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1. Introduction

CLS is a consortium which has generated a set of gauge field configurations with non-
perturbatively improved Wilson fermions [1, 2]. One of the basic tasks in such an endeavor is
the determination of the lattice spacing. Since the initial analysis of the scale for the CLS 2 + 1 fla-
vor ensembles [3], a much larger dataset has become available.

In this updated analysis, 20 ensembles with lattice spacings from 0.085 fm to 0.037 fm and
Pion masses from 430 MeV to 134 MeV are included. The scale is set using a combination of Pion
and Kaon decay constants and the flow scale 𝑡0 [4] as an intermediate scale. The value of this
intermediate scale in physical units is relevant for the precision determination of 𝛼𝑠 [5], the 𝜂 and
𝜂′ masses and decay constants [6], moments of distribution amplitudes [7, 8], nucleon axial form
factors [9], the proton radius [10], the Muon magnetic moment [11], and more.

As an improvement with respect to the previous analysis, we also include the reweighting
factors originating from the negative sign of the strange quark determinant [12], which occur on a
small subset of the gauge field configurations.

Our ensembles have been generated along a line of constant sum of the bare quark masses
tr (𝑀) = 𝑚𝑢 + 𝑚𝑑 + 𝑚𝑠 = const. For each coupling, this sum has been tuned such that this line
approximately passes through the point of physical light and strange mass. Of course, the precise
value of this is only known after the analysis has been completed. We therefore have to deal with a
certain amount of mistuning, for which we use the same method as in the previous analysis, i.e. by
computing the derivatives of our observables with respect to the quark masses.

We measure two-point correlators and extract the pseudo-scalar mass,𝑚PS, and decay constant,
𝑓PS, for the Pion and the Kaon as well as the PCAC mass, 𝑚PCAC, for the corresponding quark
combinations. The extraction of these quantities is done using plateau averages and fits as laid
out in [3]. The gradient flow scale 𝑡0 is defined by the clover definition of the action density
and the Wilson flow [4]. Its improved definition [13] was not yet available when the simulations
were planned. The measurements are then subjected to the next-to-leading order 𝜒PT finite volume
correction according to [14]. The finite volume correction does not exceed the statistical error of the
respective quantities. We nevertheless include 50% of the correction as an additional uncertainty.

From these measurements we calculate the dimensionless quantities,

𝜙2 = 8𝑡0 𝑚2
𝜋 , 𝜙4 = 8𝑡0

(
𝑚2
𝐾 + 1

2
𝑚2
𝜋

)
, (1)

√
𝑡0 𝑓𝜋𝐾 =

√
𝑡0

2
3

(
𝑓𝐾 + 1

2
𝑓𝜋

)
. (2)

The combination of Pion and Kaon decay constants 𝑓𝜋𝐾 will be used to set the scale. 𝜙2 and 𝜙4
will form the basis of the analysis since in lowest order 𝜒PT 𝜙2 ∝ 𝑚𝑢 +𝑚𝑑 and 𝜙4 ∝ 𝑚𝑢 +𝑚𝑑 +𝑚𝑠.

In our analysis, we define lines of constant physics by setting 𝜙4 to a certain value. We use 𝜙4,
because it is non perturbatively improved up to order 𝑎2 along the CLS quark-mass trajectory.

We therefore proceed with the following steps: by measuring
√
𝑡0 𝑓𝜋𝐾 and its mass derivatives

on each ensemble, we can predict
√
𝑡0 𝑓𝜋𝐾 at given values of 𝜙4, 𝜙2. The chiral behavior of this data

can now be fitted and taken to the continuum. By tuning 𝜙4 such that the continuum curve passes
through the physical point, we can then determine the physical value of 𝑡0 and the lattice spacing at
which we had done the simulations.
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Figure 1: Measurements for 𝜙4 show the mistuning in 𝜙4 = const. The physical point, as calculated by this
analysis, is shown as a triangle.

2. Observables at physical 𝜙4

Since the ensembles lie on a line of constant sum of the bare quark masses, more precisely
2/𝜅𝑙 + 1/𝜅𝑠 = const, the condition 𝜙4 = const is certainly not fulfilled for all ensembles due to
discretization effects and higher order effects in 𝜒PT . On top of that comes the fact that the physical
𝜙4 has not been known during the planning of the simulations — and also depends on the particular
discretization chosen for 𝑡0. In fig. 1, we present our ensembles in the 𝜙2–𝜙4 plane and observe that
the sum of the three quark masses is within 8% of the physical value.

To get the observables at a given value of 𝜙4, we measured the derivatives 𝑑𝑋
𝑑𝑚𝑖

of the observ-
ables 𝑋 with respect to the quark masses of all the involved measurements. With these we can
construct the derivatives with respect to 𝜙4,

𝑑𝑋

𝑑𝜙4
=

3∑︁
𝑖=1

𝑛𝑖
𝑑𝑋

𝑑𝑚𝑖
/
( 3∑︁
𝑖=1

𝑛𝑖
𝑑𝜙4
𝑑𝑚𝑖

)
. (3)

Here ®𝑛 is the direction of the shift in the space of quark masses. It has an effect on distance of the
shift needed to reach the given value of 𝜙4 and thus on the resulting uncertainty. For the symmetric
ensembles we use ®𝑛 = (1, 1, 1)/√3 to preserve the symmetry and which was also the choice in [3].
For other ensembles, however, we use the direction ®𝑛 = (0, 0, 1), which we found to be close to
optimal, in the sense that it minimizes the errors of the shifted values of 𝑓𝜋𝐾 . Since the shifts are
typically less than 5% in the sum of the quark masses, we do expect the leading order of the Taylor
expansion to give results with a systematic error below our statistical uncertainty. This also has
been verified with a few ensembles at the symmetric line at a different sum of quark masses.

In the 2016 analysis [3], we shifted the results on each ensemble individually. In our update,
we now model the mass derivatives of the observables as a function of quark mass and lattice
spacing. This makes the predictions more stable and also allows the use of ensembles, where the
derivatives have not been measured. With these derivatives the measurements can now be shifted
to the desired 𝜙4 by

𝑋 (𝜙phys
4 ) = 𝑋 (𝜙4) + 𝑑𝑋

𝑑𝜙4

(
𝜙

phys
4 − 𝜙4

)
. (4)
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3. Chiral and Continuum Extrapolation

In the description of the analysis, we now have data at any given value of 𝜙4, which is a proxy
for the sum of the two degenerate light and strange quark masses. To get to the physical point, we
need to describe its chiral behavior and extrapolate to physical light quark masses given by 𝜙phys

2 .
Chiral perturbation theory [15, 16] predicts

𝑓𝜋𝐾 = 𝑓

[
1 − 7

6
𝐿

(
𝜙2

𝐹̄2

)
− 4

3
𝐿

(
𝜙4 − 1

2𝜙2

𝐹̄2

)
− 1

2
𝐿

(
4
3𝜙4 − 𝜙2

𝐹̄2

)
+ 𝑘𝜙4 + O

(
𝑀2

)]
(5)

for the quark mass dependence of 𝑓𝜋𝐾 in terms of a single SU(3) 𝜒PT NLO low energy constant,
𝑘 ∝ (𝐿5 + 3𝐿4) as well as

𝐿 (𝑥) = 𝑥 log(𝑥) , 𝐹̄ = 4𝜋
√︁

8𝑡0 𝑓 . (6)

We defined 𝐹̄ in terms of 𝑓 , the decay constant in the chiral limit. We then use a fit function for the
chiral and continuum1 behavior

𝐹𝜒 (𝜙2, 𝜙4) = 𝐹cont
𝜒 (𝜙2, 𝜙4) ·

(
1 + 𝐶 · 𝑎

2

𝑡0

)
(7)

𝐹cont
𝜒 (𝜙2, 𝜙4) = 𝐴

8𝜋
√

2

[
1 − 7

6
𝐿

(
𝜙2

𝐴2

)
− 4

3
𝐿

(
𝜙4 − 1

2𝜙2

𝐴2

)
− 1

2
𝐿

(
4
3𝜙4 − 𝜙2

𝐴2

)
+ 𝐵𝜙4

]
(8)

with the parameters 𝐴 = 𝐴(𝜙4) and 𝐵 = 𝐵(𝜙4) for each fixed value of 𝜙4.
It is worthwhile to consider the ratio of the chiral function

𝐹cont
𝜒 (𝜙2, 𝜙4)

𝐹cont
𝜒 (𝜙sym

2 , 𝜙4)
= 𝑅𝜒 (𝜙2, 𝜙4) + O(𝑀2) (9)

since

𝑅𝜒 (𝜙2, 𝜙4) = 1 − 7
6
𝐿

(
𝜙2

𝐴2

)
− 4

3
𝐿

(
𝜙4 − 1

2𝜙2

𝐴2

)
− 1

2
𝐿

(
4
3𝜙4 − 𝜙2

𝐴2

)

+ 7
6
𝐿

(
𝜙

sym
2
𝐴2

)
+ 4

3
𝐿

(
𝜙4 − 1

2𝜙
sym
2

𝐴2

)
+ 1

2
𝐿

(
4
3𝜙4 − 𝜙sym

2
𝐴2

) (10)

is free of parameters in NLO 𝜒PT, except for a weak dependence on 𝐴 in the logarithms. We
observe no systematic deviations from NLO 𝜒PT as shown in fig. 2.

In the same spirit the discretization effects are illustrated in the right hand plot of the same
figure. Dividing each data point by the continuum 𝜒PT formula eq. (8) we expect the ratio

𝑅cont =
𝐹𝜒 (𝜙2, 𝜙4)
𝐹cont
𝜒 (𝜙2, 𝜙4)

= 1 + 𝐶 · 𝑎
2

𝑡0
(11)

1We note that logarithmic corrections of the 𝑎2 terms in the form 𝑎2𝛼𝑠 (1/𝑎)Γ̂ are present [17]. The known leading
exponent Γ̂ is reasonably small and in particular we here use the Gradient Flow observable 𝑡0. In this case the leading
Γ̂ vanishes in the pure gauge theory [18] and is not yet known in full QCD. We therefore ignore the presence of the
logarithmic corrections at present.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
3
5

Scale Setting for CLS 2+1 Simulations Ben Straßberger

0 0.2 0.4 0.6 0.8

0.94

0.96

0.98

1.00

1.02

PRELIMINARY

𝜙2

√ 𝑡
0
𝑓 𝜋
𝐾
/𝐹

𝜒
(𝜙

sy
m

2
,𝜙

4)

𝑎 = 0.085 fm

𝑎 = 0.075 fm

𝑎 = 0.063 fm

𝑎 = 0.049 fm

𝑎 = 0.038 fm

0 0.1 0.2 0.3 0.4

0.94

0.96

0.98

1.00

PRELIMINARY

𝑎2/𝑡0

√ 𝑡
0
𝑓 𝜋
𝐾
/𝐹

co
nt

𝜒
(𝜙

2,
𝜙

4) 𝜙2 = [0.60, 0.80]
𝜙2 = [0.40, 0.60]
𝜙2 = [0.25, 0.40]
𝜙2 = [0.00, 0.25]

Figure 2: The chiral extrapolation on the left shows the measured data of
√
𝑡0 𝑓𝜋𝐾 normalized by the fit

function at the symmetric point. The solid line is the NLO 𝜒PT prediction, which does not depend on
any NLO parameters and only logarithmically on the LO parameter 𝐴. No systematic deviation from this
continuum formula can be detected. On the right, the continuum extrapolation of the same data, normalized
by the fit-function evaluated for 𝑎 = 0, is shown.
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Figure 3: Chiral and Continuum Extrapolation of
√
𝑡0 𝑓𝜋𝐾 .

to be a linear function in 𝑎2 to leading order of the Symanzik expansion. Again, no deviation due
to higher order terms is detected.

These considerations confirm the fit function given in eq. (7), from which we extract the central
value and statistical uncertainty of

√
𝑡0 𝑓𝜋𝐾 . This central fit is displayed in fig. 3. It takes into

account the data of the ensembles with 𝑎 < 0.085 fm. The stability when applying other cuts to the
data is considered later.

The combined chiral and continuum extrapolation is now evaluated at 𝜙phys
2 to determine√

𝑡0 𝑓𝜋𝐾 at the physical point. Together with the values [19, 20]

𝑓 isoQCD
𝜋 = 130.56(02) (13) (02) MeV, 𝑓 isoQCD

𝐾 = 157.2(2) (2) (4) MeV (12)

in isospin symmetric pure QCD we are able to extract√︃
𝑡
phys
0 =

√
𝑡0 𝑓𝜋𝐾

𝑓 isoQCD
𝜋𝐾

= 0.1443(7) fm (𝜒PT fit, 𝑎 < 0.08 fm) (13)
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from the 𝜒PT fit. The isoQCD values in eq. (12) are obtained from the experimental decay rates of
𝜋 → ℓ𝜈 + 𝛾 and 𝐾 → ℓ𝜈 + 𝛾 by taking out the QED and isospin effects with the help of 𝜒PT . This
introduces the largest (second) error, while the first error is due to the experimental decay rate, and
the third is due to the uncertainty of the CKM matrix elements 𝑉𝑢𝑑 and 𝑉𝑢𝑠.

The physical scale 𝑡phys
0 enters in the beginning of the analysis to define the physical point(

𝜙
phys
2 , 𝜙

phys
4

)
. We therefore find the fixpoint such that the resulting 𝑡phys

0 is the same one that is
used in the definition of the physical 𝜙2 and 𝜙4. For the statistical error of this final result the full
correlation of the errors between the various observables is taken into account. We find the physical
point at

𝜙
phys
2 = 0.0779(7), 𝜙

phys
4 = 1.098(10). (14)

The fact that we do not observe significant deviations from the fit formula does, of course,
not mean that they are not present. To estimate this source of systematic error, we use a range of
different extrapolations: the 𝜒PT formula has been substituted by a Taylor expansion in the quark
masses around the symmetric point and we also augmented the continuum extrapolation by an 𝑎2𝑚2

𝜋

term. Applying a series of cuts to the data by removing the coarsest lattices or the ones with larger
pion masses, leads also to valid description of the data. All fits which we consider render a 𝜒2/dof
between 1 and 2. Fits where the probability to find a 𝜒2 greater than the measured one is less than
5% are discarded. We then take the minimum and the maximum central values and use half their
difference as our preliminary systematic error and arrive at

√︃
𝑡
phys
0 = 0.1443(7) (13) fm. (15)

At present, the systematic error dominates.

4. Lattice Spacing

Having determined the intermediate scale 𝑡phys
0 at the physical point, we use it together with

measurements for 𝑡0/𝑎2 to calculate the lattice spacing 𝑎 in physical units. Since measurements at
the physical point are not available for all lattice spacings, we need to model the behavior of 𝑡0 as a
function of 𝜙2. Using next-to-leading order 𝜒PT [16] we arrive at the fit formula

𝑅𝑡0 (𝜙2) =
√
𝑡0√︃
𝑡
sym
0

=
√︃

1 + 𝐺 (
𝜙2 − 𝜙sym

2
)
. (16)

The data along with the fit are shown in fig. 4. We see quite clearly that at 𝑎 = 0.085 fm there are
lattice artifacts which then disappear very quickly (more quickly than 𝑎2). This phenomenon was
also observed in fit 4. of Ref. [3]. We therefore perform a fit to the normalized scale

√︃
𝑡0/𝑡sym

0
leaving out the coarsest ensembles with 𝑎 = 0.085 fm, as we have already done above. The figure
is also good evidence for the smallness of mass-dependent 𝑎2 effects. Further evidence is that the
coefficients of mass-dependent cutoff effects in the Symanzik effective theory are very small for our
discretization [17].
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Figure 4: Scale
√
𝑡0 as a function of 𝜙2 normalized

by the scale at the symmetric point for each lattice
spacing. The fit includes all but the coarsest ensemble
with 𝑎 = 0.085 fm.

𝛽 𝑎 [fm]
3.40 0.0849(5)(8)
3.46 0.0749(4)(7)
3.55 0.0633(4)(6)
3.70 0.0491(3)(4)
3.85 0.0385(2)(3)

Table 1: Lattice spacings 𝑎
for each inverse coupling 𝛽
with statistic and systematic
errors.

The ratio 𝑅𝑡0 (𝜙phys
2 ) allows us to determine the scale 𝑡0 in physical units at the symmetric point,√︃

𝑡
phys
0 where we can use the measured values for 𝑡0/𝑎2 to extract the lattice spacing,

𝑎 =

√︃
𝑡
phys
0

𝑅𝑡0 (𝜙phys
2 )

· 1√︃
𝑡
sym
0 /𝑎2

. (17)

Using eq. (15) we arrive at the lattice spacings listed in table 1.

5. Conclusion and Outlook

The scale setting method presented here is one of many choices. Using the pseudo-scalar
decay constants has the advantage that they can be easily and precisely calculated on the lattice.
Contaminations by excited state contributions can be thoroughly controlled. On the other hand our
method is limited by the necessity to relate the experimental decay rates which include photons
in the final state to the pure QCD decay constants as well as the dependency on the CKM matrix
element 𝑉𝑢𝑠. The latter means in particular that the validity of the Standard model at low energies
is assumed. However, the estimated uncertainties due to QED and the CKM matrix elements are
still significantly below our overall precision and we are able to improve the result from the 2016
analysis [3]. Figure 5 compares the results from this analysis to previous determinations of

√
𝑡0 for

𝑁 𝑓 = 2+1 flavor and 𝑁 𝑓 = 2+1+1 flavor ensembles. It is worth noting that the central value of the
previous CLS determination (labeled CLS 16) is more than 1𝜎 above the current result. With the
addition of several ensembles close to the physical point, it can now be seen that the point closest to
the physical line in 2016 (purple point for 𝑎 = 0.063 fm at 𝜙2 ≈ 0.17 in fig. 3) has a high statistical
fluctuation upwards. This resulted in the previous analysis being skewed. It also highlights that
precision scale setting, which is essential to precision results from lattice QCD, is a challenging
endeavor. We need large statistics such that autocorrelations are under control as well as data at a
large range of lattice spacings close to the continuum and quark masses sufficiently close to their

7
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Figure 5: Comparison of
√
𝑡0 for different groups. Open symbols data points are not published.

physical values. Going significantly beyond the present accuracy will also require an improved
control of isospin breaking and QED effects.
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