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1. Introduction

In these proceedings we report on our ongoing efforts to study supersymmetry (SUSY) via
lattice computations of the hadronic spectrumof Nf = 1QCD.The relation between supersymmetric
Yang-Mills theory and QCD with a single quark flavour can be seen as follows. The Lagrangian

L =
1

2g2 Fa
µνFa

µν + ψ(m0 + γµDµ)ψ , (1)

describes a QCD-like theory containing a single Dirac fermion in the two-index anti-symmetric
representation of the gauge group SU(Nc)whereas the gluons are in the adjoint representation. Note
that ψi j = ψb (tb)i j , i, j = 1, . . . , Nc , a = 1, . . . , N2

c − 1 , b = 1, . . . , Nc (Nc−1)
2 . Historically, this

theory was studied in a technicolour extension to QCD at large Nc by Corrigan and Ramond [1], who
named the fermion field in the two-index anti-symmetric representation a lark (merging the words
quark and large). Moreover, it was shown that the lark theory (1) and N = 1 super-Yang-Mills
(SYM) theory are equivalent in the limit Nc →∞ with regard to the bosonic sector of the spectrum
[2, 3]. Note also that the number of fermionic degrees of freedom scales as N2

c as Nc →∞ in both
the lark theory and in SYM signalling their equivalence.1 For Nc = 3 the two-index anti-symmetric
representation coincides with the conjugate representation, i.e. a lark is equivalent to an anti-quark,
hence (1) describes Nf = 1 QCD.

In SYM the even and odd parity mesons are degenerate. Deviations from the degeneracy
have been studied in the lark theory in the large Nc limit in [4] and [5]. Both works use planar
equivalence to predict the lightest pseudo-scalar meson to be lighter than the lightest scalar meson.
In particular, the former work takes into account the explicit SUSY breaking due to the finite fermion
mass studying low-energy effective Lagrangians of the lark theory and making use of exact SUSY
results at the effective action level. The lark theory by Corrigan and Ramond has led to a plethora
of applications including investigations of meson scattering [6], a study on (super-) glue balls in
comparison to QCD mesons and glue balls [7], investigations of the conformal window [8, 9] as
well as works in phenomenology [10, 11].

In this work we simulate Nf = 1 QCD on the lattice to probe the mentioned prediction and
to study relics of SYM for Nc = 3. This also comes with the advantage of lower simulation costs
compared to direct lattice simulations of SYM, the latter being hard because massless fermions
need to be handled. However, it should be emphasised that Nf = 1 QCD should be regarded if at
all as a proxy for SUSY.

A few years back a lattice study probing the planar equivalence prediction was presented at the
Lattice conference by the Münster group and collaborators [12]. Our work at hand can be regarded
as an update in an advanced setup using tree-level O(a)-improved Wilson fermions. In addition, we
also extract excited states of the mesonic spectrum.

Unlike in the continuum formulation where the fermion determinant is guaranteed to be
positive in the lattice formulation with Wilson fermions there are regions of configuration space
with a negative fermionic weight. This gives rise to a sign problem. We present a detailed analysis

1This can be seen from a simple counting of dimensions. For the lark theory there are 2 Dirac spinors with 4
components each and the dimension of the anti-symmetric representation scales as N2

c/2 for large Nc whereas for SYM
there are 2 Majorana spinors with 2 components each and the adjoint representation scales as N2

c for large Nc .
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on the sign of the fermion determinant on our gauge field ensembles. This account is organised
as follows: In Section 2 we summarise our lattice setup, followed by the sign problem analysis in
Section 3. In Section 4 we show the results on the hadronic spectrum and we conclude this work in
Section 5.

2. Lattice setup

The lattice action considered in this work contains the tree-level Symanzik improved gauge
action and the tree-level O(a)-improved Wilson clover fermion action (cSW = 1). We restrict
ourselves to a single gauge coupling corresponding to β = 4.5. To simulate the single quark
flavour the RHMC algorithm [13, 14] is used. Nf = 1 QCD comes with two main challenges.
(i) The scale setting cannot be carried out in the usual way as in e.g. Nf = 2 + 1 QCD by using
an experimentally known (low-energy) quantity such as a hadron mass. (ii) chiral symmetry is
absent which excludes comparisons with chiral perturbation theory. Addressing challenge (i),
we obtain an approximation to the scale by setting the lattice spacing using the Wilson flow in
the pure gauge theory following [15] which results in a ≈ 0.06 fm. Regarding challenge (ii)
it is noteworthy that even in the absence of chiral symmetry it is possible to guarantee (at least
approximately) a well-defined extrapolation to zero quark mass. To that end the mass of the lightest
pseudo-scalar meson, called the fake pion, is measured in the partially quenched extension of
the single flavour theory obtained by adding an additional valence quark, see [12] for details and
references. Simulating Nf = 1 QCD amounts to navigating in unknown territory in parameter
space for the various mentioned reasons. To our knowledge neither chiral perturbation theory nor
the method put forward in [16, 17] for estimating finite volume effects have been worked out for
the lark theory in general. However, we consider these effects to be sub-leading at the level of
precision we are interested in. Therefore we have produced and analysed gauge field ensembles
for several physical volumes L/a ∈ {12, 16, 20, 24, 32},T/a = 64 and hopping parameters2 κ ∈
{0.1350, 0.1370, 0.1390, 0.1400, 0.1405, 0.1410}. All configurations for this project have been
generated with the openQCD software package [18].

3. Sign problem

As mentioned above in a setup of a single flavour of Wilson fermions at finite lattice spacing
there exist regions of configuration space on which the fermion determinant is negative. This can
also occur in multi-flavour QCD and has been subject to a recent study in Nf = 2 + 1 flavour
QCD [19]. Since we are generating our gauge field ensembles with respect to the sign quenched
fermionic weight we need to monitor the sign of the fermion determinant on configurations we
measure observables on and in case a negative determinant is detected it has to be accounted for by
reweighting. Since a direct computation of the sign of the fermion determinant is numerically too
expensive, we infer it indirectly from the low-lying eigenvalue spectrum of theWilsonDirac operator
D. γ5-hermiticity of D guarantees the eigenvalues to come either in complex conjugated pairs or to
be real. This entails that only real eigenvalues can produce a sign change of the determinant. Hence,

2The hopping parameter is defined as κ = 1
2(4+m0)

.
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Figure 1: Left: Showcase of stage (i) of the determinant sign analysis. The 12 lowest eigenvalues and their
corresponding chiralities of Q are computed on a subset of ca. 40 configuration from the L/a = 24 ensemble
at κ = 0.1410. It is visible that there are a few points in the second and fourth quadrant signalling that
the corresponding eigenvalues at this bare mass move towards zero as the mass is infinitesimally increased.
These configurations are further checked in stage (ii) of the analysis with regard to whether and how many
sign changes of the eigenvalue functions appear.
Right: Showcase of stage 2 of the determinant sign analysis. Displayed is the partially quenched computation
of the lowest 20 eigenvalues of Q on a fixed gauge configuration in the (L/a = 24, κ = 0.1410) ensemble for
a range of values for the bare mass around the simulation mass m∗0 ≈ −0.453 indicated by the pink vertical
line. This configuration is safe in the sense that the fermion determinant is positive as there are no sign
changes of the eigenvalue functions λi(m0).

on a given configuration it remains to check if there is an odd number of negative real eigenvalues
of D.

In practice it is more convenient to consider the Hermitian matrix Q := γ5D. Because
det(Q) = det(D) and since a zero eigenvalue of D is also a zero eigenvalue of Q we can thus reduce
the sign computation to analysing the behaviour of the low eigenvalues λi(m0) of Q as a function
of the bare mass m0. Monitoring the sign and counting the zero crossings of the low eigenvalues of
Q when varying m0, the change in the number of negative real eigenvalues of D can be inferred.

Technically, we proceed in two stages: (i) For a given configuration simulated with a bare
mass m∗0 we compute the lowest lying eigenpairs (λi, φi) of Q. In addition, the chirality χi =

dλi/dm0 |m0=m
∗
0
= (φi, γ5φi) being the slope of the eigenvalue function [19, 20] is computed. Hence

from the sign of the chirality we can infer if a given eigenvalue moves towards or away from zero
as m0 is increased infinitesimally. A showcase for stage (i) of the analysis is displayed in the left
panel of Figure 1.

(ii) Configurations giving rise to low eigenvalues ofQ that might cross zero are further analysed
using the tracking method presented in [19]. On a given configuration we measure the lowest Nev

eigenpairs (λi, φi) of Q for several bare masses m0 around the simulation mass. The measurements
were carried out using the PRIMME package [21, 22] combined with openQCD. Assuming that
span({φi}) changes slowly and continuously as m0 is varied in steps of ∆m0 allows to extract the

4
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Figure 2: Showcase of stage 2 of the tracking analysis where the occurrence of a negative fermionic
determinant can be deduced from a single sign change in one of the low eigenvalues of Q above the
simulation mass m∗0. From this we can also conclude that D must have an odd number of negative real
eigenvalues at the simulation mass.

eigenvalue function λi(m0) by matching the basis vectors φi(m0) and φ j(m0 + ∆m0) with respect to
their overlap. The right panel of Figure 1 displays a showcase for the tracking method where the
conclusion is that the fermion determinant is positive on the analysed configuration. We measured
the sign of the fermion determinant only for κ = 0.1410 on the L/a = 16, 24 ensembles. For both
volumes the occurrence of det(D) < 0 is less than 1% of the configurations which were taken into
account for measuring correlators and masses shown in Section 4. From this we conclude that the
sign problem is mild for the parameters and volumes investigated in this work. Figure 2 shows one
of the rare cases we found where the sign of the determinant is negative. Here a single eigenvalue
function changes sign once at a bare mass larger than the simulation mass. Note that in the limit of
m0 � 0 det(D) is positive and so are all real eigenvalues of D. Decreasing m0 to the simulation
mass m∗0 and finding an odd number of zeros of the λi(m0) implies that det(D) < 0 at m∗0.

In the ensembles generated at smaller values of κ the sign problem is even milder as an
increasing mass shifts the eigenvalues of D to larger values decreasing the likelihood of a negative
determinant to occur.

4. Hadron spectroscopy

Weare interested in themassless limit of themesonic spectrumof Nf = 1QCD.Weare using the
LapH method [23, 24] which provides a suitable framework to include quark-disconnected pieces,
which are vital to correctly extract the spectrum. It furthermore allows to cheaply construct different
operators Ôi inducing the same quantum numbers and hence the same spectrum but differing in the
approach to the ground state. We are interested in the masses of the pseudo-scalar (P), scalar (S),
and vector (V) mesons. In principle a scalar glueball can be present, so in addition to operators of
the type q̄Γq we also use a purely gluonic operator that is expected to predominantly couple to the

5
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Figure 3: Left: Spectrum of the pseudo-scalar meson for the various bare masses m0 at fixed volume
L/a = 16. Right: Spatial volume dependence of the spectrum of the pseudo-scalarmeson at fixed κ = 0.1390.

glueball (G). We extract the spectrum by performing simultaneous correlated three-exponential fits
to several correlation functions using the ansatz

Ci j(t) =
∑
n

〈0|Ôi |n〉〈n|Ô
†

j |0〉e
−mn t . (2)

In Figure 3 the result for the spectrum of the pseudo-scalar meson is shown. As a measure of
stability we perform each for different subsets of the operators in the basis, shown by the different
symbols (circles, squares, diamonds). In the left panel the bare quark mass dependence is shown
at fixed volume (L/a = 16). As expected the ground state is strongly mass dependent. In the right
panel we investigate the volume dependence of the spectrum at fixed bare quark mass corresponding
to κ = 0.1390. At this value of κ, we find the ground state to be volume independent, but with
sizable finite size effects being displayed for the smallest volume.

For the scalar-glueball channel the extracted spectrum looks qualitatively different as shown
in Figure 4. The left panel shows the mass dependence at the same fixed volume. Looking at the
ground and first excited state, the lightest observed state is mass-insensitive at fixed volume whilst
the first excited state displays a clear mass dependence. In the right panel of the same figure we again
investigate the volume dependence of these states at fixed mass. For this value of κ, there appears
to be one volume dependent state and one volume independent state with a cross-over somewhere
between L/a = 16 and L/a = 20. We repeat this comparison for each volume and in each case
identify the mass-sensitive state with a scalar meson. This identification is guided by monitoring
the behaviour of the overlap factors, for example whether the correlation function purely built from
the gluonic operators couples more strongly to the ground or the first excited state. The resulting
data points are shown in the left hand panel of Figure 5. From the right hand panel of Figure 5
we find that the remaining lowest state is strongly volume dependent, getting heavier as the volume
increases. This is inconsistent with the expected behaviour for a glueball state, so we identify this
state to be a finite volume state possibly resulting from flux tubes around the periodic lattice, also
called a torelon state [25]. However, in the study at hand we have not further investigated the

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
2
5

One Flavour QCD as an analogue computer for SUSY Felix P. G. Ziegler

0.45 0.40 0.35 0.30 0.25
1
2
− 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sc
al

ar
-g

lu
e

L= 16

= 0.1350

= 0.1370

= 0.1390

= 0.1400

= 0.1405

= 0.1410

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
1/L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sc
al

ar
-g

lu
e

= 0.1390

L= 12

L= 16

L= 20

L= 24

L= 32

Figure 4: Left: Spectrum of the scalar meson for the various bare masses m0 at fixed volume L/a = 16.
Right: Spatial volume dependence of the spectrum of the scalar meson at fixed κ = 0.139.
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Figure 5: Categorisation of the spectrum of the scalar meson into a mass-dependent (left) and a remaining
lowest state (right). In the right-hand side plot the strong volume dependence is inconsistent with what is
expected for a glueball state. A possible interpretation is that this state is a finite volume torelon state.

character of these states and whether they are torelon states. In principle this could be done by
computing correlators of spatial Wilson loops.

Figure 6 shows the mass ratio of the (mass-dependent) pseudo-scalar to scalar meson. Dis-
regarding the smallest volume which appears to show strong finite size effects the results for the
different volumes are in agreement in the range between large and intermediate masses. Our data
confirms that the pseudo-scalar meson is lighter than the scalar one. For a robust comparison with
the low-energy effective theory prediction from [4] we need to perform an extrapolation to vanishing
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Figure 6: Ratio of the pseudo-scalar to scalar meson mass as a function of the various bare masses m0.

quark mass. This is subject to ongoing work and we are currently producing more statistics at the
largest volumes and hopping parameters.

5. Conclusion and perspectives

We have presented an analysis on the hadronic spectrum of Nf = 1 QCD in the mesonic sector.
By including excited states we have extracted the mass dependency of the scalar and pseudo-scalar
state. The next step of performing the extrapolation to zero quark mass is subject to ongoing work.
From this, comparisons with the predictions from low-energy effective theories for the deviation
from the even-odd parity degeneracy can be made. Loosely speaking, this will also show what
remnant SUSY is contained in the Nc = 3 lark theory. Moreover, we have shown that the sign
problem due to the use of Wilson fermions is mild but must be monitored. We emphasise the
relevance of this aspect also in multi-flavour QCD simulations.

Future work will be devoted to investigating the lark theory on the lattice for larger number
of colours Nc > 3. To that endwe areworking on code development and the use ofGPUaccelerators.
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