss how ob-
servables can be used to understand the effect of different New Physics (NP) scenarios contributing
to these channels. We refer the reader to [2, 3] for detailed derivations and discussions.

2. Angular distribution and observables

We start with the most general dimension six beyond the SM Hamiltonian for b→ c`ν̄ transi-
tion

Heff =
4GFVcb√

2

{
OV

LL + ∑
X=S,V,T
M,N=L,R

CX
MNOX

MN

}
, (2.1)

where the four-fermion operators are defined for M,N ∈ {L,R} as

OS
MN ≡ (c̄PMb)

( ¯̀PNν
)
, OV

MN ≡ (c̄γ
µPMb)

( ¯̀γµPNν
)
, OT

MN ≡ (c̄σ
µνPMb)

( ¯̀σµνPNν
)
. (2.2)

We included the possibility of having light right-handed neutrino (RHN) in the final state. All the
Wilson coefficients CX

MN = 0 in the SM1 and can be generated from NP effects which are calculated
in perturbation theory at a matching scale µ = mΛ (Λ being the NP scale) and then evolving down
to the desired scale µ = mb ≈ 4.8GeV. The long distance physics can be incorporated by parame-
terizing the hadronic matrix elements in terms of the form factors, where we used the ‘unprimed’
notation for D∗ and ‘primed’ for D∗2 as following:

〈D∗(2)(pD∗
(2)
,ε∗)|c̄γµb|B̄(pB)〉=

2iV (′)(q2)

mB +mD∗
(2)

εµνρσ ε
∗ν
(T )pρ

D∗
(2)

pσ
B , (2.3)

〈D∗(2)(pD∗
(2)
,ε∗)|c̄γµγ5b|B̄(pB)〉=2mD∗

(2)
A(′)

0 (q2)
ε∗T ·q

q2 qµ +(mB +mD∗
(2)
)A(′)

1 (q2)
[
ε
∗
(T )µ
−

ε∗(T ) ·q
q2 qµ

]
−A(′)

2 (q2)
ε∗(T ) ·q

mB +mD∗
(2)

[
(pB + pD∗

(2)
)µ −

m2
B−m2

D∗
(2)

q2 qµ

]
, (2.4)

where εµ is the polarization vector for D∗ meson and ε
µ

T (h) = εµν(h)qν/mB with εµν is the D∗2
polarization tensor. The variable qµ = (pB− pD∗

(2)
)µ denotes the momentum transfer. The B̄→D∗(2)

1Note that, using Fierz rearrangements, OT
MN = 0 when M 6= N
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matrix element for the scalar current vanishes and pseudoscalar current is:

〈D∗(2)(pD∗
(2)
,ε∗)|c̄γ5b|B̄(pB)〉 = −

2mD∗
(2)

A(′)
0 (q2)

mb(µ)+mc(µ)
ε
∗
(T ) ·q . (2.5)

Next the tensor operators are parametrized with the well-known form factors T (′)
i defined as

〈D∗(2)(pD∗
(2)
,ε∗)|c̄σµνqνb|B̄(pB)〉= εµνρσ ε

∗ν
(T )pρ

D∗
(2)

pσ
B 2T (′)

1 (q2) , (2.6)

〈D∗(2)(pD∗
(2)
,ε)|c̄σµνγ5qνb|B̄(pB)〉=

[
(m2

B−m2
D∗
(2)
)ε
∗µ
(T )− (ε∗T .q)(pB + pD∗

(2)
)µ

]
T (′)

2 (q2)

− (ε∗(T ).q)

qµ −
q2

m2
B−m2

D∗
(2)

(pB + pD∗
(2)
)µ

T (′)
3 (q2) . (2.7)

Using the narrow width approximations for D∗(2), we obtain the the full four-body angular distribu-
tion of the semileptonic decay B̄(pB)→ D∗(2)(pD∗

(2)
)`−(q2) ν̄(q1), with D∗(2)(pD∗

(2)
)→ D(pD)π(pπ)

in Eqs. (2.8) and (2.9). The distribution is described by four kinematic variables such as the lepton-
pair invariant mass squared q2 = (q1 + q2)

2 and the three angles φ , θ` and θD defined as follows.
Assuming that the D∗(2) has a momentum along the positive z direction in the B rest frame, θD is the
angle between the D and the +z axis in Dπ c.m. frame, θ` is the angle of the `− with the +z axis
in `−ν̄ c.m. frame and φ is the angle between the decay planes formed by `−ν̄ and Dπ pairs.

d4ΓD∗

dq2d cosθDd cosθldφ
=

=
9

32π

[
Ic
1 cos2

θD + Is
1 sin2

θD

+ Ic
2 cos2

θD cos2θl

+ Is
2 sin2

θD cos2θl

+ I3 sin2
θD sin2

θl cos2φ

+ I4 cos2
θD sinθD sin2θl cosφ

+ I5 cos2
θD sinθD sinθl cosφ

+ Is
6 sin2

θD cosθl + Ic
6 cos2

θD cosθl

+ I7 cos2
θD sinθD sinθl sinφ

+ I8 cos2
θD sinθD sin2θl sinφ

+ I9 sin2
θD sin2

θl sin2φ

]
, (2.8)

d4ΓD∗2
dq2d cosθDd cosθldφ

=

=
15

128π

[
Ic′
1 (3cos2

θD−1)2 +3Is′
1 sin2 2θD

+Ic′
2 (3cos2

θD−1)2 cos2θl +3Is′
2 sin2 2θD cos2θl

+3I′3 sin2 2θD sin2
θl cos2φ

+2
√

3I′4(3cos2
θD−1)sin2θD sin2θl cosφ

+2
√

3I′5(3cos2
θD−1)sinθD sin(θl)cosφ

+3Is′
6 sin2

θD cosθl + Ic′
6 (3cos2

θD−1)2 cosθl

+2
√

3I′7(3cos2
θD−1)sin2θD sinθl sinφ

+2
√

3I′8(3cos2
θD−1)sin2θD sin2θl sinφ

+3I′9 sin2 2θD sin2
θl sin2φ

]
. (2.9)

The angular coefficients I(′)i are functions of transversity amplitudes, which depend on the Wil-
son coefficients, B→ D∗(2) hadronic transition form factors and kinematical factors, and all the
Ii coefficients can be measured at experiments independently. Interestingly, in the B-rest frame
εµν(±2)qµ = 0, which implies that only three states of polarization contribute to the B→ D∗2`ν̄
decay and thus the number of transversity amplitudes (a total of sixteen) coincides with the vector
meson case. We refer to [2, 3] for more details. As can be seen from Eqs. (2.8) and (2.9), the con-
tributions are distinguishable by analysis of the angular distributions, mainly due to the presence of
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higher partial waves for higher spin meson. The differences between D∗ and D∗2 scenarios are also
prominent in θD-distribution (Eq. (2.10)) which can be effective in an experimental analysis with
low statistics:

d2ΓD∗
(2)

dq2d cosθD
=


3
4

Γ
D∗
f
[
FD∗

T sin2
θD +2FD∗

L cos2
θD
]
,

5
8

Γ
D∗2
f

[
FD∗2

L +6(FD∗2
T −FD∗2

L )cos2
θD +3(3FD∗2

L −2FD∗2
T )cos4

θD

]
,

(2.10)

where Γ
D∗(2)
f ≡ dΓ

D∗(2)/dq2 = 1
4

(
3Ic(′)

1 +6Is(′)
1 − Ic(′)

2 −2Is(′)
2

)
is the q2-distribution and F

D∗(2)
L,T are the

longitudinal and transverse polarization fractions of D∗(2), respectively. The distribution in the angle
φ is the same for both cases:

d2ΓD∗
(2)

dq2dφ
=

1
2π

[
Γ

D∗(2)
f + I(′)3 cos2φ + I(′)9 sin2φ

]
, (2.11)

where the coefficients of cos2φ and sin2φ terms can be extracted from data. By considering the
similar distribution (denoted as Γ̄) for the CP-conjugate mode with the substitutions I1,2,3,4,7 →
Ī1,2,3,4,7 and I5,6,8,9→−Ī5,6,8,9, we define two CP-averaged asymmetries A3 and A9 as

A(′)
3 =

(
I(′)3 + Ī(′)3

)
/
(
Γ

D∗(2)
f + Γ̄

D∗(2)
f

)
, A9 =

(
I(′)9 + Ī(′)9

)(
Γ

D∗(2)
f + Γ̄

D∗(2)
f

)
. (2.12)

The well-known CP-averaged forward-backward asymmetry A(′)
FB is defined conventionally as

A(′)
FB =

1

Γ
D∗
(2)

f + Γ̄
D∗
(2)

f

2π∫
0

dφ

1∫
−1

d cosθD

[ 0∫
−1

−
1∫

0

]
d cosθ`

d2(Γ
D∗(2)− Γ̄

D∗(2))

dq2d cosθ`d cosθDdφ
. (2.13)

Contributions from I(′)4 and I(′)5 are extracted by the two angular asymmetries:

A(′)
4 =

1

Γ
D∗
(2)

f + Γ̄
D∗
(2)

f

[ π/2∫
−π/2

−
3π/2∫

π/2

]
dφ

[ 1∫
0

−
0∫
−1

]
d cosθD

[ 0∫
−1

−
1∫

0

]
d cosθ`

d4(Γ
D∗(2) + Γ̄

D∗(2))

dq2d cosθ`d cosθDdφ
,

(2.14)

A(′)
5 =

1

Γ
D∗
(2)

f + Γ̄
D∗
(2)

f

[ π/2∫
−π/2

−
3π/2∫

π/2

]
dφ

[ 1∫
0

−
0∫
−1

]
d cosθD

1∫
−1

d cosθ`
d4(Γ

D∗(2)− Γ̄
D∗(2))

dq2d cosθ`d cosθDdφ
. (2.15)

We further define two observables A7 and A8 (in Eqs. (2.16) and (2.17), respectively) which vanish
in the SM limit, i.e. in real amplitude limit: Non-zero values (occur only with complex contribu-
tion) of these asymmetries are clear indications of NP. A similar statement holds for the asymmetry
A9 as well.

A(′)
7 =

1

Γ
D∗
(2)

f + Γ̄
D∗
(2)

f

[ π∫
0

−
2π∫

π

]
dφ

[ 1∫
0

−
0∫
−1

]
d cosθD

1∫
−1

d cosθ`
d4(Γ

D∗(2) + Γ̄
D∗(2))

dq2d cosθ`d cosθDdφ
, (2.16)

A(′)
8 =

1

Γ
D∗
(2)

f + Γ̄
D∗
(2)

f

[ π∫
0

−
2π∫

π

]
dφ

[ 1∫
0

−
0∫
−1

]
d cosθD

[ 1∫
0

−
0∫
−1

]
d cosθ`

d4(Γ
D∗(2)− Γ̄

D∗(2))

dq2d cosθ`d cosθDdφ
. (2.17)
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Observable Data and reference
RD 0.340±0.027±0.013 [1]
R∗D 0.295±0.011±0.008 [1]
PD∗

τ −0.38±0.51+0.21
−0.16 [4]

FD∗
L 0.60±0.08±0.035 [5]

dΓD/dq2 [6]
dΓD∗/dq2 [6]

B(Bc→ τν̄) ≤ 30% [7]

Table 1: Experimental inputs used in our fits. Table 2: Fit results for various NP scenarios.

3. New physics analysis

In order to explore the role of different observables for various NP scenarios, we first perform
a χ2 fit to the available data as quoted in Table 1. We use heavy-quark effective theory with Boyd,
Grinstein and Lebed (BGL) parametrization for the B→ D(∗) form factors, including corrections
of order αs, ΛQCD/mb,c and partly Λ2

QCD/m2
c . The inputs for form factor are obtained from lattice

QCD, light-cone sum rules and QCD sum rules, without making use of experimental data [8, 3].
We focus mainly on the effective operators which arise in presence of light RHN. Similar analysis
on left-handed neutrino operators can be found in Ref. [8]. Various different combinations of NP
operators are quoted in Table 2, where the first two rows correspond to all possible RHN + SM-
like operators and only all RHN operators, respectively. The rest of the rows in Table 2 depict the
situation motivated by a single new mediator particle that can be integrated out to contribute to
one or more of the effective operators entering into the b→ cτν̄ Hamiltonian (Eq. (2.1)), where
S1 and R̃2 are scalar leptoquarks, U µ

1 and Ṽ µ

2 are vector leptoquarks, Vµ is a vector boson and φ

denotes a scalar boson. The corresponding SM gauge quantum numbers (SU(3)c, SU(2)L,U(1)Y )
are also shown for these BSM particles. We quote the statistical measure ‘Pull’ which determines
how good the SM only hypothesis works; the larger ‘Pull’ the better compatibility with specific NP
scenario [3]. The 3 (7) sign infers prediction for observables that are (not) in agreement with data
within their 1σ uncertainty in the fitted NP model. It can be seen that, all RHN + SM-like operators
and φ can explain all so far measured observables within their 1σ uncertainty. However, S1 and Vµ

cannot reduce the tension in FD∗
L data below 1σ level, despite having larger ‘Pull’ .

While it is difficult to identify the most favorable NP scenario in terms of ‘Pull’ values (that
are very close), we show the variation of several angular observables for the whole q2 range in
Fig. 1. Looking at different parts of the allowed range, the SM predictions (in black) can be easily
distinguished from some of the NP scenarios, despite of including significant uncertainties in the
fitted Wilson coefficients.
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Figure 1: Variation of different angular observables in entire q2 range.

4. Summary

• 4-body angular distribution of semileptonic B decays provides number of observables that are
sensitive probes for physics beyond the SM. The charged current transitions such as b→ c`ν̄
are theoretically simpler compared to the FCNC modes like b→ s``.

• The decays B→D∗`ν̄ and B→D∗2`ν̄ are easily separable from angular distributions and ex-
perimental information on the observables constructed in these modes will help to disentan-
gle potential NP operators required to explain the observed B-anomalies. The zero-crossings
of asymmetries provide relation among form factors [2] which can be tested at experiments.

• One should be cautious for modes with τ lepton, as presence of several neutrinos in the final
state are experimentally challenging and subsequent decay of τ needs to be considered which
in turn will complicate the angular distribution of the entire decay chain.
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