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We study a quantum phase transition of electrons on a two-dimensional square lattice. Our lattice
model preserves the full O(4) symmetry of free spin- 1

2 Dirac fermions on a bipartite lattice. In
particular, it not only preserves the usual SO(4) (spin-charge) symmetry like in the half-filling
Hubbard model, but also preserves a Z2 spin-charge flip symmetry. Using sign-problem-free
Monte Carlo simulation, we find a second order quantum phase transition from a massless Dirac
phase to a massive phase with spontaneously chosen spin order or charge order, which become
simultaneously critical at the critical point. We analyze all the possible 4-fermion couplings in the
continuum respecting the lattice symmetry, and identify the terms whose effective potential in the
broken phase is consistent with the numerical results. Using renormalization group calculations
in the continuum, we show the existence of the new spin-charge flip symmetric fixed point and
calculate its critical exponents.
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1. Introduction

Understanding the mechanism of mass generation in 2 + 1d relativistic fermions is of interest
in both condensed matter physics [1–3] and high energy physics [4–6]. One of the most important
mechanisms is through spontaneous symmetry breaking driven by strong four-fermion interactions.
The study of 2 + 1d relativistic fermions also leads to the idea of deconfined quantum criticality
[2, 7–9] and emergent symmetry [10–14].

Due to the non-perturbative nature of this problem, it is important to design lattice models
which are amenable to sign-problem-free Monte Carlo simulations. Therefore we study the mass
generation in a model of spin-1

2 Dirac fermions on a two-dimensional square lattice, which can be
simulated efficiently with the fermion bag algorithm [15, 16]. This model is a natural generalization
of a 1 + 1d model we studied earlier [17, 18]. The model is not only invariant under the SO(4)
symmetry of the Hubbard model at half-filling, but more importantly, it also has an additional Z2
spin-charge flip symmetry, which combines with the SO(4) symmetry to form an O(4) symmetry
[19]. This Z2 symmetry protects the renormalization group (RG) flow from leaving the spin-charge
flip symmetric subspace, allowing us to explore a new fixed point without fine-tuning. By tuning
a single coupling, our model undergoes a quantum phase transition from a massless Dirac fermion
phase to a massive phase with either an anti-ferromagnetic (spin) order or a superconducting-CDW
(charge), and they become simultaneously critical at the spin-charge flip symmetric fixed point,
as confirmed by the Monte Carlo simulation. If we add a Hubbard coupling which breaks the Z2
symmetry, our model will flow to the usual spin or charge fixed points, which can be described by
the “chiral Heisenberg university class” [20–28]. This contribution will focus on the continuum
analysis of the model, while the numerical results can be found in [29, 30].

This contribution is organized as follows. In Section 2, we write down the lattice Hamiltonian
and identify its symmetries, and in Section 3, we map the symmetries of the Hamiltonian to
the continuum Lagrangian. Then all the independent four-fermion couplings in the continuum
respecting those lattice symmetries are constructed in Section 4. In Section 5, we identify the
relevant interactions whose effective potential in the broken phase is consistent with our numerical
results. Finally in Section 6, we calculate the 𝛽 functions, confirm the existence of a new spin-charge
flip symmetric fixed point and evaluate the critical exponents in 4 − 𝜀 dimension.

2. The lattice Hamiltonian and its symmetries

The lattice model we study can be described by the Hamiltonian

𝐻 = −
∑︁
〈𝑖 𝑗 〉

exp
(
𝜅𝜂𝑖 𝑗

∑︁
𝛼

(𝑐†
𝑖𝛼
𝑐 𝑗 𝛼 + 𝑐†

𝑗 𝛼
𝑐𝑖𝛼)

)
, (1)

where 〈𝑖 𝑗〉 means 𝑖 and 𝑗 are nearest neighbor sites on a square lattice, 𝛼 = 1, 2, 𝜂𝑖 𝑗 are phases that
create the 𝜋-flux, 𝜅 is the coupling of the model. If we expand the exponent, 𝐻 can be written in a
more conventional form

𝐻 ∝ −
∑︁
〈𝑖 𝑗 〉

∏
𝛼

[
− 𝑡𝜂𝑖 𝑗 (𝑐†𝑖𝛼𝑐 𝑗 𝛼 + 𝑐†

𝑗 𝛼
𝑐𝑖𝛼) +𝑉

(
𝑛𝑖𝛼 − 1

2

) (
𝑛 𝑗 𝛼 − 1

2

)
− 𝑡2

𝑉

]
, (2)
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where 𝑉/𝑡 = 2 tanh 𝜅
2 . The original form of 𝐻 in Eq. (1) makes it clear that each bond of the

Hamiltonian is only a function of the free hopping term, while from Eq. (2) we can see that each
bond is a product of the 𝑡 − 𝑉 Hamiltonian [15, 16]. If we further expand the terms in Eq. (2) into
the quadratic, quartic and higher order terms we get

𝐻 ∝−
∑︁
〈𝑖 𝑗 〉

[
𝑡𝜂𝑖 𝑗

∑︁
𝛼

(𝑐†
𝑖𝛼
𝑐 𝑗 𝛼 + 𝑐†

𝑗 𝛼
𝑐𝑖𝛼) +

𝑉

2

(∑︁
𝛼

(𝑐†
𝑖𝛼
𝑐 𝑗 𝛼 + 𝑐†

𝑗 𝛼
𝑐𝑖𝛼)

)2
+ (6th and 8th orders)

]
. (3)

In this form, we can identify the quadratic and quartic terms to the ones in the model studied in [14]
with 𝑉 = 𝐽/2 in their notation.

Since each bond in this Hamiltonian is exponential of the free hopping term, it has all the
space-time and internal symmetries of the free Hamiltonian: spatial translations by one unit𝑇1,2

𝑎 , Z4
rotation symmetry 𝑅, parity 𝑃, time-reversalΘ and charge conjugation𝐶, an SU(2)𝑠×SU(2)𝑐 spin-
charge symmetry, or equivalently, SO(4) symmetry, which is manifest in the Majorana Language,
and most importantly, a Z2 spin-charge flip symmetry, or equivalently, charge conjugation on a
single layer, which enhances the internal symmetry to O(4).

From the viewpoint of Wilson RG, all interactions respecting the symmetries of the lattice
Hamiltonian can be generated in the continuum. Therefore it is important to know how the
symmetries of the Hamiltonian are mapped to the continuum. We can understand this by using the
free lattice Hamiltonian which we will do next.

3. Embedding lattice symmetries in the continuum

Let us consider free staggered fermions on a square lattice, given by the first term in Eq. (3).
Linearizing the dispersion relation of this Hamiltonian near the Fermi points, we get the following
continuum Hamiltonian

𝐻0 = −
∫

d2𝑥 i𝜓†
𝛼 (Γ1𝜕1 + Γ2𝜕2)𝜓𝛼, (4)

where Γ1 = 𝜎3 ⊗ 𝜎3 and Γ2 = 𝜎3 ⊗ 𝜎1 come from the four corners of the Brillouin zone. Using
Grassmann coherent fermion path integral, we can rewrite Eq. (4) as the following Euclidean
Lagrangian density

L0 = −𝜓̄𝛼𝛾
𝜇𝜕𝜇𝜓𝛼, (5)

where 𝜓𝛼 is a 4-component Dirac fermion, 𝜓̄𝛼 = 𝜓
†
𝛼𝛾

0, 𝛼 = 1, 2, and 𝜇 = 1, 2, 3. Here 𝛾0,1,2,3,5

are five 4 × 4 Hermitian matrices satisfying the Clifford algebra {𝛾𝑖 , 𝛾 𝑗} = 2𝛿𝑖 𝑗14. We can choose
𝛾0,3,5 to be real and 𝛾1,2 to be imaginary. One basis consistent with Γ1,2 in Eq. (4) is given by

𝛾0 = 𝜎1 ⊗ 1, 𝛾1 = 𝜎2 ⊗ 𝜎3, 𝛾2 = 𝜎2 ⊗ 𝜎1, 𝛾3 = 𝜎3 ⊗ 1, 𝛾5 = 𝛾0𝛾1𝛾2𝛾3 = 𝜎2 ⊗ 𝜎2. (6)

Space-time transformations on the lattice mix Dirac components in the continuum as follows

𝑇1,2
𝑎 : 𝜓 ↦→ i𝛾3,5𝜓, 𝑅 : 𝜓 ↦→ ei 𝜋4 (i𝛾1𝛾2+i𝛾3𝛾5) 𝜓, 𝑃 : 𝜓 ↦→ i𝛾5𝛾1𝜓, Θ : 𝜓 ↦→ 𝛾0𝐾𝜓, (7)
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where 𝐾 is the complex conjugation operator. Except for 𝑅, all of them act as Z2 symmetries on
fermion bilinears. 𝑅 acts as a Z4 symmetry on the lattice, and will be enhanced to an SO(2)𝑅
internal symmetry

𝑅̃ : 𝜓 ↦→ ei 𝜃2 (i𝛾3𝛾5) 𝜓 (8)

in the continuum. When analyzing the internal symmetries, especially the charge symmetry, it is
more convenient to use Majorana representation 𝜓1 = 𝜉1 − i𝜉2, 𝜓2 = 𝜉3 − i𝜉4, and

L0 = −𝜉𝑇𝑎 𝛾0𝛾𝜇𝜕𝜇𝜉𝑎, (9)

where 𝑎 = 1, 2, 3, 4, and each 𝜉𝑎 is a four-component Majorana fermion. Clearly Eq. (9) has an O(4)
symmetry, which is nothing but the spin-charge symmetry SO(3)𝑠 × SO(3)𝑐 and the spin-charge
flip symmetry Z𝑠𝑐2 on the lattice. In fact, it turns out that this continuum Lagrangian actually has an
O(8) symmetry. Thus the lattice realizes the subgroup SO(3)𝑠 × SO(3)𝑐 × Z𝑠𝑐2 × SO(2)𝑅 of this
O(8) symmetry in the continuum.

4. Interactions respecting the lattice symmetries

In this section, we analyze all the Lorentz-invariant interactions allowed by the lattice symme-
tries. First, the allowed four-fermion interactions must be singlets under SO(3)𝑠×SO(3)𝑐×SO(2)𝑅,
and they can be constructed from fermion bilinears, including space-time (pseudo-)scalars, i.e.,
masses, and space-time (pseudo-)vectors, i.e., currents. The fermion bilinears form reducible rep-
resentations of the symmetry group SO(3)𝑠 × SO(3)𝑐 × SO(2)𝑅, and decompose into irreducible
representations (irreps) as 36 masses,

36 = (3 ⊗ 1 + 1 ⊗ 3) ⊗ 1 + (3 ⊗ 3 + 1 ⊗ 1) ⊗ (2 + 1), (10)

which agrees with a previous work [1], and 28 currents,

28 = (3 ⊗ 1 + 1 ⊗ 3) ⊗ (2 + 1) + (3 ⊗ 3 + 1 ⊗ 1) ⊗ 1. (11)

If we also take into account the Z2 lattice space-time symmetries, no mass terms are invariant under
all of them, and therefore our continuum theory cannot have any mass terms. Building singlets
from bilinear irreps that transform according to Eqs. (10) and (11), we get 6 Gross-Neveu couplings
and 6 Thirring couplings, and these Z2 lattice symmetries are automatically satisfied, while the
spin-charge flip symmetry Z𝑠𝑐2 flips some of those terms. However, due to the Fierz identity, only
4 of these 12 couplings are independent, and remarkably, they can all be chosen to be Gross-Neveu
couplings,

L𝑠 =
𝑔2
𝑠

2
| ®𝑀𝑠 |2, L𝑐 =

𝑔2
𝑐

2
| ®𝑀𝑐 |2, L𝑅 =

𝑔2
𝑅

2
| ®𝑀𝑅 |2, Lsinglet =

𝑔2
singlet

2
𝑀2

singlet, (12)

where

®𝑀𝑠 = 𝜓̄𝛼®𝜎𝛼𝛽𝜓𝛽 , ®𝑀𝑐 = (𝜓𝑇
2 𝛾

0𝜓1 + 𝜓̄1𝛾
0𝜓̄𝑇

2 , i(𝜓
𝑇
2 𝛾

0𝜓1 − 𝜓̄1𝛾
0𝜓̄𝑇

2 ), 𝜓̄1𝜓1 + 𝜓̄2𝜓2),
®𝑀𝑅 = (𝜓̄𝛼i𝛾3𝜓𝛼, 𝜓̄𝛼i𝛾5𝜓𝛼), 𝑀singlet = 𝜓̄𝛼i𝛾3𝛾5𝜓𝛼. (13)

For example, in [14], the authors use L𝑅 built from 1 ⊗ 1 ⊗ 2 to study a phase transition from Dirac
phase to Kekulé valance-bond-solid (VBS) phase.
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5. The continuum model and the effective potential

From our Monte Carlo results [29, 30], we see either anti-ferromagnetic (spin) order or
superconducting-CDW (charge) order at strong couplings, but no VBS order, i.e., |〈 ®𝑀𝑠〉| ≠ 0
or |〈 ®𝑀𝑐〉| ≠ 0, but |〈 ®𝑀𝑅〉| = 0. Therefore we believe our model represents a lattice regularization
of the Gross-Neveu model with spin and charge couplings given by the Lagrangian density

LGN = L0 + L𝑠 + L𝑐 . (14)

Furthermore, the Z𝑠𝑐2 spin-charge flip symmetry of the lattice model imposes the restriction that
𝑔2
𝑠 = 𝑔

2
𝑐 . Adding interactions to the lattice model that breaks the spin-charge flip symmetry, like the

Hubbard coupling, would lead to 𝑔2
𝑠 ≠ 𝑔

2
𝑐 .

We can confirm the expected symmetry breaking pattern of the above interaction by calculating
the one-loop effective potential. In order to do so, we introduce auxiliary scalar fields ®𝜙𝑠 and ®𝜙𝑐
which transform in the 3⊗1⊗1 and 1⊗3⊗1 representations respectively, and rewrite the Lagrangian
as,

Laux
GN = −𝜓̄𝛼𝛾

𝜇𝜕𝜇𝜓𝛼 + 1
2𝑔2

𝑠

𝜙2
𝑠 +

1
2𝑔2

𝑐

𝜙2
𝑐 + 𝜙𝑠 (𝜓̄1𝜓1 − 𝜓̄2𝜓2) + 𝜙𝑐 (𝜓̄1𝜓1 + 𝜓̄2𝜓2), (15)

where we have rotated ®𝜙𝑠 and ®𝜙𝑐 such that 𝜙1,2
𝑠 ≡ 𝜙1,2

𝑐 ≡ 0, and relabeled 𝜙3
𝑠 → 𝜙𝑠 and 𝜙3

𝑐 → 𝜙𝑐 ,
because the boson fields will be treated as constants in space-time. By integrating out the quadratic
fermions, we get the following effective potential of the 𝜙𝑠 and 𝜙𝑐 fields [29],

1
𝑆𝑑
𝑉eff [𝜙𝑠, 𝜙𝑐]

=
2𝜋
3
|𝜙𝑐 − 𝜙𝑠 |3 −

4
3
(𝜙𝑐 − 𝜙𝑠)3 tan−1 𝜙𝑐 − 𝜙𝑠

Λ
+ 2𝜋

3
|𝜙𝑐 + 𝜙𝑠 |3 −

4
3
(𝜙𝑐 + 𝜙𝑠)3 tan−1 𝜙𝑐 + 𝜙𝑠

Λ

− 8
3
Λ(𝜙2

𝑐 + 𝜙2
𝑠) −

2
3
Λ3 log

(
1 + 2

𝜙2
𝑐 + 𝜙2

𝑠

Λ2 +
(𝜙2

𝑐 − 𝜙2
𝑠)2

Λ4

)
+ 1

2𝑆𝑑𝑔2
𝑠

𝜙2
𝑠 +

1
2𝑆𝑑𝑔2

𝑐

𝜙2
𝑐 , (16)

where 𝑆𝑑 = 2
(4𝜋)𝑑/2Γ(𝑑/2) is the loop integral factor and here we should set 𝑑 = 3, and Λ is the cutoff.

In Fig. 1 we plot the effective potential in the broken phase at 𝑆𝑑Λ𝑔2
𝑠 = 𝑆𝑑Λ𝑔

2
𝑐 = 5. The

critical values of 𝑔𝑠 and 𝑔𝑐 are at 𝑆𝑑Λ𝑔2
𝑠 = 𝑆𝑑Λ𝑔

2
𝑐 = 1

8 . From the effective potential we see that
in the broken phase, we have either spin order or charge order, but not both, and therefore the Z𝑠𝑐2
spin-charge flip symmetry is also spontaneously broken.

6. RG analysis and critical exponents

In order to understand the RG flow and critical properties of the Lagrangian in Eq. (14), we
calculate the usual 4 − 𝜀 expansion using the corresponding Gross-Neveu-Yukawa Lagrangian

LGNY = −𝜓̄𝛼𝛾
𝜇𝜕𝜇𝜓𝛼 + 𝑔𝑠 ®𝜙𝑠 · ®𝑀𝑠 + 𝑔𝑐 ®𝜙𝑐 · ®𝑀𝑐

+
∑︁
𝑎=𝑠,𝑐

(
1
2
𝜕𝜇 ®𝜙𝑎 · 𝜕𝜇 ®𝜙𝑎 +

1
2
𝑚2

𝑎
®𝜙𝑎 · ®𝜙𝑎 +

1
4!
𝜆𝑎 ( ®𝜙𝑎 · ®𝜙𝑎)2

)
+ 1

12
𝜆𝑠𝑐 ( ®𝜙𝑠 · ®𝜙𝑠) ( ®𝜙𝑐 · ®𝜙𝑐). (17)

5
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-3

-2

-1

0

1

2

3

Figure 1: Effective potential in the broken phase at 𝑆𝑑Λ𝑔2
𝑠 = 𝑆𝑑Λ𝑔

2
𝑐 = 5.

We have calculated the one-loop 𝛽 functions for the coupling 𝑔2
𝑠 , 𝑔2

𝑐 , 𝜆𝑠, 𝜆𝑐 and 𝜆𝑠𝑐 , and they are
given by [29]

d𝑔2
𝑠

d log 𝜇
= −𝜀𝑔2

𝑠 + 𝑆𝑑
(
(2𝑁 𝑓 + 1)𝑔4

𝑠 + 9𝑔2
𝑠𝑔

2
𝑐

)
, (18)

d𝜆𝑠
d log 𝜇

= −𝜀𝜆𝑠 + 𝑆𝑑
(11

6
𝜆2
𝑠 +

1
2
𝜆2
𝑠𝑐 + 4𝑁 𝑓 𝑔

2
𝑠𝜆𝑠 − 24𝑁 𝑓 𝑔

4
𝑠

)
, (19)

d𝜆𝑠𝑐
d log 𝜇

= −𝜀𝜆𝑠𝑐 + 𝑆𝑑
(5
6
(𝜆𝑠 + 𝜆𝑐)𝜆𝑠𝑐 +

2
3
𝜆2
𝑠𝑐 + 2𝑁 𝑓 (𝑔2

𝑠 + 𝑔2
𝑐)𝜆𝑠𝑐 − 24𝑁 𝑓 𝑔

2
𝑠𝑔

2
𝑐

)
, (20)

where the 𝛽 functions for 𝑔2
𝑐 and 𝜆𝑐 can be obtained by the spin-charge flip symmetry.

Using these 𝛽 functions, we plot the RG flows in Fig. 2. From Eq. (18) we see that the Yukawa
couplings mix only among themselves, and from Fig. 2a we see that there is a spin-charge flip
symmetric fixed point (SC) on the 𝑔2

𝑠 = 𝑔
2
𝑐 axis, which separates the massless Dirac phase from

the broken phase. The Z𝑠𝑐2 spin-charge flip symmetry prevents the flow from leaving the diagonal
𝑔2
𝑠 = 𝑔

2
𝑐 axis. Breaking this Z𝑠𝑐2 symmetry through the Hubbard interaction for example, would

drive the flow away from the diagonal axis to the usual spin or charge fixed points, depending on
the sign of the Hubbard coupling. Assuming 𝑔2

𝑠 = 𝑔
2
𝑐 are at SC, the flow diagram of the boson

self-interactions in the spin-charge flip symmetric slice is shown in Fig. 2b. There is only one stable
fixed point, which can be identified as the SC fixed point.

Evaluating the critical exponents at the spin-charge symmetric fixed point using the 4 − 𝜀
expansion, we have [29],

𝜂 =
2
7
𝜀, 𝜂𝜓 =

3
14
𝜀, 1/𝜈 = 2 − 6

7
𝜀. (21)

In the large 𝑁 𝑓 limit (𝑁 𝑓 is the number of values 𝛼 takes, and in our model 𝑁 𝑓 = 2), we obtain

𝜂 = 𝜀 − 5𝜀
𝑁 𝑓 + 5

, 𝜂𝜓 =
3

2(𝑁 𝑓 + 5) 𝜀, 1/𝜈 = 2 − 𝜀 − 3𝜀
𝑁 𝑓 + 5

. (22)

These exponents are different from those obtained from the Hubbard model [20].

6
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(a) Yukawa couplings
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(b) Boson self-interactions

Figure 2: RG flow of the couplings in 4 − 𝜀 expansion

7. Conclusions

Our lattice Hamiltonian, which can be solved using the fermion bag approach, has a spin-charge
flip symmetry. We have shown that the presence of this additional symmetry leads to a new fixed
point that can be reached by tuning a single coupling on the lattice. The fixed point thus describes
an interesting phase transition between a massless Dirac fermion phase and a phase featuring
spontaneous spin symmetry breaking or charge symmetry breaking, as well as spontaneous spin-
charge flip symmetry breaking. Here we uncover the physics of the continuum model by calculating
its effective potential and computing the critical exponents using the 4−𝜀 expansion up to one loop.
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