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parameters for these algorithms, as well as their dynamic critical exponent.
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1. Introduction

In studies of the gauge-dependent Green’s functions of QFTs on the lattice, a necessary step
is the gauge-fixing procedure. Given a configuration of link variables *` (=), in order to fix it to
Landau gauge, we consider the following functional [1, 2]

E[6] ≡ 1
3#2 |Λ|

3∑̀
=1

∑
=∈Λ

1
2
tr

[
*
(6)
` (=) +* (6)†` (=)

]
, (1)

where * (6)` (=) ≡ 6(=)*` (=)6†(= + ˆ̀) is the gauge-transformed link variable, in which ˆ̀ denotes
the unit vector in the direction `. The number of space-time dimensions is 3, Λ is the set of lattice
sites, and |Λ| is their number. The number of colors is #2 . If we find a maximum of this functional,
with respect to G ≡ {6(=)}, keeping {*` (=)} fixed, we will have that a discretized version of the
Landau gauge condition is obeyed

∇`�1
` (=) =

3∑̀
=1

(
�1
` (=) − �1

` (= − ˆ̀)
)
= 0, (2)

for all points =. A discretization of the gauge field is

�` (=) =
*` (=) −*†` (=)

28
− 1
#2

tr

[
*` (=) −*†` (=)

28

]
. (3)

In practice, the gauge-fixing procedure is executed in an iterative fashion. In order to be
considered “Landau gauge-fixed”, ∇`�1

` (=), or some other measure of the quality of the fixing,
needs to be smaller than a given tolerance. One such quantity is

42 =
1
|Λ|

∑
=∈Λ

# 2
2−1∑
1=1

(
∇`�1

` (=)
)2
, (4)

and the tolerance for this will be taken to be 10−12 here.

2. Algorithms

2.1 Los Alamos algorithm for SU(2) (LASU(2))

The Los Alamos algorithm [3] is a local algorithm to implement a gauge-fixing procedure.
To explain its principle, we can define a local version of the E functional, which exhibits the
dependence on the gauge transformation for a specific point =

E[6(=)] ≡ 1
3#2 |Λ|

tr[6(=)ℎ(=)] ≡ 1
3#2 |Λ|

tr[F(=)], (5)

with

ℎ(=) =
3∑̀
=1

(
*` (=)6†(= + ˆ̀) +*†` (= − ˆ̀)6†(= − ˆ̀)

)
. (6)
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In this algorithm, we sweep through the lattice and maximize Eq. 5 for each point in turn. In the
case of the SU(2) gauge group, we can take advantage of the fact, valid for this group, that ℎ(=),
being the sum of SU(2) matrices, is proportional to an element of the group, with the constant of
proportionality given by

√
detℎ(=). We can then define a projection to SU(2) by

PSU(2) [ℎ(=)] =
ℎ(=)√
detℎ(=)

. (7)

The matrix 6(=) which maximizes Eq. 5 is then PSU(2)
[
ℎ†(=)

]
. Another way of writing this update

is
6new(=) = �(=)6old(=), (8)

and for the Los Alamos algorithm

�LA(=) = PSU(2)
[
ℎ†(=)6old†(=)

]
= PSU(2)

[
Fold†(=)

]
, (9)

with F(=) defined by Eq. 5. We sweep through the lattice multiple times, updating the values of
6(=) following Eq. 9, and, at the end of each sweep, we measure a quantity indicative of how close
we are to the gauge fixing condition.

2.2 (Pseudo)Los Alamos algorithm for SU(3) (LA)

Ideally, we would like to have E[6(=)] placed at its maximum after each update, as it happens
in SU(2). However, in this case, it is not straightforward to have a closed analytical formula for
the update. The problem is that, for SU(3), F(=) (or ℎ(=)) is not proportional to an element of the
group. The best we can do, using the same logic as in the SU(2) case, is to promote a division of
F(=) in submatrices, like in the Cabibbo-Marinari trick for the pseudo heat-bath for SU(N) [4, 5].
Then, we try an update as in Eq. 8 with �(=) = ) (=)((=)'(=), where each factor is a SU(2) matrix
embedded in a larger SU(3) matrix (with the = dependence omitted for brevity)

' =
©­­«
A0 + 8A3 A2 + 8A1 0
−A2 + 8A1 A0 − 8A3 0

0 0 1

ª®®¬ , ( =
©­­«
B0 + 8B3 0 B2 + 8B1

0 1 0
−B2 + 8B1 0 B0 − 8B3

ª®®¬ , ) =
©­­«

1 0 0
0 C0 + 8C3 C2 + 8C1
0 −C2 + 8C1 C0 − 8C3

ª®®¬ , (10)

with
∑3

8=0 A
2
8
=

∑3
8=0 B

2
8
=

∑3
8=0 C

2
8
= 1. The matrices '(=), ((=) and ) (=) will then depend on F(=),

where each entry F8 9 of F(=) is in general a complex number.
Firstly, we can keep ((=) = ) (=) = 1 and update only with the matrix '(=). In this case, we

can ask ourselves what is the maximum of Re tr['(=)F(=)], for a given F(=), as a function of
the constants A0, A1, A2 and A3, under the constraint that the sum of its squares needs to be equal
to 1, to satisfy the definition of the group. This can be solved as a problem of maximization with
constraints, using, for example, Lagrange multipliers. The answer is

A0 =
Re[F11 + F22]

_'
A1 = −

Im[F12 + F21]
_'

A2 = −
Re[F12 − F21]

_'
A3 = −

Im[F11 − F22]
_'

,

(11)
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where _' =

√
Re [F11 + F22]2 + Im [F12 + F21]2 + Re [F12 − F21]2 + Im [F11 − F22]2. This is

equivalent to the Los Alamos update in SU(2), if the relevant submatrix of F(=) is proportional to
an SU(2) matrix. Iteratively, we can now use F′(=) = '(=)F(=) for the next update corresponding
to ((=). Then the B8’s follow the same formula as in Eq. 11, changing A → B, F → F′ and the
matrix indices 2 → 3. Finally, for ) (=), in an analogous way, B → C, F′ → F′′ and 1 → 2. The
Lagrange multipliers _) and _( should be such that

∑3
8=0 B

2
8
=

∑3
8=0 C

2
8
= 1, as was the case with

_'. In the end, we have �1(=) = ) (=)((=)'(=). We point out that the resulting �1(=) is not the
matrix which maximizes1 Re tr[�(=)Fold(=)]. Each step increases the value of this quantity, but
the maximum will be attained only asymptotically after some update “hits” at the same lattice site,
�LA(=) = �#hits(=)�#hits−1(=) . . . �1(=). However, the extra work to make these “hits” may not
translate into an overall gain of time in the convergence of the algorithm and an optimization study
is necessary in order to determine how many “hits” are worth making. This analysis is presented in
section 3.

We note that the formulas presented here are also found in [5], but with a few minus sign
mistakes and, perhaps, a confusing explanation.

2.3 Overrelaxation (OR)

One way of accelerating the convergence process is by using overrelaxation [6]. In this method,
we use a fixed power l of the update matrix determined with the pure LA algorithm at each site,
instead of simply updating by the �(=), as calculated in the last section. The exponent is taken
1 ≤ l ≤ 2. Now one must determine the optimal parameters l and number of “hits” which make
the convergence fastest.

In practice, the l power of the matrix �(=) is obtained by truncating the binomial sum

�l (=) =
∞∑

<=0

Γ(l + 1)
Γ(l + 1 − <)<!

(�(=) − 1)<, (12)

at its second term and projecting onto SU(3). This works because, as the gauge-fixing advances,
the update matrix gets close to the identity matrix very fast. The projection onto SU(3) is done
by using Eq. 4.27 of [7], in which one normalizes the first row of the matrix, then constructs the
second row by a Gram-Schmidt orthogonalization procedure, and the last row is given by the cross
product of the conjugated first and second rows.

2.4 Stochastic overrelaxation (SOR)

An alternative way of accelerating the convergence is by making stochastic updates [2, 3], with
the aim of jumping away from regions of little variation of the global functional, Eq. 1. We update

1One could try to obtain analytically the SU(3) matrix which does maximize the functional locally using Lagrange
multipliers. Parametrizing �(=) = ) (=)((=)'(=), with ) , ' and ( given by Eqs. 10, we can treat E[6(=)] as a function
of the A8 , B8 and C8 , with the constraints

∑
8 A

2
8
=

∑
8 B

2
8
=

∑
8 C

2
8
= 1 all at the same time. Applying the method here, one

generates a complicated system of coupled non-linear equations which we were not able to solve analytically, even with
the help of Mathematica®. A numerical solution which maximizes the local functional can be obtained inMathematica®
in this way and the iterative method presented here converges to this solution as the number of “hits” increase.
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the gauge transformation using

�SRE(=) =
{
�LA(=) with probability 1 − ?,(
�LA(=)

)2 with probability ?,
(13)

where �LA(=) is the LA update and ? is a tunable parameter to be optimized. Then, with probability
1− ?, the local functional goes to its maximum and with probability ?, we hope to jump to another
region, exploring better the space of possible gauge transformations without modifying the value of
the functional too much. In fact, for SU(2) one can show that the value of the functional does not
change at all when doing the “square” update (i. e. Re tr[(�LA)26oldℎ] = Re tr[6oldℎ]), by using
the fact that ℎ(=) is proportional to an SU(2) matrix and the unitarity of 6(=).

For SU(3), we do not have Re tr[(�LA)26oldℎ] = Re tr[6oldℎ]. However, we can verify in
practice that, even though the equality is not satisfied exactly, it is satisfied on average over many
updates and the use of the same scheme as in Eq. 13 for SU(3) is much more efficient than simply
using the LA algorithm2. The occasional decreases in the functional after the stochastic update are
compensated by a higher mobility in the space of gauge transformations, as will be demonstrated
in Section 3.

3. Analysis of the parameters and conclusion

An important aspect of the efficiency is the typical number of sweeps needed to fix the gauge.
This needs to be as small as possible when comparing different versions of the algorithm. In
order to do this, we considered the distribution of the sweeps needed to arrive at the gauge-fixing
condition over a large enough sample of configurations. We analyzed the same 200 pure-gauge
SU(3) configurations of 44, 84, 104 lattices and 100 configurations of a 164 lattice generated with a
standard heat-bath algorithm, with different parameters of the gauge-fixing algorithms, as explained
in the previous sections. As a quantity indicative of the typical number of sweeps needed to gauge-
fix the configuration, we chose the median of the distribution. This is because a small number of
configurations demand an anomalously high number of sweeps to gauge-fix, and this increases the
value of the mean of the data, preventing it from representing the most typical values of sweeps. It
is noteworthy to say that the results presented here were duplicated using different programs written
by two of us, which provides an independent check. Let us note that some studies of efficiency of
the algorithms, like the one presented in [5], consider only one or a handful of configurations and
observe the behaviour of the number of sweeps to gauge-fix them when varying the parameters. By
taking a substantial number of configurations, we hope to have a more robust result based on an
actual statistical distribution.

As our first result, we note that not using OR or SOR makes the program slower to gauge-fix
even if the parametersl and ? are not optimal. So, we will not consider the pure LA in the analyzes
of this paper. We also verified that independently of V or the side of the lattice, the optimal number
of “hits” is 2 for all versions of the algorithm. This can be seen, for example, in Fig. 1 for the SOR
algorithm with the 44 and 84 configurations. Increasing the number of “hits” clearly matters when
changing from 1 hit to 2 hits, which is to say that the typical number of sweeps drops significantly

2The LA algorithm can be thought of as OR with l = 1 or SOR with ? = 0.
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when ? is in the optimal region. But more than 2 “hits” seem to make very little difference. The
optimal region for the parameter ? also does not change much when increasing the number of hits.
We conclude, then, that making more than 2 “hits” is a waste of computational resources, since it
will not translate into a smaller median of the distribution. Although we only show here the results
for the two smallest lattices, the same conclusion was obtained for all the lattices and also for the
OR version of the algorithm, so, from now on, we will only focus on the optimization for l and ?.
To obtain a critical exponent from the data, which illustrates how much more work has to be done
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Figure 1: Optimization of # of “hits” for SOR on a 44 (left) and 84 (right) lattice.

when the number of sites increases, we use configurations obtained with “constant physics”, i. e.,
keeping #0 constant, where # is the number of lattice sites in any direction. Following [7, 8], the
physical spacing is parametrized, for 5.7 < V < 6.92, by

0 = A0 exp( 5 (V)), 5 (V) ≡ −1.6804−1.7331(V−6.0)+0.7849(V−6.0)2−0.4428(V−6.0)3, (14)

for the standard pure gauge Wilson plaquette action. The Sommer parameter is A0 ≈ 0.5 fm. The
results for the median and our optimal parameters for gauge-fixing with configurations generated
with V calibrated to keep the physical volume constant are shown in Fig. 2.
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Figure 2: Left: Medians of the distribution of sweeps to arrive at a gauge-fixed configuration for OR and
SOR with the optimal values of ? and l as a function of the lattice size and two “hits”. Right: Optimal
parameters as a function of the lattice size. The fits are explained in the text.

The fit for the median of the number of sweeps was done with a power law 5 (#) = �# I ,
resulting in � = 14(2) and I = 1.06(5) for OR and � = 14.7(8) and I = 1.13(2) for SOR, which
shows that OR is more efficient, given the smaller critical exponent. The fit shows that we get an
almost linear dependence of the number of sweeps with the size of lattice side, much better than
the quadratic dependence expected for pure LA [2]. For the dependence of the optimal parameters
with the size of the lattice, we used a function l or (1 + ?) = 2/(1 + �/#), based on [2], resulting
in � = 0.78(1) and � = 1.07(3) for OR and SOR respectively. We observe that, as the number
of sites grows, the values of the optimal parameters get closer to the limiting cases of l = 2 and
? = 1, showing that the mobility in the space of possible gauge transformations is very important
for an efficient gauge-fixing on large lattices.
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