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We present our study of π−N scattering in the iso-spin I = 3/2 channel for the �rst time

at the physical point. The calculation is performed using Nf = 2+1+1 �avors of twisted

mass fermions with clover improvement at physical pion mass. We compute energy levels

for the rest frame and moving frames up to a total momentum of |~P | =
√

3 2π
L , and for

all the relevant ireducible representations of the lattice symmetry groups. We perform

a phase-shift analysis including s (` = 0) and p (` = 1) wave phase shifts assuming a

Breit-Wigner form and determine the parameters of the ∆ resonance.
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1. Introduction

The study of resonances with lattice methods in Euclidean �eld theory has matured

from the initial proposal by Lüscher [2] to deploy the �nite volume as a probe for scattering

properties of hadrons. A prime example that speaks to these current capabilities are the

numerous studies of meson-meson scattering, and in particular of the ρ(770) meson. De-

terminations of ρ resonance parameters have been carried out by a number of lattice QCD

collaborations. More recently, lattice calculations of the ρ have been advanced even to the

point of physical pion mass [3�7].

With meson-baryon scattering the situation is less advanced by comparison. A natural

step is the study of the simplest resonance in pion-nucleon (π − N) scattering, namely

the well-known ∆(1232). Moreover, with presently available gauge con�gurations we can

approach elastic π − N scattering at physical pion mass, with realistic comparison to ex-

perimental results. This is the topic of our contribution. The ∆ is the lightest baryon

spin-3/2 resonance. It is well isolated from other resonances and decays almost exclusively

to π − N . The decay ∆ → Nγ corresponds to less than 1% of the total decay width.

Besides the theoretical interest, the presence of ∆ in compact neutron stars makes it im-

portant for phenomenology as well. The interaction between ∆ and nucleon could generate

thermodynamic instabilities in compact neutron stars [8].
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Figure 1: Left: Previous determinations of the ∆-resonance mass as function of the pion mass.

In italics we give the method which is used in the computation. Right: The inelasticity of the

scattering in the ∆ channel, shaded gray area shows the energy range considered in this work. Data

is taken from [12].

With the left-hand plot in Fig. 1 we brie�y comment on already available lattice studies

of the ∆ and its coupling to the π−N state. Two di�erent type of methods were previously

used to study ∆ resonance parameters: the Lüscher approach mentioned above and denoted

as Luescher-method in the legend, and the transfer matrix approach introduced in Ref. [9]

denoted as Michael,McNeile-method. However, the latter method assumes a quasi-stable ∆

state perturbatively close in mass to π−N threshold, to extract the ∆−Nπ transition matrix

element and the coupling. At this early stage the displayed individual studies given by the
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ensemble Mπ/MeV MN/MeV MπL a/fm Nconf Nsrc

cB211.072.64 139.43(9) 944(10) 3.622(3) 0.0801(2) 388 64

Table 1: Parameters of the ensemble used in this work; further details are given in Ref. [10].

The right-most columns give the number of gauge con�gurations employed Nconf and the number

of point sources used per con�guration Nsrc.

pion mass, at which they were carried out, di�er completely by lattice action, type and size

of discretization artifacts and �nite-volume e�ects. We report on our Lüscher-method based

π−N elastic scattering analysis in the ∆ channel, for the �rst time directly at physical pion

mass and with strange and charm quark close to their physical values. This setup provides us

with the well-known numeric di�culty of fast exponential deterioration of the signal-to-noise

ratio in (meson-)baryon correlators and given the low pion mass only a small energy range

of the π −N system for elastic scattering E2,thr = mN +mπ ≤
√
s ≤ mN + 2mπ = E3,thr,

between 2- and 3-particle threshold, where the 2-particle quantization condition is rigorously

applicable. However, we take the SAID inelasticity data [12] shown in the right-hand

plot of Fig. 1 as indication, that p-wave π − N scattering can be treated as elastic up to√
s = 1.4 GeV.

2. Simulation details

In our simulation setup we use Nf = 2 + 1 + 1 �avors of twisted-clover fermions with

physical quark masses from the Extended Twisted Mass Collaboration (ETMC). The im-

portant ensemble properties regarding this work are summarized in Table 1. More detailed

description is given in Ref. [10].

As an input for the Lüscher analysis we determine the spectrum of the π −N system

in the I = 3/2 channel from correlation functions of single- (∆-like ) and 2-hadron (πN )

interpolators

CXY (~p, t) = 〈O~p
X(t) Ō~p

Y (0)〉 , X, Y ∈ {∆, πN} ,

with total momentum (and individual particle momenta) up to |~p| =
√

3 2π
L . We use the

standard interpolating operators for the ∆ at maximal I3 = +3/2, the π+ and proton N

given by:

O∆,µ = εabc

(
uaCγµ u

b
)
uc , Oπ = d̄ γ5 u , ON = εabc

(
uatCγ5 d

b
)
uc (1)

For the π −N 2-hadron interpolator we use the product of the single hadron interpolators

π and N . Here we only brie�y review our method for calculating two hadron two-point

functions. For further details we refer to Ref. [13]. Describing the propagation from source

to sink we use point source propagators and in the case of the two-hadrons we use the

sequential source technique. The sink to sink propagation is replaced in the πN to πN

correlation functions by fully time diluted stochastic source/propagator pairs, along which

we cut the diagrams into reusable �factors�. For the latter we implemented GPU-kernels,

3
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Table 2: Momentum frames and irreducible representations used in this work. Second column

(`) indicates the in�nite volume partial waves contributing to the irreducible representation. In the

third column we show the size of the 2d matrix used in the GEVP for the particular irrep.

~ptot/(2π/L) Λ ` Ndim

(0, 0, 0) G1u s, . . . 8x8

(0, 0, 0) Hg p, f, . . . 9x9

(0, 0, 1) G1 s, p, d . . . 24x24

(0, 0, 1) G2 p, d, . . . 18x18

(1, 1, 0) (2)G s, p, d, . . . 30x30

(1, 1, 1) (3)G s, p, d, . . . 16x16

(1, 1, 1) F1 p, d, . . . 6x6

(1, 1, 1) F2 p, d, . . . 6x6

which reduce 2- and 3-fold propagator products, including momentum projection. All

propagators receive Gaussian smearing at source and sink, with NG = 140 smearing steps

and weight αG = 0.5, with APE smeared gauge �eld in the Gaussian smearing kernel with

NAPE = 60, αAPE = 0.5.

In discretized and �nite volume we project interpolating operators to the irreducible

representations (irreps Λ with rows µ) of the lattice rotation group 2Oh in the rest frame of

the π −N system, and the irreps of its subgroups in moving frames with total momentum

~ptot (little groups LG(~ptot) ). The subduction coe�cients U for the group projection of

correlators

CΛ,β,µ,~ptot
Asink,Asource

=
∑

Bsink,Bsource

U?,βµosinkBsink UβµosourceBsource CBsinkBsource (2)

with compound indices B = {~pπ, ~pN , α} for particle momenta and irrep occurrence, are

determined based on [14] with a Gram-Schmidt decomposition for multiple occurrences.

The sum at the source and sink is restricted to have a �xed momentum amplitude i.e.

A = {|~p|2π, |~p|2N, o}. To obtain the �rst few energy levels we solve the generalized eigenvalue

problem (GEVP) for the correlation matrix (CΛ,β=0,µ,~ptot) and �t the resulting eigenstates

with a single exponential decay:

CΛ,µ,~ptot
ij (t)unj (t) = λn(t, t0)CΛ,µ,~ptot

ij (t0)unj (t0) (3)

λn(t, t0) ∝ e−En(t−t0). (4)

We summarize in Table 2 the momenta and irreps used in this work together with the

dominant partial waves the given irreps contribute to, and the size of the correlation matrix

used in the GEVP analysis.
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3. Determining the interacting spectrum

The interaction in the spectrum shows up as a resulting shift of the energy levels with

respect to the non-interacting ones. The energy shift is determined from a GEVP. The

basis for the GEVP were selected by requiring a stable behavior of the e�ective mass under

removing/changing a few basis vectors. An example for the basis selection we show on

the left plot of Fig. 2. We extract the energy levels using single state �ts to the principal

correlators. We choose tmin by requiring agreement between single and two-states �ts and

stability by increasing or decreasing tmin by one in lattice units. An example for the stability

we show on the right panel of Fig. 2. the results from single and two-state �ts.
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Figure 2: Example for GEVP results in irrep G1 of the little group 2C4v. Left: The

dependence of the principal correlator e�ective mass on the basis for the GEVP. Set 1 con-

sists of interpolators from all available momentum con�gurations and occurrences, Set 1 =

{∆1−4;π1N0|1−2;π0N1|1−2, π2N1|1−4;π1N2|1−4;π3N2|1−4;π2N3|1−4}, where the subscript denotes
particle momentum and occurrences |~p|/(2π/L) |1 − · · · . In Set 2 we take into account half of the

occurrences from Set 1 using the signal quality for selection criteria. In Set 3 we have replaced the

two occurrences from Set 2 from momentum combinations π2N3 and π3N2 with the other two in

Set 1. Right: Stability of single and two states �ts to the principal correlators as a function of tmin.

Gray bands are representing the �nal �t results from the chosen �t range.

Our results for the interacting spectrum are shown in Fig. 3. As an input for the

Lüscher-analysis we restrict the energy window to be below 1.3 GeV, in order to keep

contamination from inelastic scattering small.

4. Phase shift analysis

The connection between the �nite volume two-particle interacting spectrum and the

in�nite-volume resonance parameters is encoded in the Lüscher quantization conditions

(LQC-s). Mathematically, they are determinant equations given by

det
(
MΛ
J`n,J ′`′n′(s)− δJJ ′ δ``′ δnn′ cotδJ`(s)

)
= 0, (5)
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Figure 3: The invariant mass
√
s for the levels of the π − N system in the rest and moving

frames up to 3 lattice units of momentum and for all irreducible representations of the lattice

rotation group. The Nπ and Nππ thresholds are indicated by dashed and dotted horizontal lines

respectively. The non-interacting energies for each irrep and frame is indicated by bold dashed

horizontal segment.

where MΛ is the �nite volume Lüscher function[14], δJ` is the in�nite volume scattering

phase shift for total angular momentum J and orbital angular momentum `, and n is the

occurrence of the irreducible representation Λ. We parameterize the energy dependence of

the in�nite volume phase shift. In this work, we use the s and p−wave phase shift parame-

terized by a constant scattering length and a Breit-Wigner type of resonance, respectively.

cot δ 1
2

0(s) = a0 qcmf(s) , q2
cmf(s) =

(
s−M2

N −M2
π

)2 − 4M2
NM

2
π

4s
(6)

tan δ 3
2

1(s) =

√
sΓ(ΓR,MR, s)

M2
R − s

, Γ(ΓR,MR, s) = ΓR

(
qcmf(s)

qcmf(M
2
R)

)3 M2
R

s
(7)

To obtain the Lüscher prediction of the �nite volume spectrum for a given resonance mass

(MR) and resonance width (ΓR) we solve the LQC eq. (5) numerically. In the angular-

momentum we truncate the LQC by ` = 1, and consider only the two partial waves in eq.

(6) and (7). To estimate the e�ect of the truncation in ` we determine the roots of LQC

using physical parameters for s and p−wave and including ` = 3 (` = 2) in the center-

o�-mass frame (moving frames). We use tan (δJ`) = (a`qcmf)
2`+1 to parameterize higher

partial waves with a` = −0.001 1
MeV2`+1 . We show the comparison of this test with our

numerically determined spectrum on Fig. 4. These results show that the third energy level

in the Hg and already the second energy level in the G2 irrep cannot be explained solely

using the dominant p-wave approximation and thus are not expected to play a role in the

6
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Figure 4: LQC for irrep Hg (left) and G2 (right) using partial waves ` = 1, 2, 3. LQC with ` = 1

(` ≥ 1) shown by continuous red (blue) curve and corresponding roots with triangle (rectangle)

symbols. Lattice results are shown with big yellow circle with error bar. Red triangles and blue

circles are obtained using the inverse Lüscher method as described the text in detail.
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Figure 5: I = 3/2 phase shift of the ∆ resonance. Errors are determined using jackknife resam-

pling. At the bottom of the plot with thin vertical lines we indicate the non-interacting energies.
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description of the resonance. For this reason we omit them from the �nal analysis. The

parameters of the ∆ resonance are determined through a non-linear �t of the energy levels

to the �nite volume spectrum obtained by the LQC-s. For the parameters of the resonance

we obtain MR = 1255(25) MeV,ΓR = 140(120) MeV and for the s-wave scattering length

a0 = −0.0016(6)MeV−1 from the �t with an overall χ2/dof. = 0.88. We show the �tted

phase-shift curve together with the computed phase-shifts for the energy levels in Fig. 5.

The uncertainty band on the phase-shift curve is determined using jackknife resampling.

5. Conclusions

Our presented analysis is the �rst numerical resonance calculation at the physical point

in the meson-baryon sector. We determined the parameters of the Delta resonance using

Lüscher's method and �nd

MR = 1255 (25) MeV , ΓR = 140 (120) MeV (mπ = 139.43(9) MeV) (8)

compared to the experimentally determined values of M exp
R = 1232 MeV and Γexp

R =

120 MeV. Our analysis is barely sensitive to the width of the resonance. Our future plans

include the determination of the scattering length and investigation of the I = 1/2 channel

as well, in order to determine the σ-term.
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