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An investigation of the performance of the multilevel algorithm in the approach to criticality has
been undertaken using the Ising model, performing simulations across a range of temperatures.
Numerical results show that the performance of multilevel in this system deteriorates as the
correlation length is increased with respect to the lattice size. The statistical error of the longest
correlator in the system is reduced in a multilevel setup when the correlation length is less than
one-tenth of the lattice size, while for longer correlation lengths multilevel performs more poorly
than a computer-time equivalent single level algorithm. A theoretical model of this performance
scaling is outlined, and shows remarkable accuracy when compared to numerical results. This
theoretical model may be applied to other systems with more complex spectra to predict if
multilevel techniques are likely to result in improved statistics.
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1. Introduction

One barrier to precise lattice results is the signal-to-noise problem. It occurs when the two-point
correlator decays exponentially with increasing separation while the statistical error due to random
fluctuations remains constant. Multilevel techniques ([1], [2]) involve dividing the lattice into sub-
regions separated by boundaries and simulating these sub-regions independently. They have proven
effective at overcoming the signal-to-noise problem, especially in lattice gauge theory. There is
a great deal of interest in studying theories at criticality. Of particular interest to the authors are
holographic models of the early universe [3]. To simulate these theories one must tune a bare
mass parameter such that the theory is at a nonperturbative massless (critical) point [4]. In this
study numerical results from the Ising model are used to study the performance of multilevel in the
approach to criticality. Additionally, a theoretical model to understand this performance is proposed
and tested against this numerical data.

2. The multilevel algorithm

In this article we will focus on a two-level setup, splitting the latticeΛ into two sub-regions {Λ1,Λ2}
which are separated by boundaries 𝜕𝐵. The action is local so with boundaries one lattice site thick
there are no contributions that mix Λ1 and Λ2. The path integral can then be decomposed as∫

𝑥∈Λ
D𝜙(𝑥)𝑒−𝑆 [Λ] =

∫
𝑥∈𝜕𝐵

D𝜙(𝑥)𝑒−𝑆 [𝜕𝐵]
2∏

𝑟=1

∫
𝑥∈Λ𝑟

D𝜙(𝑥)𝑒−𝑆 [Λ𝑟 ;𝜕𝐵] . (1)

In performing a multilevel simulation we first produce 𝑁 configurations of the whole lattice. These
configurations are used to fix the boundary sites 𝜕𝐵𝑖 where 𝑖 ∈ {1, 2, ..., 𝑁}. We produce sub-
lattice ensembles, with 𝑀 configurations for each boundary configuration, labelled by the index
𝑗𝑟 ∈ {1, 2, ..., 𝑀} for sub-region Λ𝑟 . In the following calculations we assume that the Monte-Carlo
time between successive boundary configurations and between successive sub-lattice configurations
is sufficiently large that the effects of autocorrelation can be ignored. Consider fields insertions
𝜙(𝑥) and 𝜙(𝑦), where 𝑥 is in sub-lattice Λ1 and 𝑦 is in Λ2. For a given boundary configuration
𝜕𝐵𝑖 the field values 𝜙(𝑥)𝑖 𝑗1 and 𝜙(𝑦)𝑖 𝑗2 are sampled from distributions with means 𝜇𝑥 (𝜕𝐵𝑖) and
𝜇𝑦 (𝜕𝐵𝑖) and variances 𝜎2

𝑥 (𝜕𝐵𝑖) and 𝜎2
𝑦 (𝜕𝐵𝑖) respectively. Defining

𝑋𝑖 =
1
𝑀

∑︁
𝑗1

𝜙(𝑥)𝑖 𝑗1 , 𝑌𝑖 =
1
𝑀

∑︁
𝑗2

𝜙(𝑦)𝑖 𝑗2 , (2)

we use the central limit theorem to give us

𝑋𝑖 ∼ 𝑁

(
𝜇𝑥 (𝜕𝐵𝑖),

𝜎2
𝑥 (𝜕𝐵𝑖)
𝑀

)
, 𝑌𝑖 ∼ 𝑁

(
𝜇𝑦 (𝜕𝐵𝑖),

𝜎2
𝑦 (𝜕𝐵𝑖)
𝑀

)
. (3)

The two-point correlator is given by 𝑍 = (1/𝑁)∑𝑖 𝑍̃𝑖/𝑁 , where 𝑍̃𝑖 = 𝑋𝑖𝑌𝑖 . The two-point
correlation between 𝜙(𝑥) and 𝜙(𝑦) is accounted for through the means of their distributions (𝜇𝑥 (𝜕𝐵𝑖)
and 𝜇𝑦 (𝜕𝐵𝑖)), which are both conditionally dependent on the boundary. There is no residual
statistical correlation between 𝑋𝑖 and 𝑌𝑖 . We therefore have that

⟨𝑍̃𝑖⟩ = ⟨𝑋𝑖𝑌𝑖⟩ = ⟨𝑋𝑖⟩⟨𝑌𝑖⟩ = 𝜇𝑋𝑖
𝜇𝑌𝑖 , (4)
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where 𝜇𝑋𝑖
= 𝜇𝑥 (𝜕𝐵𝑖) and 𝜇𝑌𝑖 = 𝜇𝑦 (𝜕𝐵𝑖). One can show that the variance of 𝑍̃𝑖 is given by

𝜎2
𝑍̃𝑖

= 𝜎2
𝑋𝑖
𝜎2
𝑌𝑖
+ 𝜇2

𝑋𝑖
𝜎2
𝑌𝑖
+ 𝜇2

𝑌𝑖
𝜎2
𝑋𝑖
, (5)

where 𝜎2
𝑋𝑖

= 𝜎2
𝑥 (𝜕𝐵𝑖)/𝑀 and 𝜎2

𝑌𝑖
= 𝜎2

𝑦 (𝜕𝐵𝑖)/𝑀 . Using 𝐸 and 𝑉𝑎𝑟 to represent the expectation
value and variance of 𝑍̃ as we vary the boundary configuration, the law of total variance tells us that

𝑉𝑎𝑟 (𝑍̃) = 𝑉𝑎𝑟 (𝜇𝑍̃ ) + 𝐸 (𝜎2
𝑍̃
), (6)

= 𝑉𝑎𝑟 (𝜇𝑋𝜇𝑌 ) + 𝐸 (𝜇2
𝑋𝜎

2
𝑌 + 𝜇2

𝑌𝜎
2
𝑋 + 𝜎2

𝑋𝜎
2
𝑌 ),

giving us overall that (see also [5]))

𝑉𝑎𝑟 (𝑍) = 1
𝑁

(
𝑉𝑎𝑟 (𝜇𝑥𝜇𝑦) +

1
𝑀

𝐸 (𝜇2
𝑥𝜎

2
𝑦 + 𝜇2

𝑦𝜎
2
𝑥) +

1
𝑀2 𝐸 (𝜎

2
𝑥𝜎

2
𝑦)

)
. (7)

The relative contribution of the terms in this formula will determine if a multilevel algorithm
outperforms a single level one. The computational cost of a multilevel simulation is equivalent
to a single level simulation with 𝑁 × 𝑀 configurations, which has a variance scaling like 1/𝑁𝑀 .
If the two-point function is largely boundary dominated, then 𝑉𝑎𝑟 (𝜇𝑥𝜇𝑦)/𝑁 will be the leading
scaling, and a multilevel algorithm will give correlator estimates with a variance 𝑀 larger than an
equivalent single level algorithm. By contrast, if the boundary has little impact on 𝜙(𝑥) and 𝜙(𝑦),
and these field insertions have zero mean, we achieve a 1/𝑁𝑀2 scaling of the variance, which is an
improvement over single level variance scaling by a factor of 𝑀 .

Multilevel techniques are now used widely in the simulation of lattice gauge theories, however
their application in other areas of lattice physics is an area of active study. Research has been done to
implement multilevel in QCD with fermions where the quark propagators are non-local and thicker
boundaries must be used [6]. Multilevel algorithms has also been studied as a potential technique
to overcome critical slowing down [7]. Some authors have investigated the use of symmetries to
improve the efficiency of multilevel [8]. Recently multilevel methods have been used in calculations
of the muon magnetic moment [9].

In this paper the two-dimensional Ising model has been used as a test system to investigate the
performance of multilevel in the approach to criticality. Fields 𝜙((𝑥, 𝑦)) populate a two-dimensional
square lattice of size 𝐿, and have values in the set {−1, +1}. The discretized path integral is

𝑍 =

∫
D𝜙 𝑒𝑥𝑝

©­«−𝛽 ©­«𝐽
∑︁

(𝑖, 𝑗)𝑛.𝑛.
𝜙𝑖𝜙 𝑗 + 𝐵

∑︁
𝑖

𝜙𝑖
ª®¬ª®¬ , (8)

where the first term involves a sum over nearest neighbours (n.n.) and the second term is the energy
due to an external magnetic field, 𝐵. We take 𝐽 = 1, 𝐵 = 0 from here on. In this instance the system

has a known second-order phase transition, with a critical temperature 𝑇𝑐 =

(
1
2 log(1 +

√
2)

)−1

[10]. The theory was simulated using a Metropolis-Hastings [11, 12] algorithm implemented in
Python. The performance of the simulation could be improved by the use of a compiled language,
parallelization and clustering techniques [13]. However, the Ising model is being used here only
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δ = y − x

φ(x)

φ(y)

∂B

Λ1

Λ2

Figure 1: A multilevel set up with two sub-lattices.

as a test system to investigate multilevel and hence the precision of the results isn’t intended to be
competitive. For simplicity we use slice-coordinate fields from now on, Φ(𝑥) = 1

𝐿

∑
𝑦 𝜙((𝑥, 𝑦)).

We split the lattice along the x-axis so that a given slice-coordinate field only contains contributions
from 𝜕𝐵, Λ1 or Λ2.

3. Evaluating multilevel performance

To evaluate the performance of our multilevel simulations we compare them to a computationally
equivalent single level simulation with 𝑁single = 𝑁 ×𝑀 configurations. In this system the two-point
correlator of slice coordinates at 𝑥 and 𝑥 + 𝛿 is given by

𝐶𝑠 (𝛿; 𝑥) = 1
𝑁single

𝑁single∑︁
𝑖=1

Φ𝑖 (𝑥)Φ𝑖 (𝑥 + 𝛿). (9)

If 𝑥 + 𝛿 ≥ 𝐿 we apply periodic boundary conditions: Φ𝑖 (𝑥 + 𝛿) = Φ𝑖 (𝑥 + 𝛿 − 𝐿). The multilevel
two-point function between a slice-coordinate field at 𝑥 ∈ Λ𝑟 and 𝑥 + 𝛿 ∈ Λ𝑠 is given by

𝐶𝑚(𝛿; 𝑥) = 1
𝑁𝑀2

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗𝑟=1

𝑀∑︁
𝑗𝑠=1

Φ𝑖 𝑗𝑟 (𝑥)Φ𝑖 𝑗𝑠 (𝑥 + 𝛿), (10)

where 𝑖 indexes the boundary configuration and 𝑗𝑘 indexes the sub-lattice configuration in region
Λ𝑘 . Note that because the multilevel decomposition of the path integral is exact, 𝐸 (𝐶𝑚(𝛿; 𝑥)) =
𝐸 (𝐶𝑠 (𝛿; 𝑥)) := 𝐶2(𝛿). After performing an average over the boundary configurations, we can apply
the central limit theorem,

𝐶𝑠
2 (𝛿; 𝑥) ∼ 𝑁

(
𝐶2(𝛿), 𝜎2

𝑠 (𝑥)
)
, 𝐶𝑚

2 (𝛿; 𝑥) ∼ 𝑁

(
𝐶2(𝛿), 𝜎2

𝑚(𝑥)
)
, (11)
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where 𝜎2
𝑚(𝑥), in the case of Λ𝑟 ≠ Λ𝑠, is given by equation (7) and in other cases by similar

expressions. Analogous expressions hold for the single level variance 𝜎2
𝑠 (𝑥).

3.1 Optimum Weighting

To obtain the overall estimate for the two-point correlator we take a weighted average across all
values of 𝑥,

𝐶𝑠
2 (𝛿) =

∑︁
𝑥

𝑊 𝑠
𝑥𝐶

𝑠
2 (𝛿; 𝑥), (12)

𝐶𝑚
2 (𝛿) =

∑︁
𝑥

𝑊𝑚
𝑥 𝐶

𝑚
2 (𝛿; 𝑥),

where
∑

𝑥 𝑊
𝑠
𝑥 =

∑
𝑥 𝑊

𝑚
𝑥 = 1. Defining W𝑚 = (𝑊𝑚

1 ,𝑊𝑚
2 , ...,𝑊𝑚

𝐿
) and W𝑠 = (𝑊 𝑠

1 ,𝑊
𝑠
2 , ...,𝑊

𝑠
𝐿
), the

overall distribution of our correlator estimator is given by

𝐶𝑠
2 (𝛿) ∼ (𝐶2(𝛿),W𝑠 · 𝐶𝑜𝑣𝑠 (𝛿) · W𝑠) , (13)

𝐶𝑚
2 (𝛿) ∼ (𝐶2(𝛿),W𝑚 · 𝐶𝑜𝑣𝑚(𝛿) · W𝑚) , (14)

where 𝐶𝑜𝑣𝑚(𝛿) is the 𝐿 × 𝐿 covariance matrix between multilevel correlators of separation 𝛿 with
their first insertion at different positions on the lattice: 𝐶𝑜𝑣𝑚(𝛿)𝑥1𝑥2 = ⟨𝐶𝑚

2 (𝛿; 𝑥1)𝐶𝑚
2 (𝛿; 𝑥2)⟩ −

⟨𝐶𝑚
2 (𝛿; 𝑥1)⟩⟨𝐶𝑚

2 (𝛿; 𝑥2)⟩, while 𝐶𝑜𝑣𝑠 (𝛿) is defined similarly. We choose the values of 𝑊𝑚
𝑥 that

minimize the quadratic form W𝑚 · 𝐶𝑜𝑣𝑚(𝛿) · W𝑚 subject to
∑

𝑥 𝑊
𝑚
𝑥 = 1. For a single level

algorithm the optimal choice of W𝑠 is 𝑊 𝑠
𝑥 = 1/𝐿 ∀ 𝑥. In this piece of work, the covariance matrix

has been determined in two different ways. The first is to use the simulation data to calculate
an empirical covariance matrix, which is used to weight the correlators and numerically evaluate
multilevel. To avoid introducing a bias, the data used to find optimal weights was separated from
the data weighted by those weights. We therefore split the data into sets, and use the data in all but
one of the sets to determine the weighting for the data in the remaining set. We repeat this for each
set in turn to get weighted contributions from all sets. The second part of this work is to provide a
model for predicting the covariance matrix, and therefore multilevel performance.

3.2 Observed Performance Gain

An 𝐿 = 32, 𝑁 = 500, 𝑀 = 500 multilevel simulation and a computational-cost-equivalent single
level setup were both executed using Python. The ratio 𝜎𝑠/𝜎𝑚 against the correlation length 𝜉 is
shown for both short (𝛿 = 4) and long (𝛿 = 16) correlators in figure (2). For the single level system
a uniform weighting was used, while for the multilevel system one of three possible weighting
schemes was used:

1. Optimum Weights Weights that minimize the quadratic form W𝑚 · 𝐶𝑜𝑣𝑚(𝛿) · W𝑚 subject
to

∑
𝑥 𝑊

𝑚
𝑥 = 1.

2. Even Weights 𝑊𝑚
𝑥 = 1/𝐿, ∀ 𝑥.

3. Basic Weighting Correlators between two boundaries have a weight of 1, while correlators
between a boundary and a non-boundary site, or between two sites in the same sub-lattice,
have a weight of 𝑀 . Correlators between two different sub-lattices have a weight of 𝑀2.
These weights are then normalized by

∑
𝑥 𝑊

𝑚
𝑥 = 1.
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100 101

ξ

10−1

100

101

σs/σm

σs/σm = 1√
M

σs/σm =
√
M

δ = 4

Even Weights

Basic weights

Optimum weights

100 101

ξ

10−1

100

101

σs/σm

σs/σm = 1√
M

σs/σm =
√
M

δ = 16

Figure 2: The ratio of the standard deviation of a single level simulation and a multilevel simulation of
equivalent computational time is shown against the correlation length. Here 𝑁 = 500 boundary configurations
and 𝑀 = 500 sub-lattice configurations were used on a 32 × 32 lattice. The black-dashed lines represent the
theoretical best and worst performance scenarios for multilevel.

When the correlation length is small compared to the lattice size a multilevel algorithm per-
forms better than an equivalent single level one, while for larger correlation lengths it performs
more poorly. When the correlation length is large, the sub-lattice field values are almost entirely
determined by the boundary meaning the 1/𝑁 scaling term in eq. (7) dominates, causing the
standard deviation of correlators to be

√
𝑀 larger compared to the single level algorithm. With a

small correlation length, the sub-lattice sites are largely independent of the boundary. Since we
have 𝑁 × 𝑀2 such contributions to the multilevel average, compared to the 𝑁 × 𝑀 for the single
level algorithm, the gives up to a

√
𝑀 reduction to the standard deviation. This theoretical upper

bound in performance is approached by the 𝛿 = 16 correlator, but not by the 𝛿 = 4 correlator, as the
shorter correlator involves multilevel interactions between field insertions closer to the boundary,
and fewer contributions in general. In the limit 𝜉 −→ 0 the second effect is dominant, and multilevel
performance is

√︁
2(𝛿 − 1)/𝐿 poorer than expected. This behavior is acceptable as the longest cor-

relators suffer most from the signal-to-noise problem.

We hypothesize that multilevel performance depends only on the ratios 𝑟1 = 𝜉/𝐿, and 𝑟2 = 𝛿/𝐿,
or alternatively other pairs of unitless ratios formed by 𝜉, 𝛿 and 𝐿. This hypothesis was tested by
comparing the multilevel performance gain for two different lattice sizes, where the ratio 𝑟2 is
kept constant, iterating over different 𝑟1 values (fig. (3)). Here, 𝐿 = 16 and 𝐿 = 32 systems are
compared, with 𝑟2 = 0.5. As expected the curves sit on top of eachother. In the regime where the
size of the lattice 𝐿 is significantly larger than the correlation length, then the most relevant ratio is
𝛿/𝜉.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
3
3

A study of multilevel performance for two-point correlators Ben Kitching-Morley

10−1
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10−1

100

101

σs/σm

σs/σm = 1√
M

σs/σm =
√
M

δ/L = 0.5

L = 16

L = 32

Figure 3: Variation of the performance of a two-level multilevel algorithm for 𝐿 = 16 and 𝐿 = 32 lattices
with 𝑟1 = 𝜉/𝐿. Using a 𝛿 = 𝐿/2 correlator with 𝑁 = 500 boundary configurations and 𝑀 = 500 sub-lattice
configurations.

4. A theoretical model of multilevel performance

To calculate theoretically the standard deviation of two-point correlators in our simulations, we
must predict the covariance matrices 𝐶𝑜𝑣𝑠 (𝛿) and 𝐶𝑜𝑣𝑚(𝛿). For example, in a single level setup,
we consider four slice-coordinate field insertions at 𝑥 = 𝑆, 𝑥 = 𝑆′, 𝑥 = 𝑇 and 𝑥 = 𝑇 ′, labelling them
by 𝜙𝑅

𝑖
= 𝜙𝑖 (𝑥 = 𝑅) where 𝑖 indexes the boundary configuration and 𝑅 ∈ {1, 2, 3, ..., 𝐿}. We are

interested in two-point correlators so we take 𝑆′ = 𝑆 + 𝛿 and 𝑇 ′ = 𝑇 + 𝛿 giving,

𝐶𝑆𝑆′

2 =
1
𝑁

𝑁𝑠𝑖𝑛𝑔𝑙𝑒∑︁
𝑖=1

𝜙𝑆𝑖 𝜙
𝑆′
𝑖 , 𝐶𝑇𝑇′

2 =
1
𝑁

𝑁𝑠𝑖𝑛𝑔𝑙𝑒∑︁
𝑖=1

𝜙𝑇𝑖 𝜙
𝑇′
𝑖 . (15)

The covariance between these two-point correlators is given by

𝐶𝑜𝑣(𝐶𝑆𝑆′

2 , 𝐶𝑇𝑇′
2 ) = ⟨𝐶𝑆𝑆′

2 𝐶𝑇𝑇′
2 ⟩ − ⟨𝐶𝑆𝑆′

2 ⟩⟨𝐶𝑇𝑇′
2 ⟩ = 1

𝑁
⟨𝜙𝑆𝜙𝑆′

𝜙𝑇𝜙𝑇
′⟩ − 𝐶2(𝛿)2. (16)

In what follows it will be convenient to normalize the fields, 𝜑𝑅 = 𝜙𝑅/𝜎𝜙 so that 𝜎𝜑 = 1. This
normalization will however cancel when we take the ratio 𝜎𝑠𝑖𝑛𝑔𝑙𝑒/𝜎𝑚𝑢𝑙𝑡𝑖 . We use the equation for
the two-point correlator in the symmetric phase,

𝛼 := exp
(
− |𝑃 −𝑄 |

𝜉

)
= 𝐶2( |𝑃 −𝑄 |). (17)

We then enforce 𝜑𝑄 = 𝛼𝜑𝑃 + 𝑓 (𝛼)𝜖 , where 𝜖 ∼ 𝑁 (0, 1), so that ⟨𝜑𝑃𝜑𝑄⟩ = 𝐶2( |𝑃 − 𝑄 |). Taking
𝜑𝑃 ∼ 𝑁 (0, 1) and 𝜑𝑄 ∼ 𝑁 (0, 1) we can show that 𝑓 (𝛼) =

√
1 − 𝛼2. We perform this decomposition

for 𝜑𝑆 and 𝜑𝑇 then repeat it when we add additional fields. For multilevel correlators it’s necessary to
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100 101

ξ

10−1

100

101

σs/σm

σs/σm = 1√
M

σs/σm =
√
M

δ = 16, L = 32, N = 500,M = 500

Theoretical Model

Numerical Results

Figure 4: Performance gain of a two-level multilevel algorithm against correlation length as obtained
by numerical observations, and as predicted by the theoretical model of performance. In the numerical
simulation a lattice of size 32 was used with a correlator separation of 16, 500 boundary configurations and
500 sub-lattice configurations.

add boundary fields into the system first, and correlate the fields in the sub-lattices to them. Further
details of this model will be published in a later publication. This model performs extremely well
in predicting the numerically observed multilevel performance (see figure (4)). As the correlation
length is increased the slice-coordinate fields become less normally distributed and the assumptions
of the model no longer hold.

5. Conclusions and Outlook

In this work the performance of the multilevel algorithm in calculating two-point functions has been
investigated in the two-dimensional Ising model. As expected we observe that the performance of
the algorithm is highly dependent on the correlation length, with a

√
𝑀 improvement of statistics

compared to a computationally-equivalent single level algorithm in the limit 𝜉/𝐿 −→ 0. As correla-
tion length is increased this performance improvement is decreased, until there is a crossover regime
around 𝜉/𝐿 = 0.1, above which multilevel performs more poorly than single level. A theoretical
model of this algorithmic performance has been outlined, and provides an excellent description of
the observed performance. This model doesn’t directly use the action of the Ising model, but instead
makes use of the functional form of the two-point function. This work could be extended by apply-
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ing this model of multilevel performance to other systems with more complex spectra, for example
in Lattice QCD, where the development of multilevel techniques is being actively researched.
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