
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
1

Thermal QCD phase transition and its scaling window
from Wilson twisted mass fermions

A.Yu. Kotov,0,∗ M.P. Lombardo1 and A. Trunin2
0Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980
Russia
1INFN, Sezione di Firenze, 50019 Sesto Fiorentino (FI), Italy
2Samara National Research University, Samara, 443086 Russia

E-mail: kotov.andrey.yu@gmail.com, lombardo@fi.infn.it, amtrnn@gmail.com

We investigate the thermal QCD phase transition and its scaling properties on the lattice. The
simulations are performed with # 5 = 2 + 1 + 1 Wilson twisted mass fermions at pion masses
from physical up to heavy quark regime. We introduce a novel chiral order parameter, which
is free from linear mass contributions and turns out to be very useful for the study of scaling
behaviour. Our results are compatible with $ (4) universal scaling for the physical pion mass
and the temperature range [120 : 300] MeV. Violations to scaling at larger masses and other
possible scenarios, including mean field behaviour and / (2) scaling scenario are also discussed.
We provide an estimation for the critical temperature in the chiral limit )0.
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1. Introduction

The nature of the thermal QCD phase transition as a function of quark masses has been
the subject of numerous investigations (for example, see reviews [1–3] and references therein).
A particularly interesting open question: what are the universal properties of QCD phase transition
in the limit of zero quark masses? The most well-known arguments based on the n-expansion[4]
predict that the thermal transition is of the first order for number of massless quark flavours # 5 ≥ 3.
For # 5 = 2 the situation is less clear and depends on the fate of the axial *�(1) symmetry. If
it remains broken at the critical temperature )2 , then the transition is of the second order with
$ (4) universality class, while its effective restoration at the critical temperature would imply either
another universality class [5] or the first order phase transition. Nonzero quark masses explicitly
violate chiral symmetry, and, in the case of the second order phase transition, the properties of
observables for small quark mass should follow an universal scaling behaviour, in the so called
scaling window around the phase transition. In the case of the first order phase transition, it should
persist for small quark masses, ending in the /2 critical line.

Despite substantial progress, the nature of the thermal QCD phase transition in the chiral limit
and its scaling window remains an open issue. In this Proceeding we present the results of our study
of the scaling behaviour of # 5 = 2 + 1 + 1 QCD in the limit of # 5 = 2 massless quarks.

2. Lattice details
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Figure 1: Universal Equation of State for the chiral condensate and new order parameter 〈k̄k〉3 according
to $ (4) universality class and mean field scaling. 〈k̄k〉3 is rescaled to go through (0, 1) point.

We perform simulations with # 5 = 2+1+1 twistedmassWilson fermions at maximal twist [6].
Our study has been carried out in the fixed scale approach, where we keep lattice spacing 0 fixed
and change temperature by varying temporal lattice extent #C . In the simulations the heavy quark
sector was tuned to reproduce the masses of  and � mesons, and we performed the study of several
ensembles for various pion masses. Due to the tuning of parameters by ETM collaboration [7] we
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are able to do simulations with physical pionmass. A short summary of used ensembles is presented
in Tab. 1. Detailed discussion on lattice parameters and used statistics can be found in [8]. First
preliminary results have been reported in [9].

Ensemble M140 D210 D370 B370
Pion mass <c [MeV] 139.3(7) 225(5) 383(11) 376(14)
Lattice spacing 0 [fm] 0.0801(4) 0.0619(18) 0.0619(18) 0.0815(30)

Table 1: Ensembles used in the study, corresponding pion mass and lattice spacing

In order to study thermal QCD phase transition and its scaling behaviour we investigated the
following observables:

• Chiral condensate 〈k̄k〉

• Chiral susceptbility j =
m〈k̄k〉
m<

• Combining chiral condensate and chiral susceptibility, we build a novel order parameter

〈k̄k〉3 = 〈k̄k〉 − <j. (1)

Note, that any linear in mass terms in the chiral condensate are cancelled in this observable,
including regular nonuniversal terms and a leading order divergence ∼ </02.
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Figure 2: Chiral condensate (left), chiral susceptibility (center) and newobservable 〈k̄k〉3 (right) as functions
of temperature for the physical pion mass <c = 139 MeV. For the chiral condensate and 〈k̄k〉3 we impose
fits of various functional forms, for the chiral susceptibility a spline interpolation in various intervals is also
presented. Figures from [8].

Taking the universal Equation of State for the chiral condensate: 〈k̄k〉 = <1/X 5 (C/<1/VX),
one can easily obtain for the new observable:

〈k̄k〉3
<1/X = 5 (G) (1 − 1/X) + G

VX
5 ′(G), (2)

here C ≡ () − )0), )0 is the critical temperature in the chiral limit, mass < is an external symmetry
breaking field, G ≡ C/<1/VX , V and X are corresponding critical exponents. The universal behaviour
of 〈k̄k〉3 according to $ (4) universality class in comparison to the chiral condensate is presented
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in Fig. 1. The pseudo-critical temperature extracted from the inflection point of 〈k̄k〉3 is given by
G = 0.55(1) comparing to G = 0.74(4) from the inflection point of the chiral condensate, meaning
that the pseudocritical temperature from this observable is closer to the critical temperature)0 in the
chiral limit. One should note much faster falloff of this observable in the large temperature region
〈k̄k〉3 ∝ C−W−2VX rather than 〈k̄k〉 ∝ C−W . These facts make the new observable very suitable for
the study of the scaling behaviour.

3. Results
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Figure 3: The pseudocritical temperature extracted from various observables as a function of pion mass
<c together with $ (4) fits. Results of other groups: Budapest-Wuppertal [10] (orange and cyan triangles),
HotQCD [11] (purple diamonds) and FASTSUM [12, 13] (violet stars) are also indicated. Light-green cross
indicates our final estimation of the critical temperature )0 in the chiral limit, Eq. (3). Points are slightly
shifted for better readability. Figure from [8].

In Fig. 2 we present the dependence of the studied observables on the temperature for the
physical pion mass. We fitted the chiral condensate and the new observable 〈k̄k〉3 with several
functional forms in order to determine the inflection point and the pseudo-critical temperature.
For the full chiral susceptibility, given small number of points and large regular contribution, we
used cubic splines, which go through the points and their errorbars, to determine the peak position.
We summarize the pseudo-critical temperatures for the physical pion mass in Tab. 2. In Fig. 3
we present the resulting dependence of the pseudo-critical temperature determined from all three
observables as a function of pion mass, together with the results of other groups [10–13]. We fit
the dependence of the pseudo-critical temperatures on the pion mass with the prediction of $ (4)
universality class and determine the critical temperature in the chiral limit, which is also presented

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
1

Thermal QCD phase transition and its scaling window... A.Yu. Kotov

Observable Chiral condensate Chiral susceptibility New order parameter 〈k̄k〉3
)2 [MeV] for <c = <

phys
c 157.8(12) 153(3) 146(2)

)2 [MeV] for <c → 0 138(2) 132(4) 132(3)

Table 2: Pseudocritical temperature for physical pion mass and critical temperature in the chiral limit,
extracted from three studied observables.

in Tab. 2. Combining all observables, we obtain the following estimation of the pseudo-critical
temperature in the chiral limit:

)0 = 134+6−4 MeV.

An alternative estimation of the critical temperature in the chiral limit can be obtained from the
universal scaling of 〈k̄k〉3: if one takes the new observable 〈k̄k〉3 at the critical temperature in the
chiral limit C = 0, then, according to Eq. (2), 〈k̄k〉3/<1/X ∼ 〈k̄k〉3/<2/X

c is indepenendent on the
pion mass. In Fig. 4 we plot the appropriately rescaled 〈k̄k〉3 for three different pion masses. From
the intersection of the curves for two lower pion masses we obtain another estimation of the critical
temperature in the chiral limit )0 = 138(2) MeV. Note, that this estimation is slightly higher, but
consistent within errorbars with the estimation obtained from the extrapolation of the pseudocritical
temperature, Eq. (3).
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Figure 4: New order parameter 〈k̄k〉3, divided by <2/X
c ∼ <1/X

@ . A crossing point of the curves for two
lower pion masses provide an estimation of the critical temperature in the chiral limit )0 = 138(2) MeV
according the EoS in Eq. (2). Figure from [8].

It would be interesting to see, whether the dependence of the 〈k̄k〉3 on temperature can be
described by a universal scaling behaviour. In Fig. 5 we present this observable, together with the
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Figure 5: Temperature dependence of 〈k̄k〉3 for
three pion masses together with $ (4) and mean
field fits. Figure from [8].
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Figure 6: The dependence of the pseudocritical
temperatures on the pion mass together with fits,
based on $ (4) predictions and /2 scaling with a
critical pion mass <2Ac = 50 and 100 MeV. Figure
from [8].

fits, given by $ (4) and mean field scaling. It can be seen that $ (4)-based fits describe the data for
all temperatures quite well. However, the critical temperature in the chiral limit determined from
these fits is given by )EoS

0 = 142(2), 159(3), 174(2) MeV for pion masses <c = 139, 225 and 383
MeV correspondingly. The value of )EoS

0 is close to the previous estimation (3) of )0 = 134+6−4 MeV
only for the lightest pion. Note that mean field behaviour also describes our data, except for the
lightest pion, where one sees some tension between our results and the fit.
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Figure 7: Large temperature behaviour of the the rescaled 〈k̄k〉3/<3
@ ∼ 〈k̄k〉3/<6

c together with the $ (4)
fits. Fits work up to ∼ 300 MeV, at higher temperatures points for all pion mass fall on one curve, indicating
a change to leading order Griffith analiticity 〈k̄k〉3 ∼ <3

@ . Figure from [8].

We also checked possible /2 scaling. In Fig. 6 we present the result of the fits of the pseudo-
critical temperature versus pion mass with /2 behaviour with two fixed values of critical pion mass,
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Figure 8: Sketch of $ (4) scaling window in the temperature – pion mass plane. Blue points indicate
(pseudo)-critical temperatures for studied pion masses. Figure from [8].

<cr
c = 50 and 100 MeV. Due to the closeness of critical exponents these fits are very close to the

$ (4) predictions, and thus one cannot rule them out for any value of critical pion mass, <cr
c . 140

MeV.
Finally, in Fig. 7 we present the high temperature behaviour of the 〈k̄k〉3, divided by<6

c ∼ <3
@.

The $ (4) Equation of State predicts a fast falloff of this observable ∼ C−W−2VX after the phase
transition. Indeed it is clearly seen, that the simple fit ∼ C−W−2VX nicely describes the data up to
∼ 300MeV. In the fitwe haveweused)0 = 138MeV– the sensitivity to)0 is rathermoderate. At high
temperatures ) & 300 MeV all points collapse into one curve, indicating a change to a leading order
Griffith analyticity 〈k̄k〉3 ∼ <3

@. Remarkably, in the study of topological susceptibility the same
temperature ∼ 300 MeV was found to be a threshold for a dilute instanton gas behaviour [14, 15].

4. Conclusions

We have studied the properties of a thermal QCD phase transition with # 5 = 2 + 1 + 1 Wilson
twisted mass fermions for several pion masses, starting from physical up to heavy quark regime. We
introduced a novel order parameter 〈k̄k〉3, Eq. (1), which turned out to very useful for the study of
universal scaling behaviour of the phase transition. We determined the pseudo-critical temperature
from the three different observables: chiral condensate, chiral susceptibility and a novel order
parameter as functions of pion mass. Assuming $ (4) scaling, we extrapolated the pseudo-critical
temperature to the chiral limit: )0 = 134+6−4 MeV. Alternative method, based on the universal scaling
of the novel observable 〈k̄k〉3, gives slightly higher, although consistent within errorbars estimation
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)0 = 138(2) MeV. Closeness of the critical exponents does not allow to exclude possible /2 scaling
of the critical temperatures with almost any critical pion mass <cr

c . 140 MeV. The behaviour of
〈k̄k〉3 is consistent with $ (4) scaling window for pion masses <c . 140 MeV and temperatures
from 120 to 300 MeV, which we present in Fig. 8. At temperatures ) > 300 MeV, the dependence
changes to a leading order Griffith analyticity 〈k̄k〉3 ∼ <3

@.
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