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We discuss a new density of states (DoS) approach to solve the complex action problem that is
caused by topological terms. The key ingredient is to use open boundary conditions for (at least)
one of the directions, such that the quantization of the topological charge is lifted and the density
becomes a regular function. We employ the DoS FFA method and compute the density of states
as a function of the topological charge. Subsequent integration with suitable factors gives rise to
the observables we are interested in. We here explore two test cases: U(1) lattice gauge theory
in two dimensions, and SU(2) lattice gauge theory in four dimensions. Since the 2-d case has an
exact solution we may use it to assess the method, in particular to establish the equivalence of the
open boundary results with the usual choice of periodic boundary conditions. The SU(2) case is
a first step of developing the techniques towards their eventual application in full QCD.
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Density of states approach for lattice field theory with topological terms

1. Introductory comments

When adding a topological term the gauge field action acquires an imaginary part such that the
Boltzmann factor of the corresponding Euclidean path integral becomes complex and thus cannot
be used as a weight factor for a Monte Carlo calculation in the lattice formulation. In principle,
density of states techniques – initially introduced in lattice field theory in [1, 2] – are a possible
approach and, based on various recent technological developments, were applied in a wide range
of applications with complex action problems [3] – [23]. However, the case of treating the complex
action problem emerging from a topological term is somewhat subtle, because in the usual formu-
lation with periodic boundary conditions the topological charge becomes quantized to integers in
the continuum limit such that the density will approach a superposition of Dirac deltas (see, e.g.,
[18]). If a geometrical or a fermionic definition is used the topological charge is quantized also at
finite lattice constant, resulting in a superposition of Dirac deltas also at finite lattice spacing. As a
consequence the density is hard to access with the new DoS methods.

It is well known that using open boundary conditions lifts the quantization of the topological
charge and in the thermodynamic and continuum limits describes the correct physics. Using open
boundary conditions in lattice simulations was proposed in [24, 25] as a tool for reducing topolog-
ical autocorrelation, which, due to the index theorem, is a problem that is related to our problem
of singular densities of states when a topological term is added. In [23] it was demonstrated, that
also the latter problem can be solved with open boundary conditions and that for topological quan-
tities the correct continuum limit is found (see also [26]). In this contribution we review the new
techniques, discuss the case of 2-d U(1) lattice gauge theory with a θ -term as an example where
analytic reference results can be used to assess the approach, and finally present first tests for 4-d
SU(2) lattice gauge theory with a θ -term.

2. Density of states formalism for lattice gauge theories with a θ -term

The generic form for vacuum expectation values in pure gauge theory with a θ -term is given by

〈O〉θ =
1

Zθ

∫
D[A]e−S[A]− iθ Q[A] O[A] with Zθ =

∫
D[A]e−S[A]− iθ Q[A] , (2.1)

where S[A] denotes the gauge field action and Q[A] the topological charge. We assume that the
theory is already regularized on a lattice such that S[A] and Q[A] are suitable discretizations of their
continuum counterparts and D[A] denotes the usual product of Haar measures for the link variables.

For non-vanishing topological angle θ the Boltzmann factor e−S[A]− iθ Q[A] is complex and thus
cannot be used as a probability in a Monte Carlo simulation. For setting up the density of states
approach we introduce (generalized) densities

ρ
(J)(x) =

∫
D[A] e−S[A] J[A] δ

(
x−Q[A]

)
, (2.2)

where we allow for the insertion of some functional J[A] of the gauge fields.
Obviously, when Q[A] becomes integer in the continuum limit (or is integer also at finite

lattice spacing if a geometrical or a fermionic definition of Q[A] is used) the density will be the
aforementioned superposition of Dirac deltas. However, we may use open boundary conditions to
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Figure 1: Lhs.: Parameterization of the exponent of the density as a continuous and piecewise linear func-
tion. Rhs.: Fit of the rescaled restricted vacuum expectation values (figure reproduced from [23]).

lift the quantization of the topological charge. Thus for open boundary conditions in at least one of
the lattice directions the density remains smooth also in the continuum limit. This is a key step in
the approach presented here.

Using the densities (2.2) we may write the vacuum expectation values as

〈O〉θ =
1

Zθ

∫
dx ρ

(O)(x) e− iθ x with Zθ =
∫

dx ρ
(1)(x) e− iθ x . (2.3)

For an actual determination of the densities we need to parameterize them in a suitable way. As
a first step towards such a parameterization we truncate the range of the argument x to the interval
[0, lmax]. Such a truncation is justified since the densities are either even or odd and decay fast for
large arguments x, a property that of course needs to be checked in the end. Next we divide the
(truncated) x-range [0, lmax] into N intervals In, n = 0,1 ...N− 1 of sizes ∆n. For the densities we
now make the ansatz:

ρ(x) = e−L(x) with L(x) continuous and piecewise linear on the intervals In . (2.4)

The parameterization of the exponent of the density with the piecewise linear and continuous func-
tion is illustrated in the lhs. plot of Fig. 1. Imposing the normalization ρ(0) = 1 completely deter-
mines the densities ρ(x) in terms of the slopes kn defined for each of the intervals In,

ρ(x) = An e−xkn for x ∈ In with An = e−∑
n−1
j=0

[
k j−kn

]
∆ j . (2.5)

To determine the slopes we use so-called restricted vacuum expectation values [8]–[11] which are
defined as

〈Q〉n(λ ) =
1

Zn(λ )

∫
D[A]e−S[A] J[A] eλ Q[A] Q[A] Θn

(
Q[A]

)
with Θn(x) =

{
1 for x ∈ In

0 for x /∈ In
.

(2.6)
Obviously the function Θn

(
Q[A]

)
restricts the path integral such that the values of the topological

charge are required to be in the interval In. The restricted vacuum expectation values 〈Q〉n(λ ) are
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free of the complex action problem and thus can be evaluated with standard Monte Carlo simula-
tions. We will compute them as a function of the parameter λ ∈R .

However, the 〈Q〉n(λ ) may also be computed from the parameterized density ρ(x) = An e−xkn

of Eq. (2.5). A trivial calculation gives

〈Q〉n(λ ) =
d

d λ
ln
∫ xn+1

xn

dx ρ(x) eλ x = gn(λ − kn) , (2.7)

with some function gn (see, e.g., [19] for details). After an additive and a multiplicative normaliza-
tion of the restricted vacuum expectation values one finds the more convenient form

〈Q〉n(λ )− xn

∆n
− 1

2
= h

(
∆n
[
λ − kn

])
, (2.8)

where the function h(s) is given by

h(s) ≡ 1
1− e−s −

1
s
− 1

2
. (2.9)

We thus may fit the Monte Carlo data for (〈Q〉n(λ )−xn)/∆n−1/2 with the function h(∆n[λ −kn])

and in this way determine the slopes kn from simple stable 1-parameter fits (DoS FFA approach
[16] – [20]). The rhs. plot of Fig. 1 provides an example of such fits, where we show the results for
different intervals In for n = 0,20 and 40. The data are for the simulation of 2-d U(1) lattice gauge
theory presented in [23].

3. Tests in U(1) lattice gauge theory

The idea of applying DoS methods with open boundary conditions for treating the complex action
problem from a topological term was initially tested for U(1) lattice gauge theory in 2-d where
exact results can be used to evaluate the approach [23]. Using dual variables these exact results
may be obtained for both, open and periodic boundary conditions, such that one can compare the
correct continuum limit for both types of boundary conditions and in [23] it was shown that indeed
both choices give rise to the correct continuum limit.

Beyond the more fundamental question of the correct continuum limit, the exact reference
results allow one to also address the question whether the DoS FFA techniques we use give rise to
sufficient accuracy, such that the oscillating integrals (2.3) can be reliably evaluated. We begin our
assessment of the accuracy with the results for the density ρ(x) shown in the lhs. plot of Fig. 2.
The data are from a simulation of 2-d U(1) lattice gauge theory with Wilson action and a simple
field theoretical discretization of the topological charge (see [23] for the details of the simulation).
We show results for L×L lattices with different sizes L. The inverse gauge coupling β was chosen
such that the ratio R = L2/β remains constant which means that we approach the continuum limit
for a fixed physical volume. In the continuum the ratio is given by R =Ve2 where V is the physical
volume and e the electric charge. In Fig. 2 this ratio is chosen as R = 10 and the symbols represent
the results from the DoS FFA calculation. The dashed lines are the corresponding analytical results
and for all volumes we find excellent agreement with the numerical data. For comparison we also
show the analytical result for the Villain action in the continuum limit at R= 10 and the sequence of
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Figure 2: Lhs.: Results for the density of states for different volumes. The symbols represent the data from
the DoS FFA calculation with Wilson gauge action, while the dashed lines are the exact results. For com-
parison we also display the result for the Villain action. Rhs.: Dos FFA results (symbols) for the topological
charge density compared to the corresponding exact result (full curve). Figures taken from [23].

volumes and couplings we consider for the Wilson action at R = 10 approaches the corresponding
Villain continuum result. It is important to note that the densities show a Gaussian-type of shape,
i.e., they decay quickly for increasing x such that the truncation of x to a finite interval is justified.

In the rhs. plot of Fig. 2 we show the result for the topological charge density q = Q/V as
a function of the topological angle θ . To obtain this result one only needs the density ρ(x) of
Eq. (2.2) for J ≡ 1, which then is integrated over with e−iθx to obtain the partition function Zθ

and with xe−iθx to obtain the numerator of the vacuum expectation value 〈q〉. The corresponding
results in the rhs. plot of Fig. 2 are for lattice size L = 24, with again R = 10. We find that the DoS
FFA results (symbols) and the corresponding exact results (red full line) match very well for the
full range of θ -values. The insert shows the relative error and we find that it remains below 0.3 %.

The tests presented in [23] show that, at least for the case of 2-d U(1) lattice gauge theory
with a topological term, the approach of using DoS FFA with open boundary conditions correctly
reproduces the continuum physics at finite θ . Based on analytic results it was shown that the open
boundary conditions give rise to the correct continuum limit, and the numerical tests established
that the parameterized density can be obtained with sufficient accuracy, such that the necessary
integration with the oscillating factors reliably provides vacuum expectation values at non-zero θ .

4. First tests in SU(2) lattice gauge theory

Having built up experience with the application of the DoS FFA to a simple gauge theory with a
topological term, and having established that in this case the necessary accuracy could be achieved,
we now come to the presentation of first results in 4-d SU(2) lattice gauge theory with a θ -term.
Clearly the case of 4-d SU(2) lattice gauge theory brings in new challenges such as the non-abelian
nature of the problem and its higher dimensionality.

Our calculation is based on the Wilson action and we use the field theoretical definition of the
topological charge Q [27] ("clover discretization"). We work on lattices of size 163× 4, i.e., a fi-
nite temperature setting and we use mixed boundary conditions where one of the spatial directions
remains open, while the other space directions and the time direction have periodic boundary con-
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Density of states approach for lattice field theory with topological terms

Figure 3: The density of states for 4-d SU(2) lattice gauge theory. The results are for 163× 4 lattices and
we compare the results for different values of the inverse gauge coupling β .

ditions. Thus the topological charge does not become quantized to integers in the continuum limit
and the density of states remains regular such that we can access it with the DoS FFA. The finite
temperature setting, i.e., a short temporal direction, has been chosen such that changing the inverse
gauge coupling β drives the system through the deconfinement transition, which allows us to test
the DoS FFA approach to in the two different phases of the theory. Besides this technical aspects,
from a physical point of view it is a first attempt at studying the change of the θ dependence across
the phase transition.

The details of the numerical simulation used for the results shown here will be presented in
detail in an upcoming publication [28], and we here only address a new technical step that leads to
a considerable improvement of the results. In Eq. (2.5) we have written the density in terms of the
slopes kn describing the density in the corresponding discretization intervals In. Using the DoS FFA
these kn are computed for each interval independently. Clearly the kn will have statistical errors that
will lead to fluctuations around their true values. These fluctuations will introduce some roughness
into the numerical results for the densities, which in turn will spoil the accuracy of the oscillating
integrals (2.3) and thus the results for physical observables. However, this naive approach ignores
the fact that (at least for finite lattices) ρ(x) = e−L(x) and thus also the function L(x) in the exponent
of the density must be smooth functions. In order to take this into account we may make an ansatz
for L(x) in the form of an even (or odd) finite polynomial, such as (note that we may normalize to
L(0) = 0, such that no constant term appears in L(x))

L(x) ∼ a2 x2 +a4 x4 + ...a2k x2k ∼
n−1

∑
j=0

[k j− kn]∆ j + kn x for x ∈ In , (4.1)

where in the first step we have represented L(x) by the finite polynomial and in the second step
exploited (2.5) to write L(x) using our representation in terms of the slopes kn. We may now use the

5
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Figure 4: Results for 〈Q2〉 (lhs. plot) and 〈Q4〉 (rhs.) at θ = 0. We show the two moments as a function
of the inverse gauge coupling β and compare the results from the DoS FFA calculation (open circles) to
reference data obtained from a conventional calculation at θ = 0 (filled triangles).

numerical data for all slopes kn as input and then determine the values for the coefficients a2 j from a
global fit to all numerical data. Subsequently the new parameterized form ρ(x) = exp(−a2 x2 ... −
a2k x2k) is used for evaluating the integrals (2.3) and thus the observables. Obviously this step,
which corresponds to a reparameterization of the density now takes into account the smoothness
discussed above.

In Fig. 3 we show the results for the density of states at different values of the inverse gauge
coupling β . We remark that for a temporal extent of 4 the critical gauge coupling is βc ∼ 2.35 [29].
We observe that for β above βc, i.e., in the deconfined phase, the density is considerably more
narrow than in the confined phase (β < βc), which reflects the fact that in the deconfined phase the
moments of Q become suppressed quickly. For the consistency of our approach, in particular the
truncation of the x-range, it is important to note that as in the 2-d U(1) case we find that for all
values of β the densities have a Gaussian-like shape, i.e., they decay fast, such that the truncation
in our parameterization of the densities is justified.

We conclude our first discussion of the 4-d SU(2) results with an assessment of the accuracy we
have achieved in our calculation of the density. Clearly no analytical reference results are available
in this case, but we may use the density also for the evaluation of observables at θ = 0, which
can then be compared to results of a conventional simulation. More specifically we look at the
DoS results for 〈Q2〉 and 〈Q4〉 at θ = 0 and compare them with reference data from a conventional
simulation. This is done for different inverse gauge couplings, i.e., different temperatures such that
we can assess the accuracy for different physical situations.

The corresponding results are shown in Fig. 4 where 〈Q2〉 (lhs. plot) and 〈Q4〉 (rhs.) are shown
as a function of β . The open circles represent the results from DoS FFA, while the filled triangles
are the results from a conventional simulation. We find very good agreement between the Dos FFA
results and the reference data from the conventional simulation for all values of β , which indicates
that DoS FFA is ready for the analysis of the θ -dependence of observables in 4-d SU(2) lattice
gauge theory.
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5. Summary and outlook

In this contribution we have reported on our progress with developing density of states techniques
for lattice field theory with a topological term. The key ingredient is to use open boundary con-
ditions such that the topological charge is no longer quantized to integers and the density has a
regular behavior that can be accessed with modern DoS techniques, the DoS FFA in our case. Us-
ing 2-dimensional U(1) lattice gauge theory with a θ -term as a simple test case we present results
of the method and compare them to analytical results available for that model. In particular we also
address the question whether our open boundary conditions and the usual periodic choice give rise
to the same continuum results – this is confirmed.

In a second part we present our new tests for 4-d SU(2) lattice gauge theory with a θ -term.
Here the focus is on achieving the necessary accuracy for the DoS approach in a theory that is
considerably closer to the target theory of QCD. We present results for the case without topological
term and show that the standard simulation results for the second and the fourth moment of the
topological charge are precisely reproduced by the DoS method in a wide range of temperatures.
The method thus is ready for computing observables at non-zero topological angle θ [28].
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