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We discuss a 1+2 dimensional model with unconventional supersymmetry at the boundary of an
AdS4, N -extended supergravity. The resulting features of the supersymmetric boundary open the
possibility of describing the electronic properties of graphene-like 2D materials at the Dirac points
K and K’, exploiting a top-down approach. The Semenoff and Haldane-type masses entering the
corresponding Dirac equations can be then extrapolated from the geometric parameters of the
model describing the substrate.
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1. Introduction

The recent developments in the studies of the physics of bidimensional materials like graphene
provide a new connection between condensed matter and theoretical quantum field theories, opening
a window on the possibility of a direct observation of quantum behaviour in the curved background of
a solid state system [1–3]. In 1984 Semenoff formulated the hypothesis that graphene could realize
the physics of two dimensional massless Dirac fermions [4], this property discriminating graphene
from other 2D system. General, graphene-like bidimensional materials turn out to realize the physics
of spinorial fields, whose Dirac properties emerge due to the structure of the honeycomb lattice with
which the charge carriers interact, determining a natural description of its electronic properties in
terms of Dirac pseudoparticles living in a 1+2 dimensional curved spacetime background [3, 5–8].

In the following, we will consider a Chern-Simons theory in 1+2 dimensions, that turns out
to be an effective theory for a Dirac spin-1/2 fermion, defined on a curved geometry. The fermion
is minimally coupled to the background gravity and the system features an unconventional form of
supersymmetry based on a graded Lie algebra, where a peculiar ansatz for the fermionic 𝐷 = 3
gauge fields 𝜓𝐴 is assumed [9, 10], expressing them as composite fields of the vielbein 𝑒𝑖 and spin
1/2 fields 𝜒𝐴,

𝜓𝐴 = 𝑖 𝛾𝑖 𝑒
𝑖𝜒𝐴. (1)

The Lagrangian associated with the model is a Chern-Simons form and the resulting model is par-
ticularly suited for describing graphene near the Dirac points in a generic lattice with nonvanishing
curvature and torsion [10]. In particular, the chosen three-dimensional model of unconventional
supersymmetry is defined at the boundary of an AdS4 supergravity vacuum, and could be holo-
graphically realized as the boundary theory of an N -extended four-dimensional supergravity of the
AdS4 spacetime. Applying the above ansatz (1) for the fermionic gauge fields, an effective model
for the massive spin-1/2 fields on a curved background is obtained: this allows to introduce extra
internal degrees of freedom which can provide an application of the model to the description of
graphene, where the Semenoff and Haldane microscopic models can be realized.

2. Microscopic models

A graphene sheet consists in a bidimensional system made of carbon atoms arranged in a hon-
eycomb lattice. The bidimensional hexagonal lattice is split into two inequivalent, interpenetrating
triangular sublattices, so that the unit cell is made of two adjacent atoms belonging to different
sublattices. The first Brillouin zone (FBZ) of the reciprocal lattice has the same hexagonal form of
the honeycomb lattice and is rotated by a 𝜋/2 angle. The corners of the FBZ can be divided into
two inequivalent classes, since only two of the six can be chosen to be independent, the remaining
four being connected to them by a reciprocal lattice vector; this means we can consider only two
inequivalent corners, referred to as “valleys”, labeled K and K′.

Pristine graphene. Pure graphene quantum states can be formulated in terms of the tight-binding
model, describing electrons hopping in the (single-state per site) honeycomb lattice. The formulation
describes the limit of far apart ions, the single-particle eigenstates referring to electrons affected by
a single corresponding ion. In this picture, electrons can only tunnel to their first neighbor atoms,
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with a hopping amplitude 𝑡1 and the system is characterized by the tight-binding Hamiltonian:

𝐻1 = 𝑡1
∑︁
〈𝑖, 𝑗 〉

𝑐
†
𝑖
𝑐 𝑗 , (2)

where the creation (annihilation) operator 𝑐†
𝑖
= 𝑐†(r𝑖)

(
𝑐𝑖 = 𝑐(r𝑖)

)
acts on site r𝑖 , while the sum

〈𝑖, 𝑗〉 only runs on nearest neighbors sites r𝑖 , r 𝑗 .

2.1 Mass gaps

Mass terms for two-dimensional samples can be induced in several ways, in particular when
some symmetries of the system are broken. In particular, mass gaps at the Dirac points for
two-dimensional graphene-like systems can be obtained from generalizations of the tight binding
microscopic model. This gap generation was first discussed by Semenoff, introducing a mass
term through an on-site dependent potential ±𝑀 , spoiling sublattices equivalence and breaking
then parity symmetry of the theory [4]. Another microscopic model was proposed by Haldane,
including local magnetic fields over the honeycomb hexagon, breaking time-reversal symmetry of
the model [11].

Haldane model. The formulation of the Haldane model was motivated by the realization of a
quantum anomalous Hall effect and is achieved by the introduction of periodic local magnetic flux
densities, with zero net flux over the hexagon lattice cell. The microscopic Hamiltonian is modified
with second-neighbor hopping terms with unimodular (chiral) phase factors and has the form

𝐻 = 𝐻1 + 𝐻2 = 𝐻1 + 𝑡2
∑︁
〈𝑖, 𝑗 〉(2)

𝑒𝑖 𝜑 𝛼𝑖 𝑗 𝑐
†
𝑖
𝑐 𝑗 + 𝜖𝑖 𝑀

∑︁
𝑖

𝑐
†
𝑖
𝑐𝑖 , 𝜖𝑖 = ±1 , (3)

where 𝐻1 is the tight binding Hamiltonian and 𝐻2 accounts for the local magnetic fields (breaking
time reversal symmetry), and for a Semenoff parity-breaking term. The first sum in 𝐻2 runs
on second nearest neighbors sites, 𝑡2 being the hopping amplitude, while the second term is the
Semenoff contribution coming from on-site potential energy 𝑀 , the prefactor 𝜖𝑖 = ±1 depending
on whether the site 𝑖 is on the first or second sublattice. The fermion masses in the two inequivalent
valleys K, K’ turn out to be [11]

𝑚K,K’ = 𝑀 ∓ 3
√

3 𝑡2 sin 𝜑 . (4)

3. Geometrical top-down approach

Our interest here focuses on the AVZ model [9], a Chern-Simons system in 1 + 2 dimensions
featuring interesting properties [12], particularly in connection with the holographic correspon-
dence. The model acts as an effective theory for a massive spin-1/2 fermion, generically defined
on a curved geometry and minimally coupled to the background gravity, particularly suited for
describing graphene near the Dirac points in a generic spatial lattice with non-vanishing curvature
and torsion. In particular, the system exhibits an unconventional form of supersymmetry based on
a graded Lie algebra, whose + and − sectors can be naturally interpreted as related to the graphene
Dirac points K, K’.
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Holographic formulation. The Chern-Simons theory of the AVZ model, originally constructed
for the N = 2 case, can be extended to a 𝐷 = 3 model with N supersymmetries on AdS3 [10].
The three-dimensional model can be in turn holographically realized as the boundary theory of a
𝐷 = 4 supergravity in AdS4, exploiting suitable choices for the boundary conditions of the four-
dimensional fields [10]. Imposing the AVZ ansatz (1) for the 𝐷 = 3 fermions identifies the resulting
spin-1/2 fields 𝜒 as the radial component of the four-dimensional gravitini, whose mass is related
to the AdS3 radius. Applying then the resulting model to the effective description of the electronic
properties of graphene-like 2D materials, provides a top-down approach to the understanding of the
(supersymmetric) origin of the physical system phenomenology, in that the effective 𝐷 = 3 theory,
derived at the boundary and defining a Dirac fermion living in 1+2 dimensions, originates from a
well-defined effective supergravity in the bulk.

3.1 The model

The starting point is an AdS4 vacuum of an N -extended pure supergravity theory preserving
all N supersymmetries. The vacuum symmetry is described by the supergroup OSp(N |4) group
and we require all scalar and spin-1/2 fields at the conformal boundary to be frozen at their
vacuum values, and that the remaining fields obey the osp(N |4) Maurer-Cartan equations. The
dual description of the osp(N |4) algebra is given in terms of the connection

A = 𝜃𝑖 ⊗ E𝑖 =
1
2
𝜔AB LAB + 1

2
𝐴𝐶𝐷 𝑇𝐶𝐷 + Ψ̄𝐴

𝛼𝑄
𝛼
𝐴, (5)

where LAB (A,B = 0, . . . , 4) and𝑇𝐶𝐷 (𝐶, 𝐷 = 1, . . . ,N ) are the SO(2, 3) and SO(N) generators,
while 𝜔AB , 𝐴𝐶𝐷 and Ψ𝐴 are one-forms, and 𝑄𝛼

𝐴
(𝛼 = 1, . . . , 4) are the Majorana supersymmetry

generators. The structure of the algebra is encoded in the Maurer-Cartan equations 𝑑A+A∧A = 0.
If we decompose the AdS4 superalgebra in terms of SO(1, 1) × SO(1, 2) ⊂ SO(2, 3), we can

express the asymptotic algebra in a way in which the SO(1, 1) grading of the fields is manifest. In
particular, we write the 𝐷 = 4 vielbein and Ψ𝐴 form expansions at the AdS4 boundary (𝑟 → ∞) as

𝐸 𝑖
± ' ±1

2

(𝑟
ℓ

)±1
𝐸 𝑖 , 𝐸 𝑖 = 𝑓 𝑒𝑖 ; Ψ𝐴 = Ψ𝐴

+ +Ψ𝐴
− , Ψ𝐴

± 𝜇 𝑑𝑥
𝜇 ' 1

√
2

(𝑟
ℓ

)± 1
2
𝜓𝐴, (6)

expressed in the basis of the 𝐷 = 3 vielbein 𝑒𝑖 , 𝑓 being an indeterminate function and ℓ the AdS
radius. It is then possible to show that the Maurer-Cartan equations at the boundary describe the
superalgebra of OSp(𝑝 |2)+ × OSp(𝑞 |2)− with 𝑝 + 𝑞 = N [10], the resulting 𝐷 = 3 world volume
describing a generalized AVZ model featuring a local Nieh-Yan-Weyl symmetry (NYW local scale
invariance [13]). In particular, we can write for the 1+2 dimensional torsion the expression [10]

𝑇 𝑖
± = D[Ω±] 𝑒𝑖 = 𝛽 𝑒𝑖 + 𝜏± 𝜖

𝑖 𝑗𝑘 𝑒 𝑗 ∧ 𝑒𝑘 , (7)

where 𝛽 and 𝜏± are 1 and 0-forms, respectively, having defined the world-volume gauge field
Ω𝑖

± = 1
2 𝜖

𝑖 𝑗𝑘 𝜔 𝑗𝑘 ± 𝐸 𝑖/ℓ in terms of the boundary value 𝜔 𝑗𝑘 of the spin connection. One can also
compute the covariant derivative of 𝑒𝑖 with respect to 𝜔𝑖 := 1

2 𝜖
𝑖 𝑗𝑘 𝜔 𝑗𝑘 ,

D[𝜔] 𝑒𝑖 = 𝛽 𝑒𝑖 + 𝜏 𝜖 𝑖 𝑗𝑘 𝑒 𝑗 ∧ 𝑒𝑘 , (8)

whose parameter 𝜏 can be shown to be related to that of the above (7) as 𝜏+ + 2 𝑓

ℓ
= 𝜏− − 2 𝑓

ℓ
≡ 𝜏.

The existing NYW symmetry can be used to set 𝛽 = 0 locally on any open neighborhood of the
𝐷 = 3 world volume, imposing a non-trivial condition on the topology of spacetime.
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The algebra of the OSp(𝑝 |2)+ × OSp(𝑞 |2)− supergroup implies the relationD[Ω±, 𝐴±]𝜓± = 0,
having defined the covariant derivative

D[Ω±, 𝐴±] 𝜓± := 𝑑𝜓± + 𝑖

2
Ω𝑖

± 𝛾𝑖 𝜓± + 𝐴± 𝜓± , (9)

and having denoted 𝜓+ := 𝜓𝑎1 , 𝜓− := 𝜓𝑎2 , 𝐴+ := 𝐴𝑎1𝑏1 , 𝐴− := 𝐴𝑎2𝑏2 , with 𝑎1, 𝑏1 = 1, . . . , 𝑝,
𝑎2, 𝑏2 = 𝑝 + 1, . . . ,N , reflecting the structure of the osp(𝑝 |2)+ ⊕ osp(𝑞 |2)− superalgebra. If we
consider the AVZ ansatz (1), we obtain for the world volume spinorial fields 𝜒𝐴 = (𝜒𝑎1 , 𝜒𝑎2) the
Dirac equation [10]

/D[𝜔′, 𝐴±] 𝜒± = −3
2
𝑖 𝜏± 𝜒± , (10)

the covariant derivative being expressed in terms of the torsion-free Lorentz connection
𝜔′𝑖 = Ω𝑖

± + 𝜏± 𝑒𝑖 , having denoted 𝜒+ = 𝜒𝑎1 , 𝜒− = 𝜒𝑎2 .

Special case 𝒑 = 𝒒. Let us consider the case of even integers 𝑝 and 𝑞, since this allows to arrange
the real spinors 𝜒± into 𝑝/2 and 𝑞/2 Dirac spinors. If we restrict to the 𝑝 = 𝑞 case, parity (spatial
reflection in 𝐷 = 3) becomes a symmetry of the model, leaving the field equations invariant. The +
and − sectors turn out to be related by a reflection symmetry in one spatial axis and, in the context of
graphene-like materials, can be naturally associated with the inequivalent corners of the FBZ, that
is we interpret them as referring to the K, K’ inequivalent valleys. In particular, we can also notice
that a parity transformations in pure graphene exchanges unit cell sites in the honeycomb lattice,
mapping also the two valleys into each other if the reflection is combined with a time-reversal
transformation. In bidimensional materials with inequivalent honeycomb sites, parity reflection is
not a symmetry of the system, implying the existence of (at least) a parity-violating Semenoff mass
term in the effective Dirac equation.

3.2 Results

From the perspective of the description of general, 1+2 dimensional graphene-like systems, the
introduced spin 1/2 fields 𝜒± satisfying the Dirac equations (10) can be used to suitably characterize
the sample long-wavelength charge carriers. In particular, the fermion effective masses turn out to
be

𝑚± =
3
2
𝜏± =

3
2

(
𝜏 ∓ 2

𝑓

ℓ

)
, (11)

then expressed in terms of the torsion and geometric parameters of the model. In light of the
discussion of the previous section 3.1, the 𝑝 = 𝑞 choice allows the identification of the ± sectors
with the K, K’ valleys in graphene-like materials,

𝑚± = 𝑚K,K’ = 𝑀 ∓ 3
√

3 𝑡2 sin 𝜑 . (12)

This also leads to the identification of the parity-even and odd components of the corresponding
masses with Semenoff and Haldane-type mass contributions, respectively (see 2.1), implying in
particular the relations

𝑀 → 3
2
𝜏 ,

√
3 𝑡2 sin(𝜑) → 𝑓

ℓ
. (13)
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Summarizing, we have seen how the extension of unconventional supersymmetry to the OSp(𝑝 |2) ×
OSp(𝑝 |2) superalgebra can be instrumental in describing the electronic properties of graphene-like
systems in the inequivalent valleys, connecting them to physical situations in which the symmetry
between them is broken. This can happen, for instance, if a substrate with inequivalent sites and/or
suitable local magnetic fields are present, so that parity and/or time reversal symmetry are broken,
giving then rise to Semenoff and Haldane-type mass terms. One of the main results we have
presented is the embedding of this effective description in an N -extended, 𝐷 = 4 supergravity,
setting the stage for a more detailed holographic analysis which will be pursued in a future work.
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