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Determining the existence and the location of the QCD critical point remains a major open
problem, both theoretically and experimentally. In this talk, I present a new way of reconstructing
the equation of state in the vicinity of the nearest thermodynamic singularity (the Lee-Yang edge
singularity in the crossover region) from a truncated Taylor series expansion for small µ. This
is done by using a combination of Padé resummation and a conformal map. Then, I show that
this information can be used to (i) determine the location of the critical point and (ii) constrain
the non-universal mapping parameters between the Ising and QCD equations of state. I explicitly
demonstrate these ideas in the 2d Gross-Neveu model whose phase diagram shares the key aspects
of the conjectured QCD phase diagram including the existence of a critical point.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:gbasar@unc.edu
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
5
6

Lee-Yang singularities, series expansions and the critical point Gökçe Başar

1. Introduction

One of the major outstanding questions regarding the phase diagram of QCD is whether there
is a critical point along the transition curve between the hadronic and Quark Gluon Plasma phases.
It is now well established that for physical quark masses, the deconfinement transition overlaps with
the chiral transition and is a smooth crossover at zero quark chemical potential, µ [1]. Various
plausibility arguments and model calculations indicate, albeit less robustly, that the transition
between nuclear and quark matter phases at zero temperature and nonzero µB is first order [2]. A
natural conclusion of these two arguments is that at some point in the phase diagram, the smooth
crossover must end on a second order critical point and into a first order transition. The search for
this conjectured critical point is the focus of ongoing theoretical and experimental effort [3].

General symmetry arguments imply that, if it exists, the critical point is in the same static
universality class as the 3d Ising model [2]. From the universality argument one can determine
the values of the critical exponents. However neither the location of the critical point nor the
relation between the thermodynamic parameters of the Ising model, the reduced temperature and
the magnetic field (r, h), and those of QCD, temperature and chemical potential (T, µ), are universal.
They have to be determined directly from QCD. Unfortunately our current theoretical knowledge
of the QCD phase diagram at nonzero µ is severely limited due to the sign problem that prevents
first-principle lattice computations at finite densities. One way to deal with this problem is to expand
the equation of state around zero µwhere Taylor coefficients can be computed on the lattice without
the sign problem since they are evaluated at µ = 0 (see [4, 5] for recent reviews). In this work I
introduce a framework of extracting the underlying singularities of the equation of state from the
coefficients of a truncated Taylor series [6]. These singularities carry information about the critical
point and the aforementioned non-universal parameters.

2. Lee Yang edge singularities

In their seminal work phase transitions, Lee and Yang showed that the thermodynamic prop-
erties of a system is encoded in the distribution of the zeroes of the partition function Z(ζ) as a
function of fugacity, ζ = eµ/T [7, 8]. In general, Z(ζ), has zeroes for complex values of µ and T . In
the thermodynamic limit the zeroes coalesce into branch cuts emanating from branch points known
as the Lee-Yang (LY) edge singularities. When the LY singularities pinch the real axis, the system
exhibits a second order phase transition. Likewise the branch cut associated with a LY singularity
crosses the real line when there is a first order phase transition.

At the critical point, (Tc, µc), the equation of state of a thermodynamic system exhibits singular
behavior where the susceptibility diverges. At the same time, in general, even for temperatures
away from Tc, the equation of state exhibits complex singularities at µ = µLY (T). Now, consider
the equation of state near a critical point, (Tc, µc), of system which is in the Ising universality class.
From universality one can relate it to that of the Ising model via a linear map [9, 10](

r
h

)
:= M

(
T − Tc

µ − µc

)
=

(
rT rµ
hT hµ

) (
T − Tc

µ − µc

)
. (1)
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Figure 1: The phase diagram of the Gross-Neveu model. Inset: The mapping to the Ising model near the
critical point.

This relation then leads to the following expression for the trajectory of the LY singularities [11]:

µLY (T) ≈ µc − c1(T − Tc) ± i
2

3
√

3
c2(T − Tc)

βδ where c1 :=
hT
hµ

c2 :=
rµβδ

hµ

(
rT
rµ
−

hT
hµ

)βδ
. (2)

This expression follows from the fact that in the Ising model the LY singularities occur at hr−3/2 =

±2i/(3
√

3) [12, 13]. Notice that c1 is the slope of the crossover line, whereas c2 depends on the
relative angle between the h and r axes [9, 10]. Therefore the trajectory in Eq. (2) depends on
not only the location of the critical point, but also on the non-universal mapping parameters. In
the context of QCD critical point, the Lee Yang singularities has been discussed in, for example,
[11, 14–23]. In what follows I will introduce an effective way of reconstructing the LY trajectory
give in Eq. (2) from a series expansion.

3. The Gross-Neveu Model

I will illustrate the resummation technique via the Gross-Neveu model which has been used
as a toy model for QCD for a long time [24]. Similar to QCD, it exhibits asymptotic freedom,
chiral symmetry breaking (in the massless limit) and dimensional transmutation. Furthermore its
phase diagram (assuming that translational symmetry remains unbroken) qualitatively mirrors the
conjectured QCD phase diagram including the existence of a critical point (see Fig. 1). In this work
I will not discuss crystalline phases [25–27]. The Gross-Neveu model is defined by the action

S =
∫

d2x
(
iψ̄(/∂ − mq)ψ̄ +

g2

2
(ψ̄ψ)2

)
, (3)

where ψ is a Dirac fermion with Nf flavors. The theory enjoys a Z2 chiral symmetry, ψ → γ5ψ, for
mq = 0. I will work in the limit Nf → ∞ with fixed g2Nf where the fluctuations are suppressed
and the mean field solution is exact. The physical spectrum the theory consists of a free fermion
whose mass is determined via the vacuum gap equation [25]. All the dimensionful parameters in
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this work are expressed in units of the dynamically generated vacuum fermion mass. The phase
diagram of the theory follows from minimizing the effective potential

Ω(φ,T, µ) =
φ2

2π

(
log φ −

1
2
+ γ

)
−
γ

π
φ − T

∫
dk
2π

∏
η=±1

log
[(

1 + e−(
√
k2+φ2+ηµ)/T

)]
] . (4)

which determines the fermion mass at a given temperature and chemical potential. The pressure,
from which other thermodynamic functions can be derived, is given as p(T, µ) = −minφΩ(φ,T, µ).
Finally, the LY edge singularities occur at

∂Ω(φ,T, µ)
∂φ

=
∂2Ω(φ,T, µ)

∂φ2 = 0, (5)

where for a given T > Tc is satisfied for a complex pair µ = |µLY |e±iθ whose form is given in Eq.
(2).

4. Resummations

Suppose we only have access to a Taylor series expansion of the equation of state as in the case
for many strongly interacting many-body systems:

p(T, µ) ≈
N∑
n=0

pn(T)µ2n . (6)

The natural expansion parameter is µ2 due to the charge conjugation symmetry. Extracting infor-
mation regarding the critical point from a such a truncated expansion is challenging since in this
form it has no singularities. In principle this Taylor expansion has a radius of convergence given by
|µLY | as the LY singularity is the closest singularity. However it is numerically difficult to extract it
from a ratio test as the singularities are complex and the ratios has an oscillating envelope. Alterna-
tively Padé resummation, PN/2[p](µ2) := p(µ2)/q(µ2) where p and q are N/2th order polynomials,
approximates a branch point singularity, like the LY singularity in the thermodynamic limit, as
accumulation point of a sequence of poles and zeros. In essence Padé resummation transforms
the information contained in N terms in the original Taylor expansion into locations of N/2 poles
and zeros which approximate the underlying branch cuts. At the same time, Padé resummation
typically generates spurious poles, especially when the number of Taylor coefficients is small. Padé
resummation can be significantly improved by supplementing it by a suitably chosen conformal
map. The idea is to map the original domain of the function conformally into a region in the
complex plane, such as the unit disk (i.e. µ2 := φ(z)) and do the Padé resummation in the new
variable z. I will refer this method simply as “conformal Padé". For a wide class of functions
conformal Padé provides the optimal approximation to the original function with a finite set of
Taylor coefficients [28]. In this work I used two different conformal maps, φ1(z) = 4µ2

LY z/(1+ z)2,
and φ2(z) = 4|µLY |2

[
θ/(1 − z)2

]θ [
1 − θ/(1 + z)2

]1−θ . They respectively map one-cut and two-cut
complex plane into the unit disk. I used the former to extract the LY trajectory, Eq. (2), for a set of
temperatures and the latter to approximate various thermodynamic functions such as susceptibilities.
The results are presented in the next section.
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Figure 2: Left: The poles and zeroes of theRight: The Lee-Yang singularity trajectory, µLY (T), reconstructed
from conformal Padé with 20 and 10 terms. The vertical line denotes Tc .

5. Results

The starting point is Taylor series expansion of the equation of state, Eq. (6), obtained by first
solving ∂φΩ(φ) = 0 order-by-order in µ2 and for a range of T & Tc, then plugging this solution
into Eq. (4), and finally expanding in µ2. A non-zero bare quark mass is used by fixing γ = 0.1.
The Lee-Yang singularities are then extracted by applying conformal Padé resummation with the
conformal map φ1(z) defined above. The results are shown in Fig. 2. The left figure shows the
locations of poles and zeros of Padé (red, yellow triangles) and conformal Padé (blue, green circles)
resummations for two different temperatures close to and further away from Tc. The alternating
set of poles and zeros accumulate towards the LY singularity (and its complex conjugate pair).
Especially close to Tc, Padé cannot resolve the small imaginary part whereas conformal Padé does.
The right figure shows the reconstructed LY trajectory, Eq. (2), namely the real and imaginary parts
of the singularities extracted from conformal Padé for a range of temperatures. From this trajectory
I then computed the location of the critical point and the combination if mapping parameters given
in Eq. (2). The results are shown in the table below.

Tc µc c1 c2

exact 0.192 0.717 0.249 4.684
conf. Padé (N=21) 0.195 0.716 0.248 4.323
conf. Padé (N=11) 0.185 0.707 0.225 3.666

Table 1: The location of the critical point and the Ising model mapping parameters extracted from conformal
Padé.

Let me now discuss the susceptibilities χn(T, µ) = ∂np(T µ)/∂µn for n = 2,3,4. Especially
the higher order susceptibilities play an important role in the search for the QCD critical point as
their magnitude grows near the critical point which make them ideal observables. The results are
shown in Fig. 3. Notice that due to the spurious poles, Padé resummation breaks down at around
µ = ReµLY , whereas conformal Padé agrees with the exact result for much higher values of µ.
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Furthermore conformal Padé successfully captures the double and triple peak behaviors of χ3 and
χ4, even with 10 terms. With 20 terms it is almost indistinguishable from the exact result.

Figure 3: The susceptibilities computed via Padé and conformal Padé with 10 and 20 Taylor coefficients.

6. Conclusions

In this work I tackled a fairly general problem regarding static critical phenomena. Only
having access to a finite number of coefficients of the Taylor expansion of the equation of state,
how much information one can extract regarding the critical point and critical contribution to the
equation of state? Through the Gross-Neveu model, I illustrated that by using a combination of
Padé resummation and conformal mapping one can obtain significantly more information regarding
the location of the critical point and the equation of state around it compared to the truncated Taylor
expansion. Furthermore, this technique does not require any additional information. The ultimate
goal is to use these ideas to refine the theoretical estimations of the critical point signatures for QCD
and have a more accurate implementation of the equation of state in hydrodynamic simulations. Of
course for QCD, we do not have the luxury of having as many terms in the Taylor series as in these
examples. It is therefore important to pair these ideas with various other resummation methods
such as [29–31] to gather as much information as possible in the search for the critical point.
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