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An update on QCD+QED simulations with C* boundary conditions Jens Liicke

1. Introduction

We present an update on a long-term research program aiming at calculating isospin-breaking
and QED radiative corrections in hadronic quantities, with C* boundary conditions [1-4] and fully-
dynamical QCD+QED simulations. C* boundary conditions allow for a local and gauge-invariant
formulation of QED in finite volume and in the charged sector of the theory [5—7]. In particular,
two ensembles were generated at the values of the fine-structure constant ag = 0.04 and ag = 0. A
value of ag larger than the physical one has been chosen to amplify QED corrections.

The open-source openQ*D-1.1 code [8, 9] was used to generate all gauge configurations
presented in this work. This code has been developed by the RC* collaboration. It is an extension
of the openQCD-1.6 code [10] for QCD.

In this proceedings we will focus on two novelties in our analysis: the calculation of the
sign of the Pfaffian of the Dirac operator (section 3), and a particular implementation of the mass
reweighting in the context of the RHMC (section 4).

2. Simulation setup

So far we have generated two Ny = 3+1 QCD ensembles and two Ny = 1+2+1 QCD+QED
ensembles. We used the Liischer-Weisz action for the SU(3) field with 8 = 3.24, the Wilson action
for the U(1) field with @g = 0.05 (for the QCD+QED ensembles), and O(a)-improved Wilson
fermions. For the QCD ensembles, we used the value of ¢y determined non-perturbatively in [11].
For the QCD+QED ensembles, in lack for a better option, we used the same value of cgy for the
SU(3) SW term, and cgy, = 1 for the U(1) SW term (see table 1). We employ C* boundary conditions
in space and periodic boundary conditions in time for all our ensembles. We have verified that we
are free from the problem of topological freezing in all our ensembles, which justifies the use of
periodic boundary conditions in time.

Following [12], we determine the lattice spacing from the auxiliary observable #y, by using
the central value of the CLS determination (8t0)1/ 2 = 0.415 fm [13]. This has been taken only as
an indicative value, keeping in mind that it contains an O (@) ambiguity which can be resolved
only when the scale is set with a physical observable, e.g. the mass of the Q baryon. We obtain
a =~ 0.054 fm for the QCD ensembles, and a marginally lower value for the QCD+QED ensembles
(see table 2).

We define the renormalized fine-structure constant ag as

ar = N5 (Ey) (t0)) 4))

where Ey 1) (2) is the clover discretization of the U(1) action density calculated in terms of the
gauge field at positive flow time 7. The normalization N is chosen such that ag = ag + O (a3).
Our choice ag = 0.05 for the QCD+QED ensembles, corresponds to an unphysically large value
ar > 0.04 = 5500,

In the QCD case, we have simulated the SU(3) symmetric point, i.e. m, = mg = my =
(my + mg + mg)P™s /3. In the QCD+QED case,we have chosen to work at the U-symmetric point,
i.e. mg = my, and we have chosen m,, in such a way that the strong isospin-breaking effects are
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Figure 1: Lines of constant physics. The black points on the left correspond to the ensemble QCD-32-1. The
m and the K mass that we measured served as starting points to set our lines of constant physics. Following
the lines on the right one can see the masses measured on the Q*D-32-2-RW ensemble. While the average of
the D-mesons is perfectly on the line of constant physics, the kaons are slightly too heavy. The plot on the
right visualizes the shift that we managed to achieve with the reweighting.

rescaled with the same factor as the QED isospin-breaking effects. The lines of constant physics
are determined by keeping the following quantities

2 2 2 2 2
¢o = 8to(mys —m7.) , ¢1 = 8to(mye +mis + M) 5
¢2 = 8to(myo — my-)ag' $3 = Bto(mp, +mpo+mp:=) , )

constant as « is varied. While these quantities can be determined quite accurately from lattice
simulations, their real-world value is unknown, since 7y cannot be measured experimentally. In
practice one needs to simulate different lines of constant physics, and then interpolate/extrapolate
to the real-world one by setting the scale with a physical observable. The aim of this project is to
simulate on the U-symmetric line of constant physics defined by

bo=0, ¢ =213=¢", =237, ¢3=121=¢", 3

which, for @ = 0, corresponds to the QCD SU(3)-symmetric point. In this setup the 7* is heavier
than the real-world one, making simulations easier. In the context of QCD+QED, a similar strategy
has been used e.g. in [14]. As routinely done in QCD (and more so in the past), one wants to start
from heavier pions and then to approach the physical pion mass in steps.

The most important parameters and observables for our ensembles have been summarized in
tables 2, 3, 4. In these tables we include also the run Q*D-32-2+RW which is obtained by reweighting
the Q*D-32-2 ensemble in the bare quark masses (chosen in such a way to hit the target tuning
point). The values of the ¢; that we measured can be seen in table 4. The resulting lines of constant
physics can be seen in figure 1.
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ensemble 04 Ky Kd = Kg Ke Csw,SU(3) Csw,U(1)
QCDh-32-1 0  0.13440733 0.13440733 0.12784 2.18859
Q*D-32-1 0.05  0.135479 0.134524 0.12965 2.18859
Q*D-32-2 0.05  0.135560 0.134617 0.129583  2.18859
Q*D-32-2+RW 0.05 0.1355368 0.134596  0.12959326 2.18859

—_ = = O

Table 1: Simulation parameters. For the first three ensembles, the hopping parameters «, 4 s, are the ones
actually used to generate the configurations. For Q*D-32-2+RW, the values of k, 4 s . are the ones used in
the reweighting procedure.

ensemble volume cnfgs a aRr L ML

QCD-32-1 64 x 323 2000 0.0539(3) fm 0 1.73(1) fm  3.49(3)
Q*D-32-1 64 x 323 1993  0.0526(2) fm  0.04077(6) 1.682(5) fm 4.18(2)
Q*D-32-2 64 x 323 2001 0.0505(3) fm  0.04063(6) 1.62(1) fm  2.90(3)
Q*D-32-2+RW 64 x32° 2001 0.0510(2) fm 0.0407(1) 1.631(6) fm 3.24(3)

Table 2: cnfg stands for the number of thermalized configurations for the first three ensembles, or number of
reweighted configurations for Q*D-32-2+RW. The lattice spacing a is calculated by assuming 8ty = 0.415 fm
with no error. L is the linear size of the spatial box. The results are preliminary.

ensemble Mgz = Mg:  Mgo — MK+ Mpo =mp, Mp=—Mpo V3L
QCD-32-1 399(3) MeV 0 MeV 1916(5) MeV 0 MeV —
Q*D-32-1 495(3) MeV  23.3(5) MeV  1871(6) MeV  32(1) MeV  639(2) MeV
Q*D-32-2 359(3) MeV  30(1) MeV  1911(6) MeV  26(2) MeV  664(4) MeV
Q*D-32-2+RW 398(3) MeV  26(1) MeV  1899(5) MeV  27(2) MeV  658(3) MeV

Table 3: Summary of masses. The masses for charged hadrons have been corrected for the universal O (aR)
finite-volume corrections. The quantity 7V3L™! is the smallest energy of a free photon in the considered
finite box with C* boundary conditions in all directions. The results are preliminary.

ensemble ¢ $2 #3
QCD-32-1  2.113) —  12.093)
Q*D-32-1  3.36(4) 2.56(5) 11.93(4)
Q*D-32-2  1.81(3) 2.4(1) 12.16(5)
Q*D-32-2+RW 2.20(3) 2.32(8) 12.09(3)

Table 4: Summary of tuning observables. All ensembles are at the U-symmetric point, i.e. myg = mg or

@0 = 0. The ¢g,1 2,3 are described in the main text. Our main goal was to tune the QCD+QED parameters in

such a way that ¢; 3 are equal to the QCD runs, while ¢, = qﬁghys =~ 2.37. The results are preliminary.
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3. Sign of the Pfaffian

Given a quark field ¢, we introduce the corresponding antiquark field ¢ = C~'7, where the
charge-conjugation matrix C can be chosen to be iygy; in the chiral basis. C* boundary conditions
for the fermion fields can be written as

ple+ Lk) | _ [wC) [ v)
o 2 = =T |- “)

¥ (x + Lk) ¥ (x) Y™ (x)
With C* boundary conditions the Dirac operator D acts on the quark-antiquark doublet in a non-
diagonal way, and it is therefore a 24V X 24V matrix. The integration of a quark field in the path

integral yields the Pfaffian pf [CT D] in place of the standard fermionic determinant. We rewrite
the Pfaffian as

pf [CTD] = Wegn [pf [CTD]| = Wign |det[D]|"/* (5)

where we have used the algebraic relation pf [M]? = det[M] for a general antisymmetric matrix
M. In practice we treat the sign Wge, of the Pfaffian as a reweighing factor. In previous work we
have left this out because close to the continuum one expects Wg, ~ 1.

In order to calculate its sign, it is convenient to relate the Pfaffian to the spectrum of the
hermitian Dirac operator Q = ysD. We first observe that the spectrum of Q is doubly degenerate: if
v is an eigenvector of Q, then one easily checks that CTysv* is also an eigenvector of Q with same

eigenvalue, and the two eigenvectors are orthogonal. Let 4,-1,.._ 12v € R be the list of eigenvalues

.....

of O, each of them appearing a number of times equal to half their degeneracy. Then one proves
that

12v 12V
pf [CTD)? = det [D] = det [Q] = ]_[ 2, pf[CTD] = ]_[ Ay . (©6)
n=1 n=1

While the first relation is trivial, the second relation follows from the fact that both sides of the
equation are analytic functions of the bare mass mg, and they diverge to +oo in the mg — +oco limit.
It follows that the Pfaffian is positive (resp. negative) if the number of negative eigenvalues 4, is
even (resp. odd). In practice we calculate the sign by following the eigenvalue flow as a function of
myp. At very large mass, Q is approximately equal to mgys and the number of negative eigenvalues
is even. As my is decreased towards its target value, the Pfaffian flips sign every time an eigenvalue
of Q crosses zero. In practice, we follow the flow in the opposite direction, increasing mg until a
crossing becomes unlikely.

Our method is based on two steps: (A) a first fast algorithm identifies a small subset of
configurations for which a potential crossing may occur, (B) on these configurations we apply the
methods described in [15, 16] to determine whether a crossing actually occurs.! We describe here
only the step A, which is the truly novel ingredient in our calculation.

Let A be the smallest eigenvalue of the operator |Q|, i.e.

A =min|4,]| . 7
n

1An alternative method has been proposed in [17].
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Figure 2: Smallest eigenvalue of |Q| as a function of the valence mass mg (red points), calculated on a
representative configuration (QCD-32-1 ensemble). Using the bound on the derivative (8), one proves that
no eigenvalue of |Q| can flow in the grey areas. In particular, no eigenvalue crosses zero in the explored
range of masses. One can see that we are able to flow the eigenvalue across two orders of magnitude in only
six steps. As evident from the plot an even more efficient version of the algorithm would skip every other
step. The inset is a zoom-in of the yellow area.

Since Q’(mg) = s, using the Feynman-Hellmann theorem one proves that the derivative of every
eigenvalue of Q(myg) satisfies the hard bound

|4, (mo)| = 1(rns Q" (mo)rn)| = | ysthn)| < 1. ®)

It easily follows that, if A(mg) > 0, then no eigenvalue of Q (i) crosses zero for mg — A(mg) <
1y < mg + A(mg). This observation allows to design the following algorithm, to be run on each

configuration:
1. Setm” = mgand n = 0.
2. Calculate 1 = /T(m(()n)).
3. If n > 1and 1™ < A"~D then stop the algorithm and apply step B.
4. If m(()") > my™* then stop the algorithm and set Wygn = 1.
5. Define m(()"m = m(()") +¢A" and repeat from point 2 with n « n + 1.

The number ¢ could be 2 if we were able to calculate the eigenvalue with infinite precision, but

it is chosen to be slightly smaller than 2 for safety. The scan in mass terminates either when

max
0

configurations the eigenvalue does not decrease, which implies that the increment in m increases

the eigenvalue decreases or when the arbitrarily chosen maximal mass my,'®* is reached. In most
at every iteration. In a few iterations, one can easily cover a couple of orders of magnitude in the
eigenvalue A, as illustrated in figure 2. We stress that in this step we do not need to track eigenvectors,
but only the smallest eigenvalue of |Q|, which can be efficiently and reliably calculated by applying
the power method plus Chebyshev’s acceleration to the operator Q2.

None of the generated ensembles showed a negative sign after the Markov chain thermalized.
During thermalization however, some gauge field configurations were present with a negative
Pfaffian. One such example from a QCD+QED ensemble can be seen in figure 3.
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Figure 3: Mass flow for the up quark. We see that for larger bare masses mg the gap of the Dirac operator
O increases. However between the first and the second measurement the red eigenvalue flows across zero
and induces a sign flip of the Pfaffian. This sign was observed on a configuration before the Markov chain
thermalized. Hence in the final analysis it did not enter. The inset is a zoom-in of the yellow area.

4. Reweighting of the mass

In figure 1 one can see that, for the Q*D-32-2 ensemble, both kaons are roughly 40 MeV too
light and the average of the D-mesons is around 10 MeV too heavy. To correct these mistunings we
use a reweighting in the mass [18].2 We represent the absolute value of the fermionic Pfaffian as in

jdet [De]|" _ |det [D3e]]"

- ~ 9
det[02,]* det[R(07)]

Ipf [CTD,,]| = |det [D,,]]"* =

Here Qm is defined as y5ﬁm where D,, is the even-odd preconditioned Dirac operator, while D$?
is the Dirac operator restricted to and projected onto the odd sites. The operator (QAfn)‘l/ 4 is
replaced by a rational approximation R(QAﬁi), whose inverse determinant is stochastically estimated
by introducing pseudofermion fields in a standard fashion (for more details see [9]). We choose a
rational approximation R of order (n, n) of the form

A2
R(02) = Aﬂgm:; (10)

The parameters are chosen such that R is the optimal rational approximation on a given interval
[7a, rp], in the sense that the uniform relative error is minimized.
So for a reweighting of the mass one needs two factors3

Winass = det |R (02,) R (02,)] Weo = |det [DS (D |"* . (1)

2An algorithm for one-flavour mass reweighting has been proposed in [19], however this algorithm does not apply to
the case of C* boundary conditions since the fermionic determinant is replaced by the Pfaffian.

3The two rational approximations in Wi,ss can be different. This is useful if the spectral range of the approximated
operator changes significantly.
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The We, factor is only present with even-odd preconditioning and is calculated exactly. The factor
Whass can be written as a product of determinants of positive hermitian operators

2n
Winess = | [ det[(1+6D5s,)" (1+5D5))| . (12)
j=1

The difference of the Dirac operators 6D = D,,» — D,, can be worked out analytically. The operator
S is defined as

S; = (ﬁm +iy5vj)_l - (Dm/ + iy5uj)_l - (ﬁmf + i)/5,uj)_l 5D (Dm + i)/5vj)_1 . (13)

In practice, every determinant from eq. (12) is estimated stochastically, i.e.

2n 2n 1 Nj
Winass = | [det [1+R;] = [{ = D e (mm-Rimn) | (14)
j=1 j=1 Nj 5
The hermitian operator R; is defined as
R; = (6DS,)" + (6DS;) + (6DS;)" (6DS;) (15)

and the complex stochastic sources n have support on the even lattice sites and a probability
distribution proportional to e~ (77,

We computed the reweighting factor with a single stochastic source for every factor. Inves-
tigating the effects of the reweighting shows that in our case the mistuning was small enough, so
that we do not observe an increase in the errors. In the tables 3 and 4 this can be seen explicitly.
The reweighting induces a slight shift in the lattice spacing, but within errors the electromagnetic
coupling stayed the same. From table 2 one can see that only ¢, is off the line of constant physics
after reweighting.

5. Summary

For the first time we have computed the sign of the Pfaffian and included it into our analysis.
Thus we are simulating the full path integral. We have presented a two-part algorithm that can effi-
ciently detect gauge field configurations that give a negative fermionic Pfaffian. For our ensembles
we did not observe any configurations with negative sign once the Markov chain thermalized. It
will be interesting to see at which pion masses and what lattice spacings negative signs actually
become a problem.

After the reweighting in the mass, no significant increase in the error of any observable was
observed. For a larger shift and larger volumes we expect an increase in the errors. A preliminary
analysis showed that the computation of the mass reweighting factor is about 40% cheaper than
the generation of a new ensemble without considering thermalization. Since the tuning of the
parameters in a fully dynamical QCD+QED simulation is a complex task and in practice requires
the generation of several tuning ensembles, it is interesting in what regime of quark masses and for
what volumes the reweighting gives reasonable results.
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