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We investigate the impact of the latest Mainz/CLS collaboration’s result for the hadronic vacuum
polarization (HVP) on the electroweak (EW) precision science. The subject is closely related
to the muon g-2 via the HVP. Both precision tests come under scrutiny with respect to physics
Beyond the Standard Model. Our HVP calculation is used for the running electromagnetic
coupling at low energy and linked at various matching energies to the higher energy running
evaluated by phenomenological approaches. We predict the electromagnetic coupling at the Z-
pole (ΔU (5)had ("

2
/
)), providing a lattice-driven input to EW-global fits. Our preliminaryΔU (5)had ("

2
/
)

is stable for a wide range of matching energies and comes with various systematics taken into
account and consistent with phenomenological estimates.
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1. Introduction

Hadronic vacuum polarization (HVP) is a key quantity in both of the muon anomalous mag-
netic moment (muon g-2, 0`) and the electromagnetic (QED) running coupling [1]. In precision
science of 0`, there exists 4.2f tension between the Standard Model (SM) prediction [2] and the
combined experimental results [3, 4]. Near future, the HVP will be directly measured in MUonE
experiment [5].

Quark/hadronic contributions to QED coupling at /-pole, ΔU (5)had("
2
/
), is a fit parameter in the

electroweak (EW) global fits. If a prior is given for ΔU (5)had("
2
/
) and Higgs boson mass ("higgs) is

treated as a fit parameter with no prior, the output "higgs shows 1.7f tension [6] to the physical
value. The EW global fits and ΔU (5)had("

2
/
) will become more important in the future collider

experiments, such as international linear collider, with respect to exploring physics beyond the
Standard Model (BSM).

In both of 0` and ΔU (5)had("
2
/
), HVP contributions have relied on R-ratio (normalized cross-

section of 4+4− → hadrons) integrals (dispersive method) and led to a major source of uncertainty.
Lattice QCD has made significant progress in HVP calculations and will become competitive to the
dispersive method near future [2].

In Refs. [7] and [8, 9], Mainz/CLS collaboration has investigated the leading-order (LO) HVP
contribution to muon g-2 (0LO-HVP

` ) and QED running coupling, respectively. In this proceedings,
we examine ΔU (5)had("

2
/
) by using the Mainz/CLS data.

In the following section, we describe our strategy to connect Mainz/CLS data to the EW
quantity ΔU (5)had("

2
/
). Next in Sec. 3, we will show our result for ΔU (5)had("

2
/
) and compare it with

the known results. And finally in Sec. 4, we will provide concluding remarks and future perspective.

2. Setup

The QED running coupling (U(B)) in the on-shell scheme is parameterized as [10]

U(B) = U0
1 − ΔUlep(B) − ΔUhad(B)

, (1)

where U0 ' 1/137.036 denotes the fine-structure constant. In this proceedings, we focus on the
hadronic correction ΔUhad(B). In particular, we are interested in the five quark-flavour hadronic
contribution at Z-pole (B = "2

/
), which we denote as ΔU (5)had("

2
/
), which is proportional to the

R-ratio integral and corresponds to a fit parameter in EW global fits.
In Lattice QCD, the output is a vector-current correlator and its Fourier transformation gives

HVP in on-shell scheme (ΠWW (−&2)). Here, &2 represents spacelikemomentum at hadronic scale.
Thus, lattice QCD can provide

ΔUlathad(−&
2) = 4cU0(ΠWW (−&2) − ΠWW (0)) . (2)

Our gauge configurations contain the effects of full (D 3, B) dynamical quarks. We measured
(D 3 B)-quark-line connected and disconnected contributions to the vector current correlators. We
also measured charm connected contributions, which is dominant comparing to the missing effects,
the charm disconnected and charm sea-quarks, which we will discuss lator. Our data ensembles
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cover various lattice spacings, volumes, and pion/kaon masses. See Table 1 in Ref. [8] for our
gauge ensemble collections. Our gauge configurations do not include isospin breaking (IB) effects
(up/down quark mass difference and QED interaction). We have perturbatively estimated them
based on QED! approach [11] using some of our ensembles [12] and taken account the result into
one of systematic errors.

We have adopted the time-momentum representation (TMR) kernel to convert the vector-
current correlators to the HVP. The TMR may be regarded as an interpolation scheme of discrete
lattice momenta and allows us to approach arbitrary spacelike momenta&2. For selected momenta,
ranging from&2 = 0.01 GeV2 to 10 GeV2, we have successfully taken the chiral and continuum ex-
trapolations after correcting the finite volume effects at each ensemble. A detailed setup, definitions,
and results are reported in Ref. [8].

The connection between ΔUlathad(−&
2) and ΔU (5)had("

2
/
) can be established via the so-called

Euclidean split technique [13], i.e.

ΔU
(5)
had("

2
/ ) = ΔU

(5)
had(−&

2
0)

+
[
ΔU
(5)
had(−"

2
/ ) − ΔU

(5)
had(−&

2
0)

]
+

[
ΔU
(5)
had("

2
/ ) − ΔU

(5)
had(−"

2
/ )

]
pQCD

, (3)

where the threshold energy&2
0 is selected around 5 GeV2. In the literature [13, 14], ΔU (5)had(−&

2
0) has

been evaluated by employing the dispersive approach, while we utilize Mainz/CLS lattice estimate
ΔUlathad(−&

2
0) [8] for that. The second line in Eq. (3) will be calculated by phenomenological methods

with perturbative QCD (pQCD).

2.1 Heavy quark corrections to ΔUlat
had(−&

2
0)

For the central value of ΔU (5)had(−&
2
0), we simply use our lattice estimate ΔUlathad(−&

2
0). We note

that charm disconnected, charm sea-quark, and bottom quark contributions have not been included
in our data but necessary for ΔU (5)had(−&

2
0). These missing effects will be considered as additional

systematic uncertainty, which we explain in the following.
In 0LO-HVP

` [15], the charm disconnected contribution was smaller than 1% of up/down/strange
disconnected contributions. In HVP, we assume similar amounts of charm disconnected effects,
which are at most O(0.01)% in the total HVP.

For the charm sea-quark effects, we adopt a phenomenological estimate. In the R-ratio, the
leading charm contributions appear as D-meson pair creations. For �+�−,

'�+�− (B) =
1
4

(
1 −

4<2
�+

B

)3/2

|��+ (B) |2 , (4)

and similar expression follows for the �0�̄0 and �+B�−B channels. Since the form factor ��+ is not
known precisely, we will approximate it with values at B = 0, which amounts to treating D-mesons in
the scalar QED framework and replacing with electromagnetic charges: {��0 (B), ��+ (B), ��+B } →
{2/3,−1/3,−1/3}. Note that up, down, or strange quarks are assigned as valence quarks responsible
for charges, so that D-mesons contain charm sea-quarks. The corresponding contributions to QED

3
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Figure 1: Left: ΔU (5)had (−&
2
0) with our lattice data and heavy quark corrections. The gray band shows a

preliminary and conservative estimate of uncertainty. Right: [ΔU (5)had (−"
2
/
) − ΔU (5)had (−&

2
0)] in the Adler

function (red) [19] and dispersive methods (blue) [20].

running coupling reads

ΔUDhad(−&
2
0) =

U0
3c

∫
3B
('�0�0 + '�+�− + '�+B�−B ) (B)

B(B +&2
0)

,

=
4
9
5 (&2/<2

�0) +
1
9
5 (&2/<2

�B
) + 1

9
5 (&2/<2

�+) , (5)

where

5 (I) ≡ 1
144c2

[
−8(1 + 3/I) + 3(1 + 4/I)3/2 log

[
2 + I +

√
I(4 + I)

2

] ]
. (6)

We find 2.6 permil contributions of ΔUDhad(−&
2
0) over ΔUhad(−&

2
0) at &

2
0 = 5.0 GeV2.

Finally, we estimate the bottom quark contributions. To this end, we utilize the result by
the HPQCD collaboration for the lowest four time-moments of the HVP [16]. We construct Padé
approximants from the moments, which result in a few-permil effect on the total hadronic running
of the coupling. This effect is larger than the 0.04 percent effect reported in 0LO-HVP

` [17]. This is
due to the fact that the running coupling scale&2

0 is not well separated from the bottom quark mass,
in contrast to the muon mass case.

All contributions from heavy quarks discussed here are included in the estimate of ΔU (5)had(−&
2
0)

as additional systematic errors, added in quadrature in our lattice results [8]. The resulting increase
in the total error is only a few permil and thus tiny, but comparable to some of the lattice-originated
systematics.

In the left panel of Fig. 1, we show ΔU
(5)
had(−&

2
0) evaluated with our lattice data and heavy

quark corrections. The gray band shows a preliminary and conservative error, which contains both
of lattice- and heavy-quark-originated uncertainty and amounts to a few percent.

2.2 Higher energy corrections

We shall now investigate the remaining part, the second line in Eq. (3). If threshold energy &2
0

is sufficiently large, the first square bracket in Eq. (3) is dominated by perturbative QCD. In practice,
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however, we take &2
0 ∼ 5 GeV2 for which minor non-perturbative (NP) effects are non-negligible.

We adopt two approaches: Adler function method and dispersive method.
The Adler function is defined as the derivative of the timelike QED running coupling as

� (&2
0) =

3c
U0

[
B
3ΔU

(5)
had(B)
3B

]
B=−&2

0

. (7)

This quantity may be evaluated by the dispersion integral of the R-ratio, &2
0

∫
3B'(B)/(B + &2

0)
2.

In our analyses, we adopt a different strategy; for large &2
0, the Adler function is calculable with

pQCD plus minor NP corrections [14, 18]. We have taken account of the three-loop pQCD with
some of four- and five-loop corrections. For NP part, the operator product expansion and Padé
approximations are considered. Thus, we do not have to use R-ratio data. This approach has been
implemented in the public code [19], which we have utilized. Once � (&2) is obtained, we can
calculate [

ΔU
(5)
had(−"

2
/ ) − ΔU

(5)
had(−&

2
0)

]
pQCD′

=
U0
3c

∫ " 2
/

&2
0

3&2

&2 � (&
2) , (8)

where pQCD′indicates pQCD with minor NP corrections considered in the estimate of � (&2). For
&2

0 = 5 GeV2, uncertainty is about 1% originating to input values of the strong coupling at Z-pole
and heavy quark pole-masses.

We shall move on to the second approach, dispersive method,[
ΔU
(5)
had(−"

2
/ ) − ΔU

(5)
had(−&

2
0)

]
=
U0
3c
("2

/ −&2
0)

∫ ∞

<2
c0

3B
'(B)

(B +&2
0) (B + "

2
/
)
. (9)

The appearance of&2
0 in the denominator of the integrand implies that contributions from the '-ratio

at low energies are suppressed along with any experimental uncertainties in their determination. For
R-ratio integral, we have used KNT18 data [20] with a full covariance matrix for error estimates,
which is about 1% or less at &2

0 = 5 GeV2.
In the right panel of Fig. 1, we show [ΔU (5)had(−"

2
/
) − ΔU (5)had(−&

2
0)] as a function of &2

0. The
red and blue lines are the results with the Adler function and dispersive methods, respectively. Both
methods are consistent within the errors. Since the Adler function method does not rely on R-ratio
data, the result would be reliable at large &2

0 without suffering from experimental systematics. For
a small &2

0, however, larger uncertainty emerges from NP corrections in � (&2
0), and we cannot

extract a result at very small &2
0 due to the Landau pole artifact of the strong running coupling.

Finally, the second combination in square brackets in Eq. (3) provides the link between
the spacelike and timelike regions at the / boson mass, which has been evaluated in pQCD by
Jegerlehner [21, 22], [

ΔU
(5)
had("

2
/ ) − ΔU

(5)
had(−"

2
/ )

]
= 0.000045(2) . (10)

3. Result

We shall now extract our results for ΔU (5)had("
2
/
) using Eq. (3). The threshold &2

0 should be
as large as possible so that our lattice result accounts for low energy contributions in ΔU (5)had("

2
/
).

5
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However, &2
0 = 7 GeV2 is the border line bellow which the continuum extrapolation is well

controlled. Conservatively, we have chosen &2
0 = 5 GeV2. We find

ΔU
(5)
had("

2
/ )

��
Lattice+KNT18[data] = 0.0278(1%) ,

ΔU
(5)
had("

2
/ )

��
Lattice+pQCD′ [Adler] = 0.0277(1%) . (11)

The error estimate is still under debate and we tentatively put 1% uncertainty, which is conservative
enough. We stress that the above values/errors are preliminary, and the official results from
the Mainz/CLS collaboration are under preparation. In “Lattice + KNT18[data]” approach, our
ΔU
(5)
had("

2
/
) is stable for &2

0 ∈ [2, 7] GeV
2. In “pQCD′[Adler]”, the reliable region is limited to

avoid Landau pole artifact: &2
0 ∈ [4, 7] GeV

2. The assigned 1% error covers enough the fluctuations
associated with varying &2

0 in those ranges.

 0.026  0.027  0.028  0.029

Preliminary
Lat + KNT18[data]

Lat + pQCD’[Adler]

R-ratio

KNT19

DHMZ19

Jegerlehner19

EW-Global Fit

MS20

Keshavarzi
et.al.20

Gfitter18

∆α
(5)

had(M
2
z)

Figure 2: Compilation of ΔU (5)had ("
2
/
). See text for details.

The first two data points (filled-red square/diamond sym-
bols) represent the results from the Euclidean split technique
using our lattice estimate for ΔU (5)had (−&

2
0). 1% uncertainty

is put as a preliminary estimate as indicated by gray color
error-bars. Green circles denote results based on the stan-
dard dispersive approach. From top to bottom, Refs. [23],
[24], and [22]. The green-diamond has used the Euclidean
split technique. Blue upper/lower triangles represent the re-
sults from the EW global fits, published in Refs. [26], [27],
and [6].

In Fig. 2, we compile results for
ΔU
(5)
had("

2
/
) obtained using our lattice es-

timate of HVP, the standard dispersive ap-
proach, as well as EW global fits. Our re-
sults (11) are plotted as the first and second
top symbols (red square and diamond), re-
spectively. The gray color error-bars show
1% preliminary estimates for uncertainty.

The central values of our results are
somewhat larger than the green circles
which display results based on the stan-
dard dispersive approach, where the '-
ratio integration is performed over the en-
tire momentum range [22–24]. This trend
originates to the lattice data ΔUlathad(−&

2
0),

which tends to be larger than the results
from the dispersive method beyond uncer-
tainty. At Z-pole, however, the tension be-
comes much milder because of additional
uncertainties from the high energy part.

In the figure, blue upper/lower trian-
gles represent the results from the EW
global fits. For the upper open triangle,
both of "higgs and ΔU (5)had("

2
/
) are treated

as fit parameters without priors. For the
upper filled triangle, "higgs is fixed at the
physical value but ΔU (5)had("

2
/
) is treated as

a fit parameter without priors. In the lower
triangles, "higgs is a fit parameter with the prior at the physical value. For the open/filled symbols,
ΔU
(5)
had("

2
/
) is treated as a fit parameter without/with priors from R-ratio results. Our results are

consistent with all of EW-global fits results within the errors.
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In our data, more stringent estimates for uncertainty will be soon available. The error-bars will
be significantly smaller and the soft-tension may emerge against some of EW-global fits results.

4. Summary

We have investigated Quark/hadronic contributions to QED running coupling at /-pole,
ΔU
(5)
had("

2
/
), where we have utilized our lattice QCD data for the running at hadronic energy [8, 9].

In order to connect ΔU (5)had("
2
/
) defined in the timelike region and the lattice output ΔUlathad(−&

2
0)

in the spacelike region at hadronic scale (&2
0 ∼ 5 GeV2), we have adopted the Euclidean split

technique [13] shown in Eq. (3).
Our lattice data ΔUlathad(−&

2
0) have included full (D, 3, B)-quark and charm-connected valence-

quark contributions with finite volume corrections. Isospin breaking effects are taken account into
the systematic errors. The missing effects (charm disconnected, charm sea-quark, and bottom quark
contributions) have been considered as additional systematic uncertainty of a few permil, which is
comparable with some of lattice-origin systematic errors. The total error is a few percent level,
which is still preliminary.

For the energy region of [&2
0, "

2
/
], we have adopted Adler function or dispersive method. In

the former, pQCD plus minor NP expressions have been known [14, 18] and implemented in the
public code [19], which we have utilized. In the dispersive method, we have used KNT18 data [20]
with a full covariance matrix for error estimates. Both methods have resulted about 1% uncertainty
for &2

0 = 5 GeV2 in the first solid bracket in Eq. (3).
For the second combination in square brackets in Eq. (3), we have quoted a pQCD estimate by

Jegerlehner [21, 22], which is very small.
By adding all terms in Eq. (3), we have found Eq. (11) and compared with the standard

dispersive approach as well as EW global fits in Fig. 2. Our results have been preliminarywith very
conservative 1% uncertainty and consistent with the other estimates.

As a future perspective, more stringent estimates for uncertainty will be soon available. The
error-bars will be significantly smaller and a soft-tension may emerge against some of phenomeno-
logical results. Our lattice-based ΔU (5)had("

2
/
) will provide an important input for EW global fits and

BSM searches.
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