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With complex Langevin towards the QCD phase diagram
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We use complex Langevin simulations to explore the QCD phase diagram over a large range of
chemical potentials and temperatures. For our simulations we use two flavours of dynamical
Wilson fermions with a pion mass of approximately 480MeV with a spatial volume of 243. Here
we report on consistency checks at zero chemical potentials and present our results for the fermion
density and the Polyakov loop. We find that at the lowest temperature the fermion density remains
zero until <# /3, in line with the expectations from the Silver Blaze phenomenon.
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1. Introduction

The complex Langevin method (CL), first proposed by Parisi [1] has been successfully adapted
and used in various models and approximations of QCD, for instance, the heavy-dense limit of
QCD [2]. Early results have been obtained for QCD with very heavy quarks [3, 4]. Here, we aim to
study the QCD phase diagram with significantly lighter quarks (<c ∼ 480MeV). Our simulations
span a large range of chemical potentials, ranging up to approximately 6500MeV, and various
temperatures, as low as 25MeV.

2. Complex Langevin

The (complex) Langevin method evolves the gauge links of a lattice simulation along a new
fictitious time \ for a small step size n . A first order update scheme can be written as

*G` (\ + n) = exp
(
i_0 (−n �0

G`([*] +
√
n [0G,`)

)
*G` (\),

where _0 are the Gell-Mann matrices, �0
G`( are the derivatives of the action with respect to

the gauge link *G` and [0G,` are the random white noise. The complexification is introduced by
enlarging the group manifold from SU(3) to SL(3,C), i.e. by allowing the coefficients of the
generators to become complex numbers

*G` = exp
(
i_0 (�0

G` + i �0
G`)

)
.

The new time direction created by this procedure is analogue to the Molecular Dynamics time in
standard lattice calculations. For sufficient long simulations, an observable $ can be obtained by
taking an average over the Langevin time \

〈$〉 = 1
\max − \therm

\max∑
\=\therm

$ [* (\)],

after discarding a sufficient amount \therm to remove thermalisation effects. As we aim to take the
limit of n → 0, proper treatment of autocorrelation effects is important. We use the automatic
autocorrelation method presented in [5].

3. Setup

For our study we use two dynamical flavours of Wilson quarks without a clover term 2SW = 0.
Our simulation parameters are based on one of the setups used in [6]. The gauge coupling is
fixed at V = 5.8 throughout all simulations. This implies a fixed lattice spacing of approximately
0 ∼ 0.06 fm [6]. The hopping parameter of ^ = 0.1544 leads to a pion mass of 0 <c = 0.1458(7),
which was measured using a HMC simulation at vanishing chemical potential using #C = 128.
Converting the pion mass into physical units, we find <c ∼ 480MeV. The spatial simulation
volume is fixed to 243 and so the product <c! = 3.5 is sufficiently large, so that volume effects
are expected to be small. The authors of [6] found a pion mass of 0 <c = 0.1481(11) for a larger
spatial volume of 323. The difference is 1.5%, which indicates small volume effects. Different

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
3
7

With complex Langevin towards the QCD phase diagram Benjamin Jäger

temperatures are realised by varying the temporal lattice extent. In this study, we use up to 128
points in time, resulting in temperature down to 25MeV. The chemical potential was scaled up
to 0 ` = 2.0. Table 1 shows a summary of the key parameters. To improve the convergence of

V = 5.8 ^ = 0.1544
+ = 243 <c! = 3.5

#C = 4 − 128 ) ∼ 800 − 25MeV
0` = 0.0 − 2.0 ` ∼ 0 − 6500MeV

Table 1: The lattice parameters used in this study.

the complex Langevin simulation, we employ adaptive step size scaling [7], gauge cooling [8] and
dynamic stabilisation [9, 10].

4. Extrapolation at zero chemical potential

As a first consistency check, we compare HMC simulations with complex Langevin simulations
at vanishing chemical potential. Even though this is a purely real setup and complex Langevin
simulations are not necessary, we allow and start with configurations that are in the SL(3,C)
manifold. As complex Langevin suffers from finite step size corrections, we simulate multiple
values of the step size n and extrapolate to zero. As we employ step size scaling [7], we measure the
average step size 〈n〉 and adapt the relevant control parameter such that we achieve different values.
Figure 1 shows the results for the plaquette as a function of the average step sizes for two different

Wilson: 243, β = 5.8, κ = 0.1544, Nt = 8, µ = 0
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Wilson: 243, β = 5.8, κ = 0.1544, Nt = 32, µ = 0
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Figure 1: The plaquette as function of the average Langevin step size 〈n〉 at zero chemical potential.
The lines are different extrapolations towards the HMC result. (Left): High temperature regime, i.e.
#C = 8 corresponding to ) ∼ 400MeV. (Right): Low temperature regime, i.e. #C = 32 corresponding to
) ∼ 100MeV

setups. The first setup (left panel) corresponds to large temperatures of approximately 400MeV.
The second setup (right panel) is at lower temperatures of approximately 100MeV. The data points
are augmented by three different fits to the data: a linear (lin), quadratic (quad) and cubic (cub)
extrapolation. In the linear extrapolation, the four right most points have been removed for the
fitting procedure. As we use a first-order integration scheme, we expect our step size correction to
be of first order. This behaviour is clearly visible. Overall, we find very good agreement between
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the HMC results and the extrapolated result from complex Langevin simulations. The agreement
is up to the 4th significant figure or less than a permille.

5. Simulation at non-zero chemical potential

To explore the QCD phase diagram, we simulate at different chemical potential and temper-
atures. Our parameters are chosen such that we span a large region of the QCD phase diagram.
To study the phase behaviour, we investigate in particular the fermion density and Polyakov loop.
Figure 2 shows the fermion density as a function of the chemical potential. Each data point corre-

Wilson: 243, β = 5.8, κ = 0.1544
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Wilson: 243, β = 5.8, κ = 0.1544
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Figure 2: The fermion density normalised over (6+#C ) for each flavour for large set of lattice extends #C and
chemical potentials `. The two grey vertical lines correspond to<c/2 and<# /3. (Left): The full simulation
range. (Right:) Zoom into the view on the small chemical potentials and tiny densities. At low temperatures
the fermion density remains zero until <# /3, which is a first sign of the Silver Blaze phenomenon.

sponds to an independent complex Langevin simulation. The left panel shows the entire simulation
range, whereas the right panel focuses on smaller chemical potentials. For both, the fermion density
is divided by 6+ #C for each flavour, i.e. the saturation density. At large ` we see aforementioned
saturation, which is an intrinsic lattice artefact. This occurs when all lattice sites are filled with
fermions, so that Pauli blocking does not allow additional fermions to be added to the system. The
right-hand side of figure 2 also shows an enlarged view of the fermion density for small chemical
potentials and tiny values of the density. Interestingly, the fermion density remains 0 up to the
<# /3, which is a manifestation of the so-called Silver Blaze phenomenon [11]. The Polyakov loop
is shown in the left panel of figure 3. Here the same lattice artefact is visible for large chemical
potentials. In the right panel of figure 3 we show the Polyakov loop as function of the temperature
for two chemical potentials. We find that the transition to a nonzero Polyakov loop is occurring
at lower temperatures for larger chemical potentials. This allow us to quantify the transition(s).
Additionally, we also look at the Binder cumulant [12], defined in the following way

� = 1 − 〈$
4〉

3〈$2〉2
.

The Binder cumulant for the fermion density is shown in the left panel of figure 4 and for the
Polyakov loop in the right panel. The transition to non-zero values for the Binder cumulant occurs
at smaller temperatures as the chemical potential increases, as already seen in the right panel of
figure 3.
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Wilson: 243, β = 5.8, κ = 0.1544
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Figure 3: (Left): The Polyakov loop as function of chemical potential ` for the full range of simulations.
As before the gray lines indicate <c/2 and <# /3 (Right): The Polyakov loop as function of the temperature
) for two choices of `.
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Figure 4: The Binder cumulants for the fermion density (left) and the Polyakov loop (right) for different
temperatures and chemical potentials.

Wehave covered a large range of temperatures and chemical potentials, however, the simulations
at low temperatures become increasingly challenging, from a numerical point of view. In particular,
the number of conjugate gradient steps increases sharply as the chemical potential increases, in
particular for low temperature simulations. This behaviour can be seen in the left panel of figure 5.
On the right panel, the average unitarity norm is shown, which stays sufficiently small for all
simulations. For lower temperatures we can see an increase for larger chemical potentials.

6. Outlook & Conclusion

Here we have reported on our ongoing first-principle study of the QCD phase diagram using
complex Langevin simulations. We have performed simulations at various chemical potentials
and temperatures using two flavour Wilson quarks with a pion mass of approximately 480MeV. In
particular, we have found that the fermion density stays zero in the region of <c/2 to <# /3, i.e.
the Silver Blaze phenomenon.

In the future, we plan to focus on improved computations and algorithms, in particular at lower
temperatures. The necessary code developments are already underway. Furthermore, we plan to
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Figure 5: (Left): The number of conjugate gradient iterations necessary for the computation of the drift
force in the complex Langevin process. (Right): The average unitarity norm of the individual simulation, i.e.
the distance to the SU(3) manifold.

repeat our study with different volumes, in order to quantify the order of the transition(s) by studying
the volume scaling.
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