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We report on an ongoing study of the running coupling of SU(N) pure Yang-Mills theory in the
twisted gradient flow scheme (TGF). The study exploits the idea that twisted boundary conditions
reduce finite volume effects, leading to an effective size in the twisted plane that combines the
number of colours and the torus period. We test this hypothesis by computing the TGF running
coupling and the SU(N) Λ− parameter on asymmetric lattices of size (N L)2L2 for various gauge
groups. Finite volume effects are monitored by analyzing the coupling in different planes and by
comparing results at different number of colours.
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1. Introduction

The strong coupling αs is a key quantity in high energy physics, and throughout the years
its determination up to high level of precision has been an important task with theoretical and
phenomenological implications. In a recent work, it has been shown that a precise determination
of αs can be made via a non-perturbative matching between QCD and the pure gauge theory using
heavy quarks [1]. This has revived the interest in the calculation of the Λ−parameter in the pure
gauge theory. The twisted gradient flow scheme (TGF) introduced in [2–4] has several advantages
that make it well suited for this purpose, among them a reduced memory footprint that allows for
a better usage of GPU clusters. In addition to high precision determinations in the case of SU(3),
this scheme is especially suited for the extraction of the N dependence of the Λ−parameter. In this
work we will summarise our recent results on SU(3) [3] and present our ongoing work on the study
of the dependence with the number of colours.

This renormalization scheme is based in 3 main ingredients. The first one is a coupling defi-
nition based in the gradient flow (GF) [5–7], computable on the lattice with high precision. Gauge
invariant composite observables based on the GF are automatically renormalized quantities for t > 0
at every order in perturbation theory [8], so its effect is basically removing ultraviolet divergences
and smoothing the gauge field in a range scale

√
8t, that becomes a natural renormalization scale.

The other two ingredients are referring to the geometry. The TGF is defined by introducing
SU(N) Yang-Mills theories on an asymmetric torus of size (Nl)2 × l2. The short directions are
endowed with twisted boundary conditions [9] satisfying

Aµ(x + l ν̂) = ΓνAµ(x)Γ†ν, for ν = 1 or 2; (Γ1Γ2 = Z12Γ2Γ1) (1)

where Γµ are constant SU(N) matrices and Z12 = exp (2πik/N) (for k, N coprime integers) is an
element of the SU(N) center. In the long directions gauge fields are periodic with period l̃ ≡ Nl.

Those ingredients (coupling based on the GF, twisted boundary conditions and the asymmetric
geometry) lead us to the following coupling definition (for a precise definition of the normalization
factor A(πc2), see [3]):

λTGF(µ) =
128π2t2

3NA(πc2)
〈E (t) δQ〉

〈δQ〉

!!!
√

8t=cl̃=µ−1
. (2)

Notice that in the context of finite size scaling, the renormalization scale µ = 1/
√

8t is related
with the finite size of the box by taking

√
8t = cl̃, with c a real, smaller than 1, parameter

characterizing the scheme. Perturbation theory indicates that in the large N limit the finite volume
effects are controlled by l̃ [2, 10, 11], rather than l, so it is natural to use l̃ to set the scale of the
running coupling. In this work, we have set c = 0.30. The δQ function in equation (2) projects the
path integral into the sector of configurations with zero topological charge. This projection aims to
circumventing the problem of topology freezing on the lattice [12].

2. The Λ−parameter

One of the aims of this work is to test the validity of the TGF scheme as a tool for high
precision calculations, and this has been done by computing the Λ−parameter of the pure SU(3)
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YM theory. This parameter is a renormalization group invariant and does not depend on the scale,
but it depends on the renormalization scheme. The coefficient that relates Λ in the TGF scheme
with the MS scheme can be determined in perturbation theory and has the following value

log
(
ΛTGF
ΛMS

)
=

3
22

(
11
3
γE +

52
9

− 3 log 3 + C1(c)
)
, (3)

where C1(c) has been computed in [2] for several values of c and different gauge groups. For the
particular cases to be discussed in this work, C1(c = 0.3) = 0.508(4) for SU(3) and twist k = 1,
and C1(c = 0.3) = 0.597(14) for SU(5) and twist k = 2.

Starting from the integration of the RG equations in some renormalisation scheme s

βs(λs) =
dλs

d log(µ2)
, (4)

Λ can be determined by taking the limit:

Λs
µref
= lim

λs (µpt)→0

(
b0λs(µpt)

) −b1
2b02 exp

(
−1

2b0λs(µpt)

)
I(n)s

(
λs(µpt)

)
× exp

[
−
∫ λs (µref)

λs (µpt)

dx
2βs(x)

]
, (5)

where µref is a hadronic reference scale, µpt is a high energy scale where perturbation theory can
be applied, and I(n)s has the following form:

I(n)s (λ) = exp

{
−
∫ λ

0
dx

(
1

2β(n)s (x)
+

1
2b0x2 − b1

2b2
0x

)}
, (6)

with β(n)s (x) the n−loop β-function.
The last factor of equation (5) can be determined non-perturbatively in the lattice by simulating

the running of the coupling constant λs. We can compute this factor using the step scaling function

σ(u) = λs(µ/2)
!!!
λs (µ)=u

, (7)

that changes the renormalisation scale by a factor of 2 each application and runs the coupling as
uk = λs(2k µref) up to perturbative scales where perturbation theory can be applied at the matching
point λPT. Details of the lattice determination of this quantity in the TGF scheme can be found
in [3]. One of the steps involves taking the continuum limit of the lattice determined step scaling
function Σ(u, L̃), where L̃ = l̃/a. Several alternatives can be taken for this, as for instance fitting
raw data to a global fit of the form

1
Σ(u, L̃)

=
1
u
− 2b0 log 2 − 2b1u log 2 +

4∑
k=2

pkuk +

( 4∑
k=0
ρkuk

)
× 1

L̃2
, (8)

where L̃ = N × L and Σ(u, L̃) is determined by measuring the coupling at size L̃ and 2L̃ at the same
value of bare coupling. Then, the continuum step scaling function σ(u) can be computed by taking
the L̃ → ∞ limit of Σ(u, L̃).

An illustration of the validity of this method is presented in fig. 1 for the case of SU(3), where
we are comparing the extrapolation of ΛMS/µref using the TGF method explained above with the
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Figure 1: ΛMS/µref as a function of the matching scale λPT with perturbation theory, computed throughout
several methods, including TGF, perturbative matching with the MS scheme and non-perturbative matching
with the SF scheme.
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Figure 2: Our final result of r0ΛMS for SU(3) [3] compared with the values included in the FLAG average [20].

results obtained by the non-perturbative matching to the Schrodinger functional data of [13] or
through perturbative matching to the MS scheme, see [3] for details. We have fixed µref through
the renormalisation condition λ(µref) ≡ 13.9164955.

In the case of SU(3), we have used the available data for the Sommer radius r0 as intermediate
scale, and fig. 2 shows the comparison between our result and several determinations for r0 × ΛMS
[14–19] reported in the FLAG average [20]. Up to this level of precision, our final result r0×ΛMS =

0.632(20) [3] turns out to be compatible with both the FLAG average r0 ×ΛMS = 0.615(18) and the
result by Dalla Brida and Ramos r0 ×ΛMS = 0.660(11) [13]. At this stage, our result is not precise
enough to clarify the tension among the existing results in the literature but due to the reduced
memory footprint, we believe that this scheme can be efficiently used to pin down the errors.

3. Dependence on the number of colours

In this section, we will describe our ongoing calculation of the Λ−parameter as a function of
the number of colours. Figure 3 shows the dependence of the ratio log

(
ΛTGF/ΛMS

)
as a function
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Figure 3: We display log
!
ΛTGF/ΛMS

"
as a function of θ̂ ≡ k̄/N for different choices of N and k-twist. The

determination labelled as total is extracted analytically from the perturbative computation of [2], and the
per-plane ratios are computed numerically as explained in the text.

of θ̂ ≡ k̄/N with k k̄ = 1(mod N), a parameter that can be directly related to the non-commutativity
parameter in non-commutative gauge theories. Most data of this plot is obtained analytically from
the perturbative computation of [2], and we also have included the c = 0.30 data not available in
that reference. For the gauge groups studied in this work, the choice of N and k is not arbitrary,
and their values are selected so as to avoid the appearance of tachyonic instabilities in the large N
limit [10, 21]. In order to saturate the bound that enforces the absence of these instabilities, the
value of k and the number of colours of the non-abelian group should follow a special and peculiar
relation; more precisely, they are chosen respectively as the n − 2 and n-th terms of the Fibonacci
sequence, i.e. k = Fn−2 and N = Fn , for any value of n. In the large N limit, the non-commutativity
parameter tends to a fixed value θ̂ = ϕ−2 ≃ 0.38196601, where ϕ is the Golden Ratio.

We start this analysis by computing ΛMS/µref for the first steps in the Fibonacci sequence,
including (k, N) = (1, 3), (2, 5) and (3, 8) (the calculation for SU(8) is ongoing). We will take the
large N limit at fixed values of the renormalized ’t Hooft coupling λ(µref) ≡ 13.9164955, thus fixing
in all cases the same renormalisation condition. The results for the step scaling function σ(u) and
ΛMS/µref for SU(3) and SU(5) are shown in fig. 4, and collected in table 1. The two determinations
come out to be compatible within errors.

3.1 Dependence on the boundary conditions

Although perturbation theory indicates that, in the large N limit, the box is effectively symmetric
with size l̃, the boundary conditions in the twisted and untwisted planes are different. To analyse the
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th]

(a) Raw data for 1/σ − 1/U(σ, L̃) vs σ. (b) Continuum extrapolation of ΛTGF/µref.

Figure 4: (a) Continuum extrapolation of the inverse step scaling function for SU(3) and SU(5). (b)
Continuum extrapolation of ΛTGF/µref for SU(5) compared to the one of SU(3).

influence in the determination of the coupling, we can separate the computation of the coupling per
planes, by averaging only over a specific set of directions. We identify 3 different types of plane:

• TT – The plane having a non-trivial twist. In this case both directions are short, of extent l.

• PT – Four planes sharing one direction with the twisted plane, with one short direction of
size l, and one long direction of size l̃ = Nl.

• PP – The plane orthogonal to the twisted one. Here both directions are long with size l̃.

Notice that boundary conditions in each plane are different, so each plane represents a different
renormalisation scheme. Reproducing the computation of ΛTGF/µref per plane gives an estimation
for the ratios ΛTGF(Plane)/ΛMS, relating each TGF-plane scheme with the MS scheme. This
ratios have not been computed in perturbation theory so this calculation provides a numerical
determination. We have done this through a non-perturbative matching between the coupling
computed in each set of planes and the coupling computed averaging over all planes. The advantage
of this procedure is that the hadronic scale is kept equal in all cases, as the matching is done at the
same bare coupling. Then, the ratios are computed as follows:

R ≡ ΛTGF(Plane)
ΛMS

=
ΛTGF(Plane)/µref
ΛTGF(All)/µref

× ΛTGF(All)
ΛMS

, (9)

where the last factor refers to equation (3).
Figure 5 shows the non-perturbative matching between the planes and the total coupling, taking

the PP computation as an explicit example. The purple band is a continuum extrapolation based on
the following functional form:

1
λPlane(µ)

− 1
u(µ) =

3∑
n=0

ckuk +

(
1
L̃2

)
×

8∑
n=0
ρkuk, (10)
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(a) SU(3). (b) SU(5).

Figure 5: Non-perturbative matching between PP and total coupling λ for: (a) SU(3) and (b) SU(5).

N Plane ΛTGF/µref R N Plane ΛTGF/µref R
3 All 0.418(17) 2.0063(11) 5 All 0.436(33) 2.0309(39)
3 TT 0.543(23) 2.60(15) 5 TT 0.545(44) 2.59(25)
3 PT 0.385(16) 1.84(11) 5 PT 0.465(34) 1.95(20)
3 PP 0.417(16) 2.00(11) 5 PP 0.401(31) 2.25(23)

Table 1: Results for ΛTGF/µref for SU(3) and SU(5) extracted from the average over all planes or over TT,
PP or PT planes. We also show the values of the R ratio from equation eq. (9).

with u(µ) = λTotal(µ). Table 1 contains the results forΛTGF(Plane)/µref and R = ΛTGF(Plane)/ΛMS.

The values of log
(
ΛTGF(Plane)/ΛMS

)
for the two cases θ̂ = 1/3 and θ̂ = 2/5 studied in this

work are displayed in fig. 3 compared with the determinations corresponding to averaging over all
planes. For finite volumes, even if twisted boundary conditions successfully replicates the small
size of the box, and the torus has an effective volume L̃4, the boundary conditions in each plane are
different and the twisted plane has a non trivial non-commutativity parameter; even so, fig. 3 shows
no large deviations between the computation in each plane and the total one. We are at the present
exploring more values of N along the Fibonacci sequence.

3.2 Finite volume effects

Finally, we will try to evaluate if the twisted lattice succeeds in reducing finite size effects and
exhibits an effective volume dependence with l̃. For that purpose, we will compare the computation
of the coupling in the TT and PP planes with the standard set-up at large values of c. We have
compared the renormalized coupling in PP planes obtained at c = 0.30 × N for size L with the one
obtained for c = 0.3 and size N × L. In the absence of finite volume effects, these two coupling
should be equal. We computed, at fixed value of the bare coupling, the ratio between the SU(3) PP
renormalized coupling on a lattice with L̃ = 12 at c = 0.90 and L̃ = 36 ant c = 0.30, so formally
the bare coupling and the renormalization scale are kept constant. Figure (6a) displays the ratio of
the two couplings, showing that finite volume effects amount to 30% at strong coupling. On the
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(a) L̃ = 12|c=0.9 VS L̃ = 36|c=0.3. (b) λTT VS λPP.

Figure 6: Comparison between finite volume effects in TT and PP computation with. respect to the regular
set-up for large values of c.

other hand, fig. (6b) displays the ratio between TT and PP computation for c = 0.30. In this case,
for the TT plane, the renormalisation scale is µ−1 = cl̃ = c̃l, with c̃ = 0.9, so in principle one could
expect a 30% difference between TT and PP couplings due to finite volume effects. Figure. (6b)
shows the deviation at strong coupling is at most 10%, indicating that twisted boundary conditions
indeed succeed in reducing finite volume effects. The study of the N dependence of this effects is
ongoing.

4. Summary

We have reported on the ongoing investigation of the running coupling of SU(N) YM theories
for several values of N using the TGF scheme, that combines three main ingredients: a coupling
based on the GF, twisted boundary conditions and an asymmetric geometry. With this scheme,
we have determine ΛMS/µref for SU(3), obtaining good agreement with the literature. We have
also presented our ongoing analysis of the N dependence of the Λ−parameter, for which the TGF
scheme is particularly suited.
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