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We present results of the first lattice QCD calculations of the weak matrix elements for the
decays Bf — D°¢*v,, Bf — Di¢*¢~ and Bf — DfvV. Form factors across the entire
physical ¢® range are then extracted and extrapolated to the continuum limit with physical
quark masses. Results are derived from correlation functions computed on MILC collabora-
tion gauge configurations with three different lattice spacings and including 2+1+1 flavours
of sea quarks in the Highly Improved Staggered Quark (HISQ) formalism. HISQ is also
used for all of the valence quarks. The uncertainty on the decay widths from our form fac-
tors for Bj‘ — D%*tv, is similar in size to that from the present value for V,;,. We ob-
tain the ratio T(B} — D°u*vy)/ [MewVis|* = 4.43(63) x 10'2 s~!. Combining our form fac-
tors with those found previously by HPQCD for B} — J/yu™v,, we find |V./ Vi T(Bf —
DOutvy) /T(BE —J/wutvy) =0.257(36)5,-0(18)p, sy We calculate the differential decay
widths of Bf — D} ¢4~ across the full > range, and give integrated results in ¢> bins that avoid
possible effects from charmonium and uu resonances. For example, we find that the ratio of dif-
ferential branching fractions integrated over the range ¢> = 1 GeV> —6 GeV? for B} — D u*u~
and Bf — J/yutvy is 6.31(90)5,p,(65)5,—.7/y x 1076, We also give results for the branching
fraction of B — DFvv.
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1. Introduction

We use lattice QCD methods to calculate the form factors that capture the non-perturbative
physics of the pseudoscalar B} meson decaying weakly into either D°¢*v, or D ¢*¢~. This is the
first time that these calculations have been performed. More details can be found in [1].

We calculate the form factors fy and f, for Bf — D°/*v, throughout the entire range of
physical momentum transfer squared, ¢g°>. An accurate prediction from the Standard Model of the
normalisation and shape of these form factors will complement observations of this process from
experimeant and ultimately lead to a new exclusive determination of the CKM matrix element |V, |
in the future. LHCb expect [2] that Upgrade IT will make possible a measurement of B} — D° mrvy
with sufficient accuracy to offer a competitive determination of V,,;,. We also calculate the ratio of
branching fractions for Bf — D%/ v, and B} — J/w/¢* v, using the form factors from [3]. This
allows the combination V,,;/V,, to be examined given experimental information on this ratio.

Alongside our calculation of the form factors for B} — D°/*v,, we also carry out a lattice
QCD calculation of the physical-continuum form factors fy , r for the vector and tensor current
matrix elements of the rare process B} — D} ¢*¢~. The semileptonic decay Bf — D¢/~ is an
example of a flavour-changing, neutral current (FCNC) process which is not allowed at tree-level
in the Standard Model, thus contributions from physics beyond the Standard Model may be more
visible than with tree-level decays.

The form factors calculated here are part of an ongoing programme by HPQCD to study weak
decays of mesons containing a bottom quark. We use the Highly Improved Staggered Quark for-
malism (HISQ) [4] that is specifically designed to have small discretisation errors. We simulate
with bottom quarks at their physical mass on our finest lattice, and unphysically light bottom quarks
on the coarser lattices. Together this data informs the limit of vanishing lattice spacing and physical
quark masses through HPQCD’s ‘heavy-HISQ’ strategy. Recent calculations that have established
the method for determining semileptonic form factors include [5, 6, 7, 3, 8, 9].

We also investigate strategies for improving on this first calculation of the form factors for
B, — D and B, — D;. These methods will inform the strategy for other future calculations of
heavy-to-light quarks decays. To minimise cost, we trial these improvements in the B, — Dy case
only and details can be found in [1].

2. Lattice Methodology

2.1 Lattice Parameters

Ensembles with 2+ 1+ 1 flavours of HISQ sea quark generated by the MILC collaboration [10,
11, 12] are described in Table 1. The Symanzik improved gluon action used is that in [13] where the
gluon action is improved perturbatively through &'(oa?) including the effect of dynamical HISQ
sea quarks. HISQ [4] is used for all other valence flavours. Our calculations feature physically
massive strange quarks and equal-mass up and down quarks, with a mass denoted by m;, with
my/mg = 0.2 and also the physical value m;/m; = 1/27.4 [14].

We work in the frame where the B is at rest, and momentum is inserted into the strange
and up valence quarks through partially twisted boundary conditions [17] in the (1 1 1) direction.
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Table 1: Parameters for the MILC ensembles of gluon field configurations. The lattice spacing a is deter-
mined for the Wilson flow parameter wy [15]. The physical value wp = 0.1715(9) fm was fixed from fz in
[16]. Sets 1 and 2 have a ~ 0.09 fm. Set 3 has a ~ 0.059 fm and set 4 has a =~ 0.044 fm. Sets 1, 3 and 4 have
unphysically massive light quarks such that m; /ms; = 0.2. In the fifth column, we give ncf,, the number of
configurations used for each set. We also use four different positions for the source on each configuration.

sea

set handle wo/a N)? x Ny Nt am?ea anm’e? am®

1 fine 1.9006(20) 323x96 500 0.0074  0.037 0.440
2 fine-physical 1.9518(17) 643 %96 500 0.00120 0.0364 0.432
3 superfine 2.896(6) 483 x 144 250 0.0048 0.024 0.286
4

ultrafine 3.892(12) 643x 192 250 0.00316 0.0158 0.188

Values for the twists we use can be found in [1]. We use heavy quark masses up am;, = 0.5,0.65
and 0.8 on each set.

2.2 Extracting the form factors

Our calculation uses HISQ quarks exclusively. In particular, since we use HISQ for both the
parent heavy quark and the daughter light or strange quark, we can use the Partially Conserved
Vector Current Ward identity to relate matrix elements of the renormalised local vector current
ZyVE

local With matrix elements of the local scalar density through

qu(Dy(s)|Vipeat He) Zy = (my — my () (Dy(5)Siocal He ) - 2.1)

This holds since the mass and scalar density multiplicative renormalisation factors Z,, and Zg satisfy
ZnZs = 1. Using Eq. (2.1) to determine Zy is a fully non-perturbative strategy. Up to discretisation
effects, the renormalisation factor is independent of g2, and so it is sufficient to deduce its value at
zero-recoil (§ = 0 and maximum ¢?).

The tensor form factor is obtained through

 Zp (D2 | He) (Mg, + M)

fi(q?) = °C§1i Vi ] : (2.2)

where Tkl)’cgl is the local tensor operator and Z7 is its multiplicative renormalisation factor that
takes the lattice tensor current to the MS scheme. We use values of the associated multiplicative
renormalisation factor Zy obtained using the RI-SMOM intermediate scheme [18]. Values in the
RI-SMOM scheme at scale 3 GeV are converted to scale m,, (taken as 4.8 GeV) in the MS scheme.
Nonperturbative (condensate) artefacts in Zy in the RI-SMOM scheme were removed using analy-

sis of the J/y tensor decay constant [18] .

2.3 Fitting the form factors

From fits to our 3-point correlation functions, we obtain matrix elements from which we de-
termine the form factors required. The form factor data at all momenta and heavy quark masses
on all sets in Table 1 are then fit simultaneously to a functional form that allows for discretisation
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effects, dependence on the heavy meson mass, and any residual mistuning of the light, strange and
charm quark bare mass parameters.

It is convenient, and now standard, to map the semileptonic region m% <g <t =My —
Mp,, )2 to a region on the real axis within the unit circle through

V=@ =\t 1 5
2(q7) = - : (2.3)
L —q -+t — 1o

The parameter ¢, is chosen to be the threshold in ¢> for meson pair production with quantum
numbers of the current [19], i.e. (My +Mﬂ<K>)2. We choose the parameter 7y to be 0 so that the
points g> = 0 and z = 0 coincide. We fit our form factors to a fit form of a truncated power series
in z multiplied by the factor (1 —¢*/MZ2,)~" which describes the dominant pole structure. More
details of the fit form we use can be found in [1].

3. Results

3.1 Form factors

In Fig. 1, we present our form factors in the limit of vanishing lattice spacing and physical
quark masses across the entire physical range of ¢*. Details of the results of the fits of correlation
functions and lattice form factors from which Fig. 1 is derived from are given in [1].

50 B.— D B. — Dy

15
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Figure 1: The fit functions for the B, — D; (left) and B, — Dj (right) form factors fy 1 and fo 1 7 respec-
tively tuned to the continuum limit with physical quark masses.

3.2 Observables for BS — D%*v,

We plot the differential decay rate Mg |Vip| 2dT(BS — D°0*v,)/dg? derived from our form
factors as a function of g2 in Fig. 2. We integrate this function to find nE’\%,\V”b |72T". This is then
combined with Ngw, the CKM matrix element V,;, = 3.82(24) x 1073 [20] (an average of inclu-
sive and exclusive determinations), and the lifetime of the B, meson [21] to obtain the branching
ratios in Table 2. At present, errors from our lattice calculation dominate those associated with the
lifetime of the B. meson and the CKM matrix element V.



Form factors for BX — D0t v, and B} — D} ¢+ ¢~ Laurence Cooper

b
o

= p

—_
Ut

Inew Vs 2 dT'/dg? x 10" GeV ™!

1.0t
0.57
0.0t
0 5 10 15 20
¢’ GeV?

Figure 2: The differential decay rate Ny |V*?|"2dT(Bf — D0t vy)/dq? as a function of ¢> for the cases
{ = u in blue and ¢ = 7 in red.

Table 2: For B} — D°/*v,, we give values for the branching ratios (BR) for each of the cases { = e, i, T.
We take the lifetime of B, meson to be 513.49(12.4) fs [21]. The errors from the lifetime and the CKM
matrix element V,;, are shown explicitly. The error from ngw is negligible. We ignore uncertainties from
long-distance QED contributions since the meson D? in the final state is neutral.

decay mode BRx 10’
Bf — D%V, | 3.37(48)1atice(8) 1z, (42)ckm
Bf = Dt vy | 3.36(47 )iatice (8) s, (42)ckm
B — Dt vy | 2.29(23)1atice (6) 75, (29)ckm

C

We compare our results with those for the decay mode B — J/yu™v,. We take the form
factors for this decay from HPQCD’s lattice QCD calculation in [3]. We combine these form factors
with those for B} — D°/* v, computed in this study to find the ratios

2
Vop |" DBE = DORIVU) o361 15
Vur| T(BE = J/yutvy) 7
2 + 0+
Vo |" B 2 DTVe) ) 678(69) (45). G.1)
V| T(B& = J/yttve)

The first error comes from our form factors for B} — D°u* v, and the second error comes from

the form factors for B} — J/wu*v, in [3]. We (conservatively) treat the form factors for B} —
J/wu" v, as uncorrelated to the Bf — DT v, form factors.

3.3 Observables for B — D (¢~

Like B — K¢*¢~, the process B] — D ¢*/~ is a rare decay mediated by the loop-induced
b — s transition. Here, we follow nomenclature commonly used for B — K/*/~ as in [22] and
replace the initial and final mesons in the B — K formulae with B, and D; respectively. We cal-

culate observables for B — D ¢* ¢~ from our form factors fo .+ 1gnoring small non-factorisable
contributions at low q2 [23, 24].
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Table 3: For B} — D} (T¢~, we give values for d%/dq* x 107 integrated with respect to g* over the
given ranges (g5, q}zﬁgh) in GeV? for each of the cases £ = e, 1, 7. We take the lifetime of B. meson to be
513.49(12.4) fs [21]. Note that these results do not include effects from charmonium or u# resonances.

decay mode (4m2, q2ax) (1,6) (14.18,4%,.,)
BI =Diete | 1.00(11) 0285(41)  0.146(22)
BY 5 Dfutu | 1.00(11)  0.286(41)  0.147(22)
B} — Dfttt™ | 0.245(18) — 0.195(14)

In Fig. 3 we plot the differential branching fractions for the cases ¢ = u, T for the physical range
4m? < ¢* < (Mg, — Mp,)*. These are constructed from the expressions in [22] for B — K. The yel-
low bands span across /¢ = 2.956 — 3.181 GeV and 3.586 — 3.766 GeV. These regions are the
same as in [25] and they represent veto regions which largely remove contributions from charmo-
nium resonances via intermediate J/y and y(2S5) states. The effects of charmonium resonances
are not included in our differential branching fractions. For d %, / dg® between \/? = 2.956 and
\/q>2 = 3.766, we interpolate the function linearly as done in [26] for the B — K branching fraction.

On integrating with respect to ¢, we report on the ratio

q%igh 2 2
dq*d %y, [dq
4 q20W 1
Ry (qiow »Ghign ) = — 3 3.2)
quzlg dqzd%&/dqz

for different choices of final-state lepton /; » and integration limits qlzow, qﬁigh. We find that

RY (4m3 gy ) = 1.00203(47) (3.3)

R (1 GeV?,6 GeV?) = 1.00157(52) (3.4)
RM (14.18 GeV? ¢}, ) = 1.0064(12) (3.5
RY (14.18 GeV?, ¢,y ) = 1.34(13) (3.6)
R} (14.18 GeV?, gp,y ) = 1.33(13) (3.7)

The latter two ratios above involve the differential decay widths above the veto region associated
with the resonance from y(2S). Over the range 4m% < q* < @ x> We obtain the branching fractions
given in Table 3.

4. Conclusions and Outlook

For the first time from lattice QCD, we obtain the scalar and vector form factors fo 4 for
B. — Dy and the scalar, vector and tensor form factors fy 4 r for B, — Dy across the entire physical
ranges of ¢> in the continuum limit with physical quark masses. Our lattice QCD calculation uses
four different lattices with three different lattice spacings, unphysical and physically massive light
quarks, and a range of heavy quark masses. Together the lattice data informs the limit of vanishing
lattice spacing, physical b quark mass, and physical (equal-mass) up and down quark masses.

The error on the decay widths I'(B} — D°/*v;) (see Table 2) from our form factors is similar
to the error on the present determination of V,,;,. For the cases £ = e or U, the lattice error is 13%
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Figure 3: Plot of the B — D ¢*¢~ differential branching ratio for £ =  (top) and £ = 7 (bottom) in the final
state. The yellow bands show regions where charmonium resonances (not included in our calculation) could
have an impact. The grey band is between the two yellow regions labelling the charmonium resonances.
Through the yellow and grey bands, we interpolate the function d.%,, / dq* linearly when integrating to find
the branching fraction and related quantities.

larger than the error from V,;,, whereas, for £ = 7, the lattice error is nearly 20% smaller than the
error from V,;,. The error on the form factors calculated here for B, — Dy is smaller than that for
B. — D by up to a factor of 2 at small recoil.

Experimental observations are expected from LHC in the near future [27]. In Sections 3.2
and 3.3 we give results for a host of observables that can be compared to experiment. In [1], we
demonstrate how the uncertainties in our calculation can be reduced in the future to complement
experimental results as they improve. We consider a finer lattice on which we simulate directly
at the mass of the b quark, and an alternative extraction of f from lattice matrix elements of the
spatial vector current to improve the uncertainty of f, near zero-recoil.
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