
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
0

Near Physical Point Lattice Calculation of
Isospin-Breaking Corrections to K`2/π`2

Andrew Zhen Ning Yong,a,∗ Peter Boyle,a,b Matteo Di Carlo,a Felix Erben,a Vera
Gülpers,a Maxwell T. Hansen,a Tim Harris,a Nils Hermansson-Truedsson,c Raoul
Hodgson,a Andreas Jüttner,d,e Antonin Portellia and James Richingsa

aDepartment of Physics & Astronomy, University of Edinburgh,
Peter Guthrie Tait Road, King’s Buildings, Edinburgh, United Kingdom

bPhysics Department, Brookhaven National Laboratory, Upton, NY, USA
cAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Universität Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland

dSchool of Physics and Astronomy, University of Southampton, University Road, Southampton SO17 1BJ,
United Kingdom

eCERN, Physics Department, 1211 Geneva 23, Switzerland

E-mail: andrew.yong@ed.ac.uk

In recent years, lattice determinations of non-perturbative quantities such as fK and fπ , which
are relevant for Vus and Vud , have reached an impressive precision of O(1%) or better. To make
further progress, electromagnetic and strong isospin breaking effects must be included in lattice
QCD simulations.
We present the status of the RBC&UKQCD lattice calculation of isospin-breaking corrections to
light meson leptonic decays. This computation is performed in a (2+1)-flavor QCD simulation
using Domain Wall Fermions with near-physical quark masses. The isospin-breaking effects are
implemented via a perturbative expansion of the action in α and (mu − md). In this calculation,
we work in the electro-quenched approximation and the photons are implemented in the Feynman
gauge and QEDL formulation.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:andrew.yong@ed.ac.uk
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
0

Isospin-Breaking Corrections to K`2/π`2 Andrew Zhen Ning Yong

1. Introduction

One of the ongoing efforts to search for new physics beyond the Standard Model (SM) of
particle physics is to test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Since
all SM and potential beyond-the-SM particles contribute to hadronic decays via virtual corrections,
any deviations from the theoretical expectation of unitarity may hint at inconsistencies between
Nature and the SM in the flavor sector. In 2020, the PDG [1] reports the following tension with
unity in the first row of the CKM matrix:

|Vud |
2 + |Vus |

2 + |Vub |
2 = 0.9985 ± 0.0005. (1)

The determination of CKM matrix elements is an endeavour involving the joint effort of precise
experimental measurements and predictions from theory. One of the experimental avenues of
interest is the leptonic decay channels of light pseudoscalars, P± = K±, π±. The tree-level expression
is

Γ
tree
P =

G2
F

8π
MP+m2

`+

(
1 −

m2
`+

M2
P+

)2

| fP |2 |Vqq′ |
2, (2)

where GF is the Fermi constant and Vqq′ is the CKM matrix element between quark flavors q and
q′. The pseudoscalar decay constant, fP, is a quantity in the isosymmetric theory, where α = 0 and
δm ≡ mu −md = 0. We note that since the decay constant encapsulates the non-perturbative effects
of QCD, it is evaluated numerically using lattice QCD methods. Traditionally, these calculations
were performed in the α = 0, δm = 0 regime. However, since recent lattice determinations of fK
and fπ have attained percent-level precision [2], further progress will necessitate the inclusion of
isospin-breaking (IB) effects since α ∼ δm

ΛQCD
∼ 1%.

Due to the experimental challenge in distinguishing between final states with or without a soft
photon, only the inclusive rates are measured in the case of pions and kaons. For the extraction of
Vqq′ from experimental data, we combine the tree-level expression with its IB corrections with

Γ(P+ → `+ν`[γ]) = Γ
tree
P (1 + δRP) + O(α

2, δm2, αδm) (3)

where δRP contains the leading order IB contributions to the tree-level width.
In this proceeding, we report on our determination of |Vus |

|Vud |
, which can be extracted from a

ratio of muonic inclusive rates via

|Vus |
2

|Vud |
2 =
Γ(K+ → µ+νµ[γ])

Γ(π+ → µ+νµ[γ])

MK+

Mπ+

M2
π+
− m2

µ+

M2
K+
− m2

µ+

F −2, (4)

where
F =

fK
fπ

√
1 + δRKπ (5)

and δRKπ ≡ δRK − δRπ . By using experimental measurements of the inclusive rate (i.e. branching
ratios and mean lifetimes) and masses, the term δRKπ encapsulates the ratio of IB correction to
the hadronic decay amplitudes. The lattice determination of δRKπ is thus the main focus of this
calculation.
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2. Calculation strategy

The methodology of separating the calculation of real and virtual IB corrections, along with
the regulating and removal of finite volume effects (FVE) from the amplitudes computed on the
lattice, was first proposed in [3]. Following this, a calculation of δRKπ and |Vus |

|Vud |
was accomplished

in [4, 5]. Here, we adopt a similar strategy and write the inclusive rate as

Γ(P+ → µ+νµ[γ]) = lim
L→∞
(Γ0(L) − Γ

(2)
0 (L)) + lim

λ→0
(Γuniv0 (λ) + Γ1(λ,∆Eγ)), (6)

where the subscript denotes the number of real photons in the final state. The virtual corrections in
Γ0 are evaluated with numerical simulations since all momentum modes of the photon are involved
in the interaction with the initial hadron. Thus, the lattice box size, L, is a natural choice of IR
regulator. To remove the FVE of the lattice calculation, we introduced

Γ
(n)
0 (L) = Γ

tree
P

(
1 + 2

α

4π
Y (n)P (L)

)
+ O

(
1

Ln+1

)
. (7)

The O(L−1) FVE’s were calculated in [6], and the O(L−2) structure-dependent FVE’s in [7]. Thus,
the residual FVE coming from our lattice calculation now begins at Γ0(L) − Γ

(2)
0 (L) ∼ O

(
L−3) .

For the real photon contribution, we implement the analytic approach in [3]. In Equation (6),

lim
λ→0
(Γuniv0 (λ) + Γ1(λ,∆Eγ)) = ΓtreeP

(
1 +

α

4π
δΓ1,P(∆E)

)
, (8)

where ∆E is an energy threshold, below which the photon is sufficiently soft that it treats the initial
hadron as a point-like particle. Here, for the IR regulator we use a fictitious photon mass, λ.
Additionally, an intermediate ‘universal’ term, Γuniv0 , is introduced to ensure the IR divergences in
Equation (6) cancel numerically. In the following, we will discuss in detail the contributions going
into Γ0(L).

3. Leptonic matrix elements from Euclidean correlation functions

The 4-fermion operator associated to this decay is

OW = (νγ
τ
Lµ)(q1γ

τ
Lq2), (9)

where γτL = γ
τ(1 − γ5). For a two-body decay, the rate has a simple form:

Γ = K
∑
r,s

|M
r,s
P |

2 (10)

where K contains the kinematic factors from the phase space integral and

M
r,s
P ≡ 〈µ

+, r; νµ, s |OW |P+〉 , (11)

where r, s are the polarisations of the on-shell final state fermions. In the rest frame of the
pseudoscalar, the amplitude in the isosymmetric theory of QCD is
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M
r,s

P =
(
urνΓ

0
Lv

s
µ

)
AP, (12)

where the axial matrix element is

AP ≡ 〈0|q2Γ
0
Lq1 |P〉 = MP fP, (13)

with MP the pseudoscalar mass in the isosymmetric theory. At O(α, δm), all the possible virtual
IB correction to the isosymmetric amplitude are presented in Figures 1 and 2, which we can write
as

1
2
δΓ0,P

Γ0,P
≡

∑
r,s Re

[
M

r,s †

P δMr,s
P

]
∑

r,s |M
r,s

P |
2

=
δAP

AP

−
δMP

MP

+
δMPµ

MP

, (14)

where δMPµ is the amplitude correction corresponding to diagrams (e,f) in Figure 2. The contri-
butions in Equation (14) are extracted from correlation functions generated in lattice simulations.
Since α ∼ δm

ΛQCD
∼ 1% in the low energy regime, the QED and strong IB (SIB) corrections can be

treated as a perturbation to our path integral expression [8]. The full QCD+QED expectation value
for some observable O is

〈O〉 = 〈O〉0 +
∑
q

(mq − mq)
∂

∂mq
〈O〉

����
mq=mq

+
1
2!

e2 ∂
2

∂e2 〈O〉
����
e=0
+ . . . , (15)

where

〈O〉 =
1
Z

∫
D[ψ]D[ψ]D[U]D[A]O[ψ, ψ,U, A] e−SF [ψ,ψ,U,A]e−SG [U]e−Sγ [A] (16)

is the path integral over the usual quark fields,ψ, ψ; the SU(3) gluonic fields,U; and the photon fields,
A. Here, 〈O〉0 is the QCD-only (mu = md) expectation value. The SIB and QED corrections are
then extracted from the slopes of the full correlation function, 〈O〉. Respectively, these derivatives
generate correlation functions that contain scalar insertions (Figure 1) or two insertions of the
electromagnetic (EM) current at O(α) (Figure 2). Together with the subtraction of FVE and the
inclusion of the real photon contribution,

δRKπ =

(
δΓ0,K (L)

Γ0,K (L)
−
δΓ0,π(L)

Γ0,π(L)

)
−2

α

4π

(
Y (2)K (L) − Y (2)π (L)

)
+
α

4π
(
δΓ1,K (∆E) − δΓ1,π(∆E)

)
. (17)

In the following, we classify Figure 1(a,b) and 2(a,b,c) collectively as factorisable diagrams
and Figure 2(e,f) as non-factorisable diagrams. We do not consider the lepton self energy term
(Figure 2(d)) as this is absorbed in the lepton renormalisation.
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µ+

P+

(a)

νµ

q1

q̄2

P+

(b)

µ+

νµ

q1

q̄2

Figure 1: Feynman diagrams of scalar insertions on quark legs (marked with red boxes).

(a)

µ+

νµ

P+

q1

q̄2

(c)

µ+

νµ

P+

q1

q̄2

(d)

µ+

νµ

P+

q1

q̄2

(f)

µ+

νµ

P+

q1

q̄2

(e)

µ+

νµ

q1

q̄2

P+

µ+

P+

(b)

νµ

q1

q̄2

Figure 2: Feynman diagrams of all possible insertions of the electromagnetic current (marked with green
squiggle lines) at O(α). QED interactions with sea quarks are neglected.

4. Lattice methodology & implementation

For this calculation, we generate correlators in a 483 × 96 lattice using near-physical Möbius
Domain Wall Fermions (DWF). The Domain Wall height and the length of the fifth dimension
are M5 = 1.8 and Ls = 24, respectively [9]. To reduce the computational cost of generating
near-physical light quark propagators, we make use of ZMöbius fermions [10] together with the
eigenvectors generated by the RBC/UKQCD collaboration for deflation. The 60 QCD gauge
configurations used are also generated by the RBC/UKQCD collaboration using the Iwasaki gauge
action [11]. The sea quark masses are amsea

l
= 0.00078, amsea

s = 0.0362. We choose the valence
up- and down-quarkmasses to have the same value as the sea, amu = amd = amsea

l
and similarly for

the valence strange quarks, ams = amsea
s . In this setup, the lattice spacing is a−1 = 1.7295(38)GeV

and the ensemble pion mass is Mπ = 139.15(36)MeV.
The correlators are built from quark propagators with Coulomb gauge-fixed wall sources. As

such, we must generate correlators with both wall and point sinks in order to extract the axial
matrix element. The implementation of QED on our lattice simulation is as follows: we remove
the photon’s spatial zero mode with the QEDL formalism. As in the case of the scalar current, we
sequentially insert a local EM current in Feynman gauge to obtain a sequential propagator with an /A
insertion. The correlators built from these propagators are then renormalised by appropriate factors
of ZV [12]. To build the hadron-leptonic correlators corresponding to diagrams (e,f) in Figure 2, we

5
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include the charged lepton on the lattice. This is done by generating muon propagators with a free
DWF action, using an input mass such that the pole mass of our DWF propagator matches with the
experimentally measured value. The propagator is given twisted boundary conditions to conserve
4-momentum of this decay. The neutrino is a spectator fermion in this whole process, so we choose
to omit it in the lattice simulation and include it in the analysis stage. We put the pseudoscalar
interpolator at the origin and insert the 4-fermion operator on every timeslice, tH , with the muon
source-sink separation fixed at, tµ − tH = 12, 16, . . . , 36, 40.

In this calculation, we omit SIB contributions coming from sea quarks. We are also working
in the electro-quenched approximation of QED - treating the sea quarks as electrically neutral.

5. Physical predictions from lattice calculations

Since the two sources of isospin-breaking are O(1%) effects, we can perform a linear expansion
about the physical point and treat these effects as shifts from the isosymmetric point, where
α = 0, δm = 0. Let X be the observable of interest (e.g. hadronic mass). Then, at O(α, δm),

X = X +
∑
q

∆mq∂mq X |m f =m f
+

1
2!

e2∂e2 X |e=0 + O(α
2, (∆mq)

2, α∆m). (18)

where ∂yn X = ∂nX/∂yn. Working to this order, we can set the electric charge in terms of the fine
structure constant in the Thomson limit, e2 = 4παEM1. The set of ∆mq are the isosymmetric-to-
physical point bare quark mass shifts. For a theory of QCD with 3 flavors, we can solve for the
three ∆mq’s by imposing the following mass ratios:

(aMP)
2

(aMΩ−)2
=

(
Mexp

P

)2(
Mexp
Ω−

)2 , (19)

where we choose P = π+,K+,K0. Scale setting can also be done by considering the following
dimensionful constraint:

a =
aMΩ−

Mexp
Ω−

, (20)

where we chose the omega baryon owing to the clean signal from lattice simulations.
An additional step is required of our setup. Namely, we are not simulating at but close to the

desired isosymmetric point and thus we must correct for this mismatch before calculating the IB
corrections. Here, we note that since there is no natural phenomena which interacts exclusively
with the strong nuclear force, this unphysical definition of the isosymmetric point will depend on
the separation scheme we prescribe to our calculation. To that end, consider the following mesonic
quantities,

M2
ud =

1
2

(
M2

uu + M2
dd

)
≈ 2Bmud + . . .

∆M2 = M2
uu − M2

dd
≈ 2B(mu − md) + . . .

M2
Kχ =

1
2

(
M2

K+ + M2
K0 − M2

π+

)
≈ 2Bms + . . .

(21)

1αEM = 7.2973525693(11) × 10−3[13]
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where qq are neutral pseudoscalars made from connected-only propagators. Here, we have used the
fact that, at leading order partially-quenched χPT [14, 15], these squared masses are proportional
to the quark masses we are interested in, with B the chiral condensate. Thus, we can tune our setup
to the isosymmetric point by setting α = 0 in Equation (18) and determine another set of bare quark
mass shifts, {∆m′q}, with the following constraints:

M2
ud =

(
Mexp

π0

)2
, ∆M2 = 0, M2

Kχ =
1
2

((
Mexp

K+

)2
+

(
Mexp

K0

)2
−

(
Mexp
π+

)2
)
. (22)

Most notably, by fixing ∆M2 = 0, we emulate the constraint in which δm = 0.

6. Constructing the amplitude correction

6.1 Factorisable IB correction

The extraction of IB correction to the amplitude from correlators corresponding to Figure
1(a,b) and Figure 2(a,b,c) proceeds in a manner analogous to the standard two-pt analysis, i.e. we
need the pseudoscalar (p) and axial-pseudoscalar (a) interpolators:

φp = q2γ
5q1 and φa = q2γ

0γ5q1. (23)

Excluding backward propagating effects, the QCD-only pp/pa−correlator is

C
pj

P (t) ≡
∫

d3x 〈0|T
{
φ j(®x, t)φ†p(0)

}
|0〉 e−i ®k · ®x = cpjP e−MP t, (24)

with cpjP = 〈0|φ j |P〉 〈P |φ
†
p |0〉 /2MP . For pp/pa−correlators containing either electromagnetic or

scalar currents, we have

∂gkCpj
P (t) =

(
∂gk cpjP + cpjP ∂gk MPt

)
e−(MP+∆gk∂gk MP )t, (25)

where gk = {e2,ml,ms} and ∆gk = gk − gk . Taking the ratio of Equation (25) and (24), we have

Rpj
P,gk
(t) =

∂gk cpjP
cpjP

− ∂gk MPt . (26)

Since the QED and SIB correlator ratios share a common mass parameter, MP, we include Rpj
P,gk

for all j and gk in a combined fit. In Figure 3, we present a preliminary result of this combined fit.

6.2 Non-factorisable IB correction

The hadron-leptonic correlators on the lattice are generated with amodified 4-fermion operator:

ÕW,β = (γ
τ
Lµ)β(q1γ

τ
Lq2), (27)

7
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Factorisable IB Correction to π+ Amplitude
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S PP
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Figure 3: A combined fit of all correlator ratios defined in Equation (25). The pink points are the mud

scalar insertion data and should be read with the left y-axis, while the green points are the QED data and
should be read with the right y-axis. The blue and orange lines are the fits to the scalar insertion and
QED data, respectively. The error bands are not visible. For this combined fit, χ2/do f = 70/52 = 1.35,
p−value= 0.099.

where β is an open spinor index. The spectral representation of these novel correlators is

CP(tH, tµ − tH )β1β2 ≡

∫ ∏
j=µ,H

d3xj e−i ®p j · ®x j 〈0|
(
µ(®xµ, tµ)Γ0

L

)
ÕW (®xH, tH )φ†(0)|0〉

β1β2

=
〈P |φ†P |0〉

4EµMP

[
MP · (−/pµ + imµ)

]
β1β2

e−MP tH e−Eµ (tµ−tH )

(28)

where β1,2 are spinor indices. The correlator containing electromagnetic currents has an analogous
functional form. In order to extract the non-factorisable amplitude correction, we saturate the spinor
indices by including the missing neutrino leg, giving us a trace over the correlator. Then, taking the
ratio of the QED and QCD-only hadron-leptonic correlator, we find that at large time separations,

RPµ(tH, tµ − tH ) =
Tr

[
/pν∂eq∂eµCP(tH, tµ − tH )γ0

L
]

Tr
[
/pνCP(tH, tµ − tH )γ0

L

]
tµ�tH�0
−−−−−−−−→

Tr
[
/pν∂eq∂eµMP(−/pµ + imµ)γ

0
L

]
Tr

[
/pνMP(−/pµ + imµ)γ

0
L

] .

(29)

For each pseudoscalar, we have eight of these correlator ratios, corresponding to the different muon
source-sink separations, tµ − tH . We perform a 2D combined fit in the tH and (tµ − tH ) direction
and Figure 4 shows the result of this fit analysis.

8
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Figure 4: The non-factorisable correlator ratio defined in Equation (29). The red line and pink error band
is the result of a combined fit of the hadron-leptonic correlators, in which only tµ − tH = 24 is shown here.
For this combined fit, χ2/do f = 29/31 = 0.94, p−value= 0.812.

6.3 Combining lattice and analytic results

We are now in the position to construct δRKπ in Equation (17), which we recast here for
convenience

δRKπ =

(
δΓ0,K (L)

Γ0,K (L)
−
δΓ0,π(L)

Γ0,π(L)

)
−2

α

4π

(
Y (2)K (L) − Y (2)π (L)

)
+
α

4π
(
δΓ1,K (∆E) − δΓ1,π(∆E)

)
. (30)

The output of the combined fits discussed in the previous subsections, properly tuned to the
isosymmetric point using Equation (18) and the appropriate bare quark mass shifts, {∆mq}, will
give the contribution of the first parentheses on the RHS of the above equation. Combining with the
analytic results from [7] and [3], corresponding to the second and third parentheses, respectively,
we obtain δRKπ .

7. Conclusion & Outlook

A high precision test of the unitarity of the CKM matrix is made possible, in part, with recent
improvements in lattice simulations. Through the inclusion of IB effects, we are now in the position
to predict light CKM matrix elements at percent-level precision or better. In the RBC&UKQCD
collaboration, we have a lattice setup that allows us to extract the amplitude correction, δRKπ , from
a near-physical point simulation. At the time of writing, we are estimating the systematics on the
prediction of |Vus |

|Vud |
. Indeed, we expect to provide an update on the ratio of CKM matrix elements

shortly after the publication of this proceeding.
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Our immediate plan for the leptonic decay sector is as follows: progress is under way to
renormalise the weak operator, OW . This will enable us to obtain |Vud | and |Vus | and, in turn,
provide an update to the unitarity tension seen in Equation (1). Further improvements are possible
with an unquenched calculation, i.e. including disconnected contributions and QED interactions
with sea quarks. Additionally, we envision in the near future a departure from the point-like
approximation to a first principle lattice calculation of the real photon contribution. In the long
term, it is our objective to further constrain CKMmatrix elements by studying semi-leptonic decays,
e.g. K± → π0`±ν` .

Acknowledgements

F.E., V.G., R.H., A.P. and A.Z.N.Y. received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 757646. A.P. is additionally supported by grant agreement No 813942. P.B. has been
supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics
under the Contract No. DE-SC-0012704 (BNL). M.D.C., M.T.H. and T.H. are supported in part
by UK STFC grant ST/P000630/1. M.T.H. is further supported by UK Research and Innovation
Future Leader Fellowship MR/T019956/1. N.H.-T. is funded by the Albert Einstein Center for
Fundamental Physics at the University of Bern. A.J. acknowledges funding from STFC consolidated
grants ST/P000711/1 and ST/T000775/1. J.R. is supported by DiRAC grants ST/R001006/1 and
ST/S003762/1.

This work used the DiRAC Extreme Scaling service at the University of Edinburgh, oper-
ated by the Edinburgh Parallel Computing Centre on behalf of the STFC DiRAC HPC Facility
(www.dirac.ac.uk). This equipment was funded by BEIS capital funding via STFC capital grant
ST/R00238X/1 and STFC DiRAC Operations grant ST/R001006/1. DiRAC is part of the National
e-Infrastructure.

References

[1] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01.

[2] Y. Aoki et al., FLAG Review 2021, 2111.09849.

[3] N. Carrasco, V. Lubicz, G. Martinelli, C.T. Sachrajda, N. Tantalo, C. Tarantino et al., QED
Corrections to Hadronic Processes in Lattice QCD, Phys. Rev. D 91 (2015) 074506
[1502.00257].

[4] D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula et al., First
lattice calculation of the QED corrections to leptonic decay rates, Phys. Rev. Lett. 120
(2018) 072001 [1711.06537].

[5] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo et al.,
Light-meson leptonic decay rates in lattice QCD+QED, Phys. Rev. D 100 (2019) 034514
[1904.08731].

10

www.dirac.ac.uk
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://arxiv.org/abs/2111.09849
https://doi.org/10.1103/PhysRevD.91.074506
https://arxiv.org/abs/1502.00257
https://doi.org/10.1103/PhysRevLett.120.072001
https://doi.org/10.1103/PhysRevLett.120.072001
https://arxiv.org/abs/1711.06537
https://doi.org/10.1103/PhysRevD.100.034514
https://arxiv.org/abs/1904.08731


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
0

Isospin-Breaking Corrections to K`2/π`2 Andrew Zhen Ning Yong

[6] V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula and N. Tantalo,
Finite-volume QED corrections to decay amplitudes in lattice QCD, Phys. Rev. D 95 (2017)
034504.

[7] M. Di Carlo, M.T. Hansen, N. Hermansson-Truedsson and A. Portelli, Relativistic,
model-independent determination of electromagnetic finite-size effects beyond the point-like
approximation, 2109.05002.

[8] RM123 collaboration, Leading isospin breaking effects on the lattice, Phys. Rev. D 87 (2013)
114505 [1303.4896].

[9] RBC, UKQCD collaboration, Domain wall QCD with physical quark masses, Phys. Rev. D
93 (2016) 074505 [1411.7017].

[10] G. Mcglynn, Algorithmic improvements for weak coupling simulations of domain wall
fermions, PoS LATTICE2015 (2016) 019.

[11] Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action:
Two-dimensional non-linear O(N) sigma model, Nuclear Physics B 258 (1985) 141.

[12] RBC/UKQCD collaboration, The kaon semileptonic form factor in N f = 2 + 1 domain wall
lattice QCD with physical light quark masses, JHEP 06 (2015) 164 [1504.01692].

[13] E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, Codata recommended values of the
fundamental physical constants: 2018, Rev. Mod. Phys. 93 (2021) 025010.

[14] Budapest-Marseille-Wuppertal Collaboration collaboration, Isospin Splittings in the
Light-Baryon Octet from Lattice QCD and QED, Phys. Rev. Lett. 111 (2013) 252001.

[15] J. Bijnens and N. Danielsson, Electromagnetic Corrections in Partially Quenched Chiral
Perturbation Theory, Phys. Rev. D 75 (2007) 014505 [hep-lat/0610127].

11

https://doi.org/10.1103/PhysRevD.95.034504
https://doi.org/10.1103/PhysRevD.95.034504
https://arxiv.org/abs/2109.05002
https://doi.org/10.1103/PhysRevD.87.114505
https://doi.org/10.1103/PhysRevD.87.114505
https://arxiv.org/abs/1303.4896
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.93.074505
https://arxiv.org/abs/1411.7017
https://doi.org/10.22323/1.251.0019
https://doi.org/https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1007/JHEP06(2015)164
https://arxiv.org/abs/1504.01692
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1103/PhysRevLett.111.252001
https://doi.org/10.1103/PhysRevD.75.014505
https://arxiv.org/abs/hep-lat/0610127

	Introduction
	Calculation strategy
	Leptonic matrix elements from Euclidean correlation functions
	Lattice methodology & implementation
	Physical predictions from lattice calculations
	Constructing the amplitude correction
	Factorisable IB correction
	Non-factorisable IB correction
	Combining lattice and analytic results

	Conclusion & Outlook

